\blacktriangleright Fermilab \bigcirc ENERGY \bigcirc Science

Silicon detectors & the CMS tracker

Jennet Dickinson June 15, 2023

Outline

- Hello
- Silicon detector basics
- The CMS tracker

Past, present, and future

Silicon is a semiconductor

- In an atom, electrons have discrete energy levels
- In solid state material, the atomic levels merge into energy bands

The energy difference between valence and conduction bands determines whether a material is an insulator, semiconductor or conductor

Silicon is a semiconductor

- In an atom, electrons have discrete energy levels
- In solid state material, the atomic levels merge into energy bands

The energy difference between valence and conduction bands determines whether a material is an insulator, semiconductor or conductor

Silicon is a semiconductor

- In an atom, electrons have discrete energy levels
- In solid state material, the atomic levels merge into energy bands

The energy difference between valence and conduction bands determines whether a material is an insulator, semiconductor or conductor

Silicon lattice

• What does this look like microscopically?

Silicon lattice

Temperature $= 0 K$ All electrons are bound

춘 Fermilab

Signal and noise

- Let's say we have a sensor $d = 300 \ \mu m$ thick and area A = 1 cm²
- How much noise do we see?

 1.45×10^{10} / cm³ \star 0.03 cm³ = 4.35 x 10⁸ electron-hole pairs

Signal and noise

- Let's say we have a sensor $d = 300 \ \mu m$ thick and area A = 1 cm²
- How much noise do we see?

 1.45×10^{10} / cm³ \star 0.03 cm³ = 4.35 x 10⁸ electron-hole pairs

• How many electron-hole pairs are created when a pion passes through? Minimum ionizing particle (MIP): $dE/dx = 3.87$ MeV/cm Mean ionization energy 3.62 eV 3.87 x 106 eV/cm * 0.03 cm / 3.62 eV = **3.2 x 104 electron-hole pairs**

Signal and noise

- Let's say we have a sensor $d = 300 \ \mu m$ thick and area A = 1 cm²
- How much noise do we see?

 1.45×10^{10} / cm³ \star 0.03 cm³ = 4.35 x 10⁸ electron-hole pairs

• How many electron-hole pairs are created when a pion passes through? Minimum ionizing particle (MIP): dE/dx = 3.87 MeV/cm Mean ionization energy 3.62 eV 3.87 x 106 eV/cm * 0.03 cm / 3.62 eV = **3.2 x 104 electron-hole pairs**

```
Noise >> signal!
```


Removing charge carriers

• In an extrinsic semiconductor, there is an excess of electrons or holes

Removing charge carriers

• In an extrinsic semiconductor, there is an excess of electrons or holes

Depletion zone

- The region without charge carriers is called the **depletion zone**
- Maximize the size of the depletion zone by applying a high **bias voltage** (HV)

• Thermal electron-hole pairs are separated by the applied electric field, creating a small **leakage current** across the junction

Depletion zone

- The region without charge carriers is called the **depletion zone**
- Maximize the size of the depletion zone by applying a high **bias voltage** (HV)

• Thermal electron-hole pairs are separated by the applied electric field, creating a small **leakage current** across the junction

A more realistic picture

Silicon detectors in HEP typically have a bulk region of n-type silicon and heavily doped p-type implants

Pixels: the implants are placed in a grid pattern Strips: the implants are places in long, thin strips

Development of a charge cluster

춘 Fermilab

• Readout chip = Application Specific Integrated Circuit (ASIC) Also made mostly of silicon

Powered by low voltage (LV)

Connected to the sensor via wire bonds or bump bonds

• At minimum, the ASIC must:

• At minimum, the ASIC must:

• Store & send is much more complicated than it sounds!

Store, keeping track of when each signal came (i.e. which collision)

Send, when the trigger system tells you that a particular collision should be saved

• At minimum, the ASIC must:

• Store & send is much more complicated than it sounds!

Store, keeping track of when each signal came (i.e. which collision)

Send, when the trigger system tells you that a particular collision should be saved

• The future of ASICs: can some physics analysis already happen here?

Can use ML to extract particle properties from charge cluster

A look at the detector layers

Inside: Trackers

Middle: Calorimeters

Outside: Muon system

The inside: tracker

- Measure a particle's spatial trajectory Connect the dots between hit pixels to create a **track** Must be lightweight
- **Solenoid magnet** provides a magnetic field in the tracker, causing particle tracks to curve

Radius tells you the **momentum**

 mv^2 $= q v B$

Very curved \rightarrow low momentum Almost straight \rightarrow high momentum

The CMS pixel detector

• Original (2011): 3 barrel layers + 2 endcap disks Pixel area 100 x 150 μ m², thickness 320 μ m

춘 Fermilab

The CMS pixel detector

• Original (2011): 3 barrel layers + 2 endcap disks Pixel area 100 x 150 μ m², thickness 320 μ m

• Phase 1 upgrade (2017): 4 barrel layers + 3 endcap disks Innermost layer closer to collision **BPIX** $\eta = 0.5$ Pixel area same, thickness 285-300 μ m $\eta = 0$ L₄ $r = 160$ mm L₃ Less material in the forward region r=109mm $L2$ (carbon-fiber mechanics, $CO₂$ cooling) $r = 68$ mm

A short video

Why the Phase 1 upgrade?

