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Introduction to jets



ATL-PHYS-PUB-2021-032

‣ Studying a wide range of 
processes, with cross-
sections spanning many 
orders of magnitude


‣ Precision often limited by 
our understanding of QCD 
and jets!


‣ Top mass measurement, 
vector-boson 
production, certain Higgs 
processes and more


‣ Better precision requires 
both experimental and 
theoretical improvements 
to our understanding of 
QCD

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-032/
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‣ We reconstruct these into jets 

‣ Jets are broadly important for particle physics

‣ … and jet reconstruction relies on 

understanding QCD

‣ The strong force is unusual — its strength increases with 
distance 

‣ Cannot observe free quarks and gluons 

‣ Instead, they fragment into collimated showers of particles, 
eventually forming color-neutral hadronic states
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‣ Quarks and gluons fragment into collimated showers 
of particles (parton shower) 

‣ When the particles reach low enough energies, the 
shower will stop, and the quarks and gluons will 
recombine into color-neutral states (hadrons) 

‣ This is what we observe in the detector
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‣ Difficult to translate individual hadrons into the 
underlying physics that we are interested in 
studying
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‣ Difficult to translate individual hadrons into the 
underlying physics that we are interested in 
studying 

‣ Need to create something that is correlated with 
the individual parton → jets 

‣ Typically rely on simulation (Monte Carlo 
predictions) to model their behavior 

‣ e.g. Pythia, Sherpa, Herwig, etc.



why study jets?
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‣ Jets are used for a wide variety of physics analyses 

‣ Way too many to list in one place… 

‣ Higgs and electroweak physics, especially for certain types of production 
(vector boson scattering / fusion) 

‣ Searches for physics beyond the Standard Model, including dark matter 
searches 

‣ Direct link to quantum chromodynamics → used to study parton distribution 
functions and the strong coupling constant 

‣ Since they are used for so many things, it’s very important to understand them 
well and to be able to reconstruct them experimentally! 

‣ Giving an (incomplete) overview of many important aspects of jets at the LHC



reconstructing jets
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what is a jet?
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‣ There is no single way to define a jet


‣ Instead, a jet is defined by its 
algorithm


‣ Choice of jet definition depends on 
the relevant physics being studied


‣ Small radius: less affected by 
contamination from pileup and 
underlying event good for resolving 
individual partons 

‣ Large radius: captures more 
perturbative fragmentation

https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php
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‣ Typically use sequential recombination 
algorithms to form jets 

‣ Use some distance metric to determine 
closest pair of particles 

‣ Cluster the closest pair of particles 
together into a “pseudo-jet” 

‣ Continue doing this until ΔR* between 
any pair of constituents is larger some 
maximum value R (the jet radius)

* ΔR2 = Δη2 + Δɸ2 

This is an angular distance metric commonly 
used at hadron colliders

https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php
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https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php
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https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php


what is a jet?
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‣ Different clustering algorithms 
produce different jets

‣ Jets with the same 

constituents will have 
different clustering histories


‣ The constituents and 
clustering of a jet can tell 
you a lot about QCD


‣ No single correct jet definition!

‣ Strategic choices can lead 

to better sensitivity

https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php


jet reconstruction
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the atlas detector

https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php
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https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php


the detectors
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* not to scale

‣ ATLAS and CMS 
are general-purpose 
detectors at the LHC 
with a broad range 
of physics goals



Tracking Detectors: 
Measures momentum 
of charged particles
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Tracking detectors 

‣ Precise angular 
resolution, especially 
for low pT particles 

‣ Measure charged 
particles 

‣ Trajectory of particles 
bent by magnetic 
field, giving ability to 
measure the 
momentum

* not to scalethe detectors



Tracking Detectors: 
Measures momentum 
of charged particles
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Hadronic Calorimeter: 
Measures energy of all particles, 
especially for hadronic showers 

with longer radiation length

EM Calorimeter: 
Measures energy of all 

particles, especially 
relevant for photons 

and electrons

Calorimeters 

‣ Precise measurements of 
energies of all particles 

‣ Angular resolution limited 
by cell area

* not to scalethe detectors



* not to scale

Tracking Detectors: 
Measures momentum 
of charged particles
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Hadronic Calorimeter: 
Measures energy of all particles, 
especially for hadronic showers 

with longer radiation length

EM Calorimeter: 
Measures energy of all 

particles, especially 
relevant for photons 

and electrons

Muon Spectrometer:  
Measures muons, which 
are able to pass through 
the rest of the detector

the detectors
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inputs to jet reconstruction
‣ Need calorimeter information to detect all 

particles, and for precise energy measurements 
‣ Sometimes just use this information 
‣ ATLAS used these for many years 

