High-energy nuclear physics and heavy ion collisions with CMS

Austin Baty University of Illinois Chicago abaty.github.io

July 3, 2024 **CMS PURSUE/SPRINT Program** Fermilab

UNIVERSITY OF UIC **ILLINOIS CHICAGO**

What is nuclear physics?

What is nuclear physics?

- All those applications come from understanding nuclei and the protons/neutrons inside of them
- Protons/neutrons form 99% of the visible mass in the universe!
- We don't understand details of what nuclei look like microscopically

Low energy nuclear physics

PERIODIC TABLE OF ELEMENTS

Chemical Group Block

	1																	18
1	1 1.0080	Pub Chem															2 4.00260 Hee Helium	
	Nonmetai	2			Atomic N	lumber <mark>1</mark>	.7 35.4	5 Atomic	c Mass, u				13	14	15	16	17	Noble Gas
2	3 7.0 Lithium Alkali Metal	4 9.012183 Be Beryllium Alkaline Earth Me				Name	Chlorine Halogen	Symb Chem	ool 	Block			5 10.81 Boron Metalloid	6 12.011 C Carbon Nonmetal	7 14.007 N Nitrogen Nonmetal	8 15.999 Oxygen Nonmetal	9 18.9984 F Fluorine Halogen	10 20.180 Neon Noble Gas
3	11 22.989 Na Sodium Alkali Metal	12 24.305 Mg Magnesium Alkaline Earth Me	3	4	5	6	7	8	9	10	11	12	13 26.981 Aluminum Post-Transition M	14 28.085 Silicon Metalloid	15 30.973 P Phosphorus Nonmetal	16 32.07 Sulfur Nonmetal	17 35.45 Cl Chlorine Halogen	18 39.9 Argon Noble Gas
	19 39.0983	20 40.08	21 44.95591	22 47.867	23 50.9415	24 51.996	25 54.93804	26 55.84	27 58.93319	28 58.693	29 63.55	30 65.4	31 69.723	32 72.63	33 74.92159	34 78.97	35 79.90	36 83.80
4	K Potassium Alkali Metal	Ca Calcium Alkaline Earth Me	Scandium Transition Metal	Ti Titanium Transition Metal	Vanadium Transition Metal	Chromium Transition Metal	Mn Manganese Transition Metal	Fe Iron Transition Metal	Cobalt Transition Metal	Nickel Transition Metal	Cu Copper Transition Metal	Zn Zinc Transition Metal	Gallium Post-Transition M	Germanium Metalloid	Arsenic Metalloid	Selenium Nonmetal	Bromine Halogen	Krypton Noble Gas
	37 85.468	38 87.62	39 88.90584	40 91.22	41 92.90637	42 95.95	43 96.90636	44 101.1	45 102.9055	46 106.42	47 107.868	48 112.41	49 114.818	50 118.71	51 121.760	52 127.6	53 126.9045	54 131.29
5	Rb Rubidium Alkali Metal	Sr Strontium Alkaline Earth Me	Y Yttrium Transition Metal	Zr Zirconium Transition Metal	Nb Niobium Transition Metal	Mo Molybdenum Transition Metal	Tc Technetium Transition Metal	Ru Ruthenium Transition Metal	Rh Rhodium Transition Metal	Pd Palladium Transition Metal	Ag Silver Transition Metal	Cd Cadmium Transition Metal	Indium Post-Transition M	Sn Tin Post-Transition M	Sb Antimony Metalloid	Te Tellurium Metalloid	lodine Halogen	Xeon Noble Gas
	55 132.90	56 137.33		72 178.49	73 180.9479	74 183.84	75 186.207	76 190.2	77 192.22	78 195.08	79 196.96	80 200.59	81 204.383	82 207	83 208.98	84 208.98	85 209.98	86 222.01
6	Cesium Alkali Metal	Ba Barium Alkaline Earth Me		Hf Hafnium Transition Metal	Ta Tantalum Transition Metal	W Tungsten Transition Metal	Re Rhenium Transition Metal	Osmium Transition Metal	Ir Iridium Transition Metal	Pt Platinum Transition Metal	Gold Transition Metal	Hg Mercury Transition Metal	TI Thallium Post-Transition M	Pb Lead Post-Transition M	Bi Bismuth Post-Transition M	Polonium Metalloid	Attaline Halogen	Radon Noble Gas
	87 223.01	88 226.02		104 267.1	105 268.1	106 269.1	107 270.1	108 269.1	109 277.1	110 282.1	111 282.1	112 286.1	113 286.1	114 290.1	115 290.1	116 293.2	117 294.2	118 295.2
7	Francium Alkali Metal	Ra Radium Alkaline Earth Me		Rf Rutherfordium Transition Metal	Db Dubnium Transition Metal	Seaborgium Transition Metal	Bh Bohrium Transition Metal	Hs Hassium Transition Metal	Mt Meitnerium Transition Metal	Ds Darmstadtium Transition Metal	Rg Roentgenium Transition Metal	Copernicium Transition Metal	Nihonium Post-Transition M	FI Flerovium Post-Transition M	Moscovium Post-Transition M	Lv Livermorium Post-Transition M	Ts Tennessine Halogen	Oganesson Noble Gas
				57 138.9055	58 140.116	59 140.90	60 144.24	61 144.91	62 150.4	63 151.964	64 157.2	65 158.92	66 162.500	67 164.93	68 167.26	69 168.93	70 173.05	71 174.9668
				La Lanthanum Lanthanide	Cerium Lanthanide	Pr Praseodymium Lanthanide	Nd Neodymium Lanthanide	Pm Promethium Lanthanide	Sm Samarium Lanthanide	Eu Europium Lanthanide	Gd Gadolinium Lanthanide	Tb Terbium Lanthanide	Dysprosium Lanthanide	Ho Holmium Lanthanide	Er Erbium Lanthanide	Tm Thulium Lanthanide	Yb Ytterbium Lanthanide	Lu Lutetium Lanthanide
				89 227.02	90 232.038	91 231.03	92 238.0289	93 237.04	94 244.06	95 243.06	96 247.07	97 247.07	98 251.07	99 252.0830	100 257.0	101 258.0	102 259.1	103 266.1
				Actinium Actinide	Th Thorium Actinide	Pa Protactinium Actinide	U Uranium Actinide	Neptunium Actinide	Pu Plutonium Actinide	Americium Actinide	Curium Actinide	Berkelium Actinide	Californium Actinide	Es Einsteinium Actinide	Fermium Actinide	Md Mendelevium Actinide	No Nobelium Actinide	Lr Lawrencium Actinide