• Every year, CMS collects MORE integrated luminosity in THE SAME amount of time

How?

CMS Integrated Luminosity, pp

Why the Phase 1 upgrade?

- Every year, CMS collects MORE integrated luminosity in THE SAME amount of time
- Upgrades to the LHC accelerator give higher **instantaneous luminosity**

More collisions at the same time (**pileup**)

$$
\mathcal{L} = \frac{n_p^2 n_b f}{4 \pi \sigma_x \sigma_y}
$$

CMS Integrated Luminosity, pp

Why the Phase 1 upgrade?

- Every year, CMS collects MORE integrated luminosity in THE SAME amount of time
- Upgrades to the LHC accelerator give higher **instantaneous luminosity**

More collisions at the same time (**pileup**)

Levels of $\mathcal L$ exceeded design expectations

Original pixel detector electronics could not cope!

Upgrade gave higher data output, larger buffers for data storage, etc.

The CMS strip tracker

• Two types of modules: **single-sided** and **double-sided** divided into four regions:

Tracker inner barrel (TIB) Tracker outer barrel (TOB) Tracker inner disks (TID) Tracker end-caps (TEC)

- 80-120 μ m pitch
- Length 8.5-20 cm
- 320-500 μ m sensor thickness
- This sub-detector is still the original!

Farther from the interaction point \rightarrow effects of pileup are less extreme

조 Fermilab

The HL-LHC

- By Run 3, we will have collected \sim 450 fb⁻¹ in 11 years
- The **High Luminosity LHC (HL-LHC)** collider upgrade will provide 3000 fb-1 to CMS in 11 years

Up to 20x more integrated luminosity than we have now

100x more than we had at the time of the Higgs discovery

How?

The HL-LHC

- By Run 3, we will have collected \sim 450 fb⁻¹ in 11 years
- The **High Luminosity LHC (HL-LHC)** collider upgrade will provide 3000 fb-1 to CMS in 11 years

Running conditions at the HL-LHC

- Large doses of non-ionizing radiation, or **fluence**, cause damage to silicon sensors by disrupting the lattice
- **Fluence** ∝ **integrated luminosity**

If we want more data, we have to deal with more damage.

Projected fluence in the tracker volume at 3000 fb-1

Signs of wear in the tracker

- Increasing **leakage current** due to damage to the silicon lattice Periods of **annealing** when the detector is at room temperature
- Shown here for strip modules at different layers

Closer to the interaction point \rightarrow more radiation damage \rightarrow higher leakage current

33

Signs of wear in the tracker

- Increasing **leakage current** due to damage to the silicon lattice Periods of **annealing** when the detector is at room temperature
- Shown here for strip modules at different layers

Closer to the interaction point \rightarrow more radiation damage \rightarrow higher leakage current

• Without sufficient cooling, will experience **thermal runaway**

Higher I_{leak} increases temperature, which increases I_{leak} , etc.

Current tracker cooling system is limited to -20° C

Signs of wear in the tracker

- Higher bias voltage is required to deplete strip sensors
- At the HL-LHC, bias voltage is expected to go from ~ **-250 to -800 V** by end of data-taking

33

What will the HL-LHC do to our tracker?

• After collecting only 1000 fb⁻¹, the blue modules in the current tracker become completely **in-operable**!

Phase 2 upgrade of the CMS tracker

Upgrading CMS for the HL-LHC

Priorities of the tracker upgrade

³: Robust tracking in high pile-up conditions

Fine granularity, less material

Radiation tolerance is critical

Pass track info to the **hardware-level trigger** (L1) – Outer Tracker only

Using tracks to decide whether to read out data

Phase 2 inner tracker (pixel)

- Consists of 4 barrel layers (TBPX) + 8 small and 4 large double-disks (TFPX) \bullet Thinner sensors: 100-150 μ m (compared to 285-300 μ m)
	- Smaller pixel size: 25 x 100 μ m² or 50 x 50 μ m²
	- $\ddot{\bullet}$: Coverage up to $|\eta| < 4.0$ (compared to 2.5)

Phase 2 outer tracker

• Tracker Barrel (TB) region:

TBPS: 3 double-sided layers of **PS modules** (flat and tilted) TB2S: 3 double-sided layers of **2S modules** (flat)

• Tracker Endcap Double Disks (TEDD): 5 double-sided disks

Tracker material budget

• Dramatic reduction in total material budget compared to current tracker!