(topoclusters)
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inputs to jet reconstruction
‣ Need calorimeter information to detect all 

particles 
‣ Gives precise energy measurements 

‣ Tracking information provides precise angular 
information 
‣ Also provides information on the position of 

the vertex where the particles are produced 
‣ No information on neutral particles…
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‣ Need calorimeter information to detect all 
particles 
‣ Gives precise energy measurements 

‣ Tracking information provides precise 
angular information 
‣ But misses neutral particles…

‣ Can combine tracking and 
calorimeter information to create 
more powerful objects (particle-
flow algorithms) 
‣ Typically what is used by ATLAS 

and CMS

inputs to jet reconstruction



a complication: pileup
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‣ Naively, can think of collisions as two protons colliding 
‣ Protons are composite objects → individual partons 

(quarks/gluons) collide 
‣ Primarily interested high-pT (hard) collisions 

• Plan to have up to 200 collisions per bunch crossing at 
the LHC!

https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php
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‣ Reality is much more complicated 
‣ Many simultaneous collisions (pileup), 

usually only (up to) one hard collision 
‣ Produces a lot of low-pT hadrons, with 

relatively uniform distribution 
‣ Collisions happen in slightly different 

positions, and at slightly different times 
‣ Expect to eventually have up to 200 

collisions per bunch crossing!

a complication: pileup

https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php
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pileup mitigation
‣ Pileup adds noise to an event → 

important to mitigate it 

‣ For charged particles, can identify the 
associated vertex, and remove 
particles not associated with the 
vertex of interest (‘primary vertex’) 

‣ Several algorithms dedicated to pileup 
mitigation for neutral particles (PUPPI, 
Constituent Subtraction, SoftKiller, …) 

‣ Not going through these algorithms 
today 

‣ Typically apply pileup mitigation after 
reconstructing particles, but before 
clustering jets

η
2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

φ
3−

2−

1−

0

1

2

3

ATLAS Simulation Preliminary
 = 200µ= 14 TeV, sPythia Dijet 

No Subtraction Truth jets, R=0.4

Topoclusters

η
2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

φ

3−

2−

1−

0

1

2

3

ATLAS Simulation Preliminary
 = 200µ= 14 TeV, sPythia Dijet 

Voronoi Truth jets, R=0.4

Topoclusters

2009.04986

https://arxiv.org/abs/2009.04986


jet substructure and tagging
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heavy particle decays
‣ Many particles decay before we detect them 
‣ Top quarks decay to a W-boson + a b-quark 

(t → Wb) 
‣ W-bosons decay in two main ways: 
‣ Two quarks (W → qq): 68% 
‣ Lepton + neutrino (W →𝓁𝞶): 32% 

‣ This means that top quarks will decay to 
either t → qqb or t → 𝓁𝞶b 

‣ When decaying to quarks (decaying 
hadronically), the quarks will have parton 
showers and hadronization, just like for 
quark/gluon jets

37



boosted objects
‣ At rest (or in the reference frame of the 

W), the decay products will be back-to-
back 

‣ When the W has a large pT, decay 
products become collimated (boosted 
objects) 
‣ Entire decay can be reconstructed into 

a single jet! 
‣ Similar story for top quark decays, but 

with 3 decay products instead of 2

38
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jet substructure
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W jets
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Top jets



jet substructure
‣ Top jets tend to have three prongs, one for 

each decay product 
‣ Each quark will have an associated parton 

shower and hadronization process → top 
jets have more complexity than 3 distinct 
prongs

41

‣ Quark and gluon jets tend to be 
more collimated into a single prong 
‣ Still has some structure from the 

parton shower, but typically less 
pronounced



jet substructure
‣ Each prong of a jet from a W or top decay 

produces a narrow shower 
‣ Most of the interesting physics in the high-

pT (hard) particles, and at relatively small 
angles to one of the jet prongs 

‣ Pileup tends to be roughly uniform, and low-
pT (soft) 
‣ Impacts jets everywhere, but most 

noticeable at large angles, since it adds 
particles where we would not expect them 

‣ Often, remove (some of) these particles 
through ‘jet grooming’ 

‣ Similar effects from the ‘underlying event’

42



jet grooming
‣ Grooming essentially removes noisy 

information 
‣ Prongs of a jet much more apparent, 

removes constituents from other 
parts of the collision, pileup, etc. 