- Low energy nuclear physics studies how nuclear isotopes can decay
- Searching for new elements, etc.
- What is 'high energy' nuclear physics?

How are atoms held together?

- Electric (or electromagnetic) force
 - Opposite signs attract each other
 - Same sign charged repel each other

0

Electrostatic Force

How are nuclei held together?

- All protons have positive charge
 - How does the nucleus stay together?
- There is another force the strong force!

gether? ong force!

Electrostatic Force

The Standard Model

The SM describes 3 fundamental forces of nature

Standard Model of Elementary Particles

- Quantum Electrodynamics (QED)
 - **Fundamental theory of**
 - electromagnetism

Quantum Electrodynamics

Standard Model of Elementary Particles

Quantum Chromodynamics

- - **Theory of strong force**

 - charge

Standard Model of Elementary Particles

Confinement

- Quarks are always stuck together by gluons confined
- Protons/neutrons have 3 quarks stuck together
- Nuclei are many protons/neutrons stuck together
 - High energy nuclear physics wants to understand quarks/gluons

Phys.Rev.D 81:034504,2010

Proton

Neutron

Studying quarks and gluons

- 3 quark picture is simple; gluons important at higher energies!
- How can we study quarks and gluons if they are confined?

Analogy time - Iceworld!

A collision on iceworld!

A meteor hits and heats up ice world!