Mechanical structures primarily made of **carbon fiber** and **carbon foam**

Some **services** are moved outside of the detector volume

Tilted section uses fewer modules than flat

Dual-phase CO₂ cooling system uses far less material than current cooling system

Irradiation and test beam

- How do we make sure our devices will last? They need to be radiation hard
- **Irradiation**: shoot silicon devices with an intense particle beam

Simulate the dose that the detector would receive by the end of its life

• **Test beam**: use the device to measure particles from a well-understood beam

How does the performance change after irradiation?

10 minutes 400 MeV protons

A few words about the trigger

• The upgraded lowest level (L1) trigger can select more data to save Event rate of 100 kHz (now) \rightarrow 750 kHz

Suppose we change nothing else in the trigger.

Use the same inputs, save data down to the same low p_T thresholds.

A few words about the trigger

• The upgraded lowest level (L1) trigger can select more data to save Event rate of 100 kHz (now) \rightarrow 750 kHz

Suppose we change nothing else in the trigger.

Use the same inputs, save data down to the same low p_T thresholds.

```
It's not enough!
```
At pileup $\langle \mu \rangle$ = 200, need **~4 MHz** !

The upgraded level 1 trigger

- The upgraded lowest level (L1) trigger can select more data to save Event rate of 100 kHz (now) \rightarrow 750 kHz
- Has more time to decide what to save: latency of 4 μ s (now) \rightarrow 12.5 μ s
- **Receives info from the tracker**

Not possible in current detector, but critical for the HL-LHC!

Example: single muon trigger

Efficiency

Do we save most of the target process above $p_T > 20$ GeV?

Rate

Does the amount of data that we save fit within the limitations?

Example: single muon trigger

Efficiency

Do we save most of the target process above $p_T > 20$ GeV?

No tracks: not near the threshold

Rate

Does the amount of data that we save fit within the limitations?

 \bullet No tracks: not for low thresholds

Trigger: design of p_T **modules**

- Each module consists of two **closely spaced sensors**
- Given a hit in the inner sensor, the position of the hit in the second sensor depends on

The particle's momentum (p_T)

The separation Δr between the sensors

Where the module is in the detector (r)

$$
\Delta x = r \Delta r \frac{qB}{2p_{\rm T}}.
$$

49 6/15/23 Jennet Dickinson | Silicon detectors & the CMS tracker

Trigger: design of p_T **modules**

• For a given Δr, can define a search window where the second hit will be for all tracks with $p_T > 2$ GeV

Position and width of stub window depend on where the module is in the detector (programmable)

• Patterns of hits consistent with high p_T tracks are passed to L1 trigger

These are called **stubs**

2S module design

- Two silicon strip sensors Area $10x10$ cm² Thickness of **300 µm**
	- 2 rows of **90 µm x 5 cm** strips
- Two front end hybrids, each with
	- 8x ASICs for sensor readout, stub logic (CBC)
	- 1x Concentrator ASIC (CIC) for data aggregation, clustering, etc.
- Prototype assembly and testing underway
	- Assembly planned in Germany, Belgium, US, India, & Pakistan

중 Fermilab

PS module design

- Two silicon sensors with area 5x10 cm² \odot Thickness of 300 μ m
- Top: strip sensor

Two rows of strips, **100 µm x 2.4 cm**

- Bottom: Macro-Pixel Sub-Assembly (**MaPSA**)
	- Macro pixel sensor bump bonded to 16 MPA ASICs
	- MPA ASIC does the stub logic
- Two front-end hybrids, each with
	- 8x ASICs (SSA) for readout of strip sensor
	- 1x Concentrator ASIC (CIC) for data aggregation, clustering, etc.

조 Fermilab

In summary,

- Silicon detectors are very effective for HEP applications!
- Changing accelerator conditions \rightarrow need for upgraded detectors Plus, we can integrate newer technologies at the same time
- The Phase 2 upgrade of the CMS tracker will
	- ****** Provide robust tracking capabilities in high-pileup events
	- Perform well through the end of HL-LHC data-taking
	- Contribute to the level trigger (critical at high pile-up!)

Any questions?

Thanks for materials:

- Manfred Krammer & Frank Hartmann
- Farrah Simpson
- Doug Berry, Hannsjörg Weber, Corrinne Mills

Additional material

Track info in the trigger gives us:

Charged particle candidates in the trigger

Not only electrons and muons, but hadronic jets. Can even tell us about jet flavor and substructure

- Information about **isolation**
	- Are there a lot of tracks near a particle candidate?

Track info in the trigger gives us:

• **Charged particle candidates** in the trigger

Not only electrons and muons, but hadronic jets. Can even tell us about jet flavor and substructure

- Information about **isolation**
	- Are there a lot of tracks near a particle candidate?
- **A collision vertex!**
	- Gives photons, missing energy something to point to
	- Rejection of pileup, which corresponds to the wrong vertex