‣ Brings the mass of a W or top jet 
closer to the W or top mass 

‣ Can make it easier to distinguish 
different types of jets 

‣ Many different grooming algorithms 
(trimming, pruning, softdrop, …), but 
not discussing the details today
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the jet mass
‣ The invariant mass is defined as 

 

‣ For E >> m, approximately 

‣  

‣ If we have any two particles with some 
angle between them, they will have a non-
zero invariant mass! 
‣ A decay does not change the invariant 

mass of a system 
‣ Parton showers result in jets that have 

mass, even though quarks and gluons are 
roughly massless! 
‣ Large-angle emissions or high-pT 

emissions → large masses

M = (E1 + E2)2 − | |p2
1 + p2

2 | |

M = 2pT,1pT,2(cosh(η1 − η2) − cos(ϕ1 − ϕ2))

44



the jet mass
‣ The jet mass is an obvious observable 

to distinguish between different types of 
jets 
‣ Use invariant mass of all jet 

constituents 
‣ For top jets, the mass should be 

around 173 GeV 
‣ For W jets, around 80 GeV 

‣ Clear physical meaning, but 
performance depends on the transverse 
momentum (pT) of the jets 
‣ At higher pT, q/g jets have larger 

masses
45



designing a tagger
‣ To tag a jet, place a cut on some 

observable 
‣ This cut will result in some signal 

efficiency (𝜖S) and background 
efficiency (𝜖B) 

‣ The optimal choice depends on 
the context 

‣ Can also scan a range of potential 
cuts on an observable to obtain 𝜖B 

as a function of 𝜖S
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https://arxiv.org/pdf/1901.10342.pdf

Reject as 
background

Keep as 
signal

Flipping a coin 



Better

designing a tagger
‣ Typically use receiver-operator characteristic curves (ROC 

curves) to compare different tagging strategies 
‣ Compares the background rejection as a function of the 

signal efficiency ( ) 

‣ Be careful reading these plots — multiple options for the y-axis! 

‣ Background efficiency ( ) 

‣ Background rejection (1/ ) 

‣ Some others not mentioned here — always check! 
‣ In many cases, the ROC curves for different taggers can cross 
‣ Optimal choice depends on if you want a high or low signal 

efficiency 
‣ e.g. with high statistics, you can throw away a lot of 

events, so a lower signal efficiency might be fine

ϵS

ϵB

ϵB

47

arxiv:1901.10342

Flipping a coin 

https://arxiv.org/abs/1901.10342


designing a tagger
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‣ For instance, D2 
and the jet mass 
are fairly 
uncorrelated → can 
determine cuts on 
them separately 

Improvement!

Better

Better

Groomed jets

Groomed jets

‣ Combining observables can result in more powerful tagger

ATL-PHYS-PUB-2019-027

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2019-027/


summary
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‣ Jets are complicated objects → reconstructing the jets relies on understanding 
QCD and on innovative experimental techniques 

‣ Lots of interplay between theoretical and experiment 

‣ Developments in jet reconstruction feed directly into improving the scope and 
quality of the research that we do at the LHC 

‣ Precision of many results is limited by precision on jets and QCD → 
increasingly relevant as our statistical uncertainties shrink with more data 

‣ There is a lot that I couldn’t cover in today’s talk! 

‣ How to calibrate jets, details of the algorithms, theory developments in jet 
modeling, machine learning strategies, … 

‣ Feel free to reach out if you have any questions or thoughts!



backup and bonus
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the coordinate system
‣ Use a cylindrical coordinate system to describe particle momenta 
‣ Jet algorithms cluster particles together with similar angles

‣ Typically use the 
pseudorapidity η and 
azimuthal angle Φ 

‣ For hadron colliders, 
typically use the 
transverse momentum 
(pT) of a particle instead 
of the energy



jet algorithms
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•Only depends on the distance between 
particles


•Produces irregularly-shaped jets


•Clustering history related to parton 
shower models

•Particles get clustered in with nearest 
high-pT particle


•Produces circular jets (good for calibration)


•Clustering history not physically 
meaningful

-2 -2Anti-kt:Cambridge-Aachen:

https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php
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jet calibration
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‣ Reconstructed jet energy differs from 
the energy of the truth jet 
‣ Pileup adds energy to the jet 
‣ Multiple detector components with 

different behaviors 
‣Detector response changes with 

energy of particle and type of 
hadron 
‣ And different types of jets 

produce different particles 
‣ Gluons tend to have a broader 

shower with more particles

Qua
rk

 je
t

Gluo
n 

jet



jet calibrations
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Qua
rk

 je
t

Gluo
n 

jet

‣ Quarks and gluons have different distributions of particles 
‣ Gluon jets have more, and lower-pT particles, different 

types of hadrons that tend to be produced 
‣ Different response for different jet flavors



jet modeling
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‣ Jet energy scale differs among Monte Carlo 
predictions 
‣ Different hadrons, different distributions of 

particles, etc. → different detector response 
‣ More variation for gluon jets than quark jets 
‣ Especially among Monte Carlo predictions 

‣ Challenging to produce a jet calibration that 
works universally 



jet calibrations

‣ Can use machine learning to derive a 
correction based on various jet 
properties 

‣ Can include any number of inputs 

‣ Potential to replace full Monte Carlo 
calibration with a single step! 