Discovery of liquid water!

- Liquid water discovered!
- Same molecules
- Same force
- Different phase of matter

Phases of water

Steam

Liquid Water

lce

Phases of water

Steam

Liquid Water

lce

Physicist's view of water

- Water is very complex!
- Electromagnetism is well understood!

Temperature

What does the phase diagram look like for nuclear matter?

How to study quarks and gluons

If we can heat up nuclei enough, can we 'melt' the protons/neutrons into quarks and gluons?

Quark-Gluon plasma

- High energy nucleus collisions get very hot
- Protons/neutrons melt into a new form of matter
 - Quark-Gluon plasma deconfined!

Can't achieve high enough temperatures conventionally

Heavy Ion Collisions

- Created with ion collisions!
- Hottest man-made form of matter
- QGP cools into particles
 - Detect particles, infer quark-gluon plasma properties
- QGP shows very complex behavior!

Relativistic Heavy Ion Collider

RHIC

STAR

- THE REAL PROPERTY OF

139

SPHENIX ASSEMBLY UNDERWAY Operating!

LINAC

E Star .

BOOSTER AGS

EBIS

NSRL .

Top energy of 200 GeV per nucleon pair Can accelerate almost any element

Large Hadron Collider

CERN Prévessin

 Runs heavy ions ~1 month / year Top energy of 5.5 TeV per nucleon pair: 1 PeV (0.1 mJ) total collision energy Accelerates protons, Pb²⁰⁸, Xe¹²⁹

SUISSI

ERANCE

- Nucleus collisions ~1 month of each year

LHC Schedule

LHC mostly does proton-proton collisions for high-energy physics

Time: 0.10

rapidity 5 2.5 0 -2.5 -5

Heavy Ion Collisions

Compact Muon Solenoid

General purpose experiment
 50' toll: 14,000 toppose

The second second second

- 50' tall; 14,000 tonnes
- 3.8 Tesla magnetic field
- >2000 collaborators

pp Event (Not nucleus collision!)

Min-Bias PP (13 TeV)

https://github.com/abaty/OpenGL_LHC

CMS Experiment at the LHC, CERN Data recorded: 2018-Nov-08 20:48:06.756040 GMT Run / Event / LS: 326382 / 309207 / 7

Challenging to track all particles

"Perfect Liquid"

10

n/S

0.1

- QGP behaves like a liquid!
- Viscosity 'thickness' of the fluid

QGP 'flows' very easily

Nature Physics volume 15, 1113–1117 (2019)

Speed of sound in QGP?

- How fast do pressure waves travel through the QGP?

How fast do you have to go to make a 'sonic boom' in QGP?

- Theoretical predictions have been calculated for QGP speed of sound on massive supercomputers
- One of the few things that can be predicted theoretically **Does experiment agree with theory?**

QGP Speed of Sound

Proton-nucleus collisions

- proton-ion collisions?
- under debate!

Simulation from Chun Shen

٠

Ζ

The Electron-Ion Collider A machine that will unlock the secrets of the strongest force in Nature

•

RHIC

Large energy range: 20-140 GeV High luminosities Polarized electrons/protons Many ion species: proton - Uranium

EIC Physics

Take pictures of quarks/gluons inside proton/nuclei

arXiv:2103.05419 Eur. Phys. J. A (2016) 52: 268

How do nuclei spin?

Upper limit on number of gluons in the nucleus?

EIC Schedule

ePIC Collaboration

Particle vs Nuclear Physics

- So how are nuclear and particle physics different?
 - Mostly in the questions we try to answer
- There is huge overlap in skills!
- You can be the next generation of physicists in either field!

Programming

Knowledge of particles

Particle Detectors

International Collaborations 46

Summary

- High energy nuclear physics studies the strong force
 - Tells us how nuclei and protons/neutrons are held together
- High-energy nucleus collisions create a hot quark-gluon plasma in the lab By studying the QGP we learn more about the strong force
- A new particle collider on US soil (EIC) will do nuclear physics You can be the next generation of physicists!