‣ Up to 10% improvement in jet energy 
resolution!

70



jet calibrations
‣ Two different uncertainties on jet 

modeling: 
‣ Does the jet calibration apply if you 

have jets of different flavors? 
‣ Two-point difference between quark 

and gluon jet response 
‣ How uncertain are we of the predictions 

used to derive the calibrations? 
‣ Two-point difference between 

different MC predictions

71



jet calibrations
‣ Two different uncertainties on jet 

modeling: 
‣ Does the jet calibration apply if you 

have jets of different flavors? 
‣ Two-point difference between quark 

and gluon jet response 
‣ How uncertain are we of the predictions 

used to derive the calibrations? 
‣ Two-point difference between 

different MC predictions
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jet calibrations
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‣ Two different uncertainties on jet 
modeling: 
‣ Does the jet calibration apply if you 

have jets of different flavors? 
‣ Two-point difference between quark 

and gluon jet response 
‣ How uncertain are we of the predictions 

used to derive the calibrations? 
‣ Two-point difference between 

different MC predictions



jet calibrations
‣ Two different uncertainties on jet modeling: 
‣ Does the jet calibration apply if you have 

jets of different flavors? 
‣ How uncertain are we of the predictions 

used to derive the calibrations? 
‣ Corrections based on jet shape 

significantly reduce these uncertainties 
‣ Machine-learning calibration brings 

further reductions to quark-gluon 
differences 

‣ Many future improvements, but also 
relying on our Monte Carlo predictions

74



n-subjettiness
‣ i.e. Does this jet have N prongs? 

‣  

‣ Minimized when the jet has exactly N collimated prongs 
‣ Top jets tend to have 3-prongs, while q/g jets tend to 

have 1 
‣ Ratios of N-subjettiness produces better separation, 

since quark/gluon jets can have large values of 𝛕3 

‣ Many taggers use 𝛕32 as an input to tagging tops  

‣ Many ways to define the prongs of a jet 
‣ Several possible algorithms, details not relevant here 
‣ See arxiv:1011.2268 for more details 

‣ See the notebook (part 1) for plotting this 𝛕32 = 𝛕3 / 𝛕2 
with our dataset

τN =
1

d0 ∑
k

pT,kmin(ΔR1,k, ΔR2,k, . . . , ΔRN,k)
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arxiv:1011.2268

https://arxiv.org/abs/1011.2268
https://arxiv.org/abs/1011.2268


energy correlation functions (ecfs)
‣ ECFs are products of energies and angles of jet 

constituents, often used for taggers 

‣  

‣ Complicated formula, so consider the case of β=2 

‣  

‣ Value increases for larger constituent pT or large 
angle between constituents 
‣ 1-prong jets have small values, 2-prong jets 

have large values 
‣ Ratios of correlations can improve performance 
‣ See the notebook (part 1) for plotting ECFs in our 

dataset

ECF(N, β) = ∑
i1<i2<...<iN∈J (

N

∏
a=1

pT,ia) (
N−1

∏
b=1

N

∏
c=b+1

(Rib,ic)
β)

ECF(2,β) = ∑
i<j∈J

pT,ipT,j(Rij)β
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arxiv:1409.6298

https://arxiv.org/abs/1409.6298


j
‣ Run jet finding using 

the anti-kt algorithm

the soft drop algorithm

77



j

 

‣ Recluster its constituents with 
the Cambridge/Aachen 
algorithm to get an angular-
ordered shower history

the soft drop algorithm

78

Same jet constituents, 
different clustering 

history

https://arxiv.org/abs/1711.08341


‣ Check if   

‣ If not, drop the softer branch (j2), and 
repeat with the harder branch (j1)

min(pT ,j1, pT ,j2)

(pT ,j1 + pT ,j2)
> zcut(

∆Rj1,j2

R
)β

 

the soft drop algorithm
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https://arxiv.org/abs/1307.0007


j

j1

j2

the soft drop algorithm
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min(pT ,j1, pT ,j2)

(pT ,j1 + pT ,j2)
> zcut(

∆Rj1,j2

R
)β‣ Check if   

‣ If so, stop grooming, and the jet is 
defined



j

j1

j2

the soft drop algorithm
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‣ This gives us (approximate) 
access to the original parton and 
its splitting! 


