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Studying a wide range of
processes, with cross-
sections spanning many
orders of magnitude

Precision often limited by
our understanding of QCD
and jets!

> Top mass measurement,
vector-boson
production, certain Higgs
processes and more

Better precision requires
both experimental and
theoretical improvements
to our understanding of

QCD


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-032/

The strong force is unusual — its strength increases with
distance

Cannot observe free quarks and gluons

Instead, they fragment into collimated showers of particles, 4
eventually forming color-neutral hadronic states a

We reconstruct these into jets

Jets are broadly important for particle physics

... and Jet reconstruction relies on
understanding QCD
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Fragmentation (gluon radiation,
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what is a jet?

- Quarks and gluons fragment into collimated showers
of particles (parton shower)

- When the particles reach low enough energies, the
shower will stop, and the quarks and gluons will
recombine into color-neutral states (hadrons)

- This Is what we observe In the detector
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what is a jet?

- Difficult to translate individual hadrons into the
underlying physics that we are interested In
studying

of color-neutral states)
Fragmentation (gluon radiation,
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Difficult to translate individual hadrons into the
underlying physics that we are interested In

studying

Need to create something that is correlated with
the individual parton — jets

Typically rely on simulation (Monte Carlo
predictions) to model their behavior

e.qg. Pythia, Sherpa, Herwig, etc.

of color-neutral states)
Fragmentation (gluon radiation,

< gluon splitting into quarks, etc) ‘.
\
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- Jets are used for a wide variety of physics analyses

» Way too many to list in one place...

- Higgs and electroweak physics, especially for certain types of production
(vector boson scattering / fusion)

-~ Searches for physics beyond the Standard Model, including dark matter
searches

> Direct link to quantum chromodynamics — used to study parton distribution
functions and the strong coupling constant

> Since they are used for so many things, it's very important to understand them
well and to be able to reconstruct them experimentally!

> Giving an (incomplete) overview of many important aspects of jets at the LHC
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- There is no single way to define a jet

- Instead, a jet is defined by its
algorithm

> Choice of jet definition depends on
the relevant physics being studied


https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php

- There is no single way to define a jet

- Instead, a jet is defined by its
algorithm

> Choice of jet definition depends on
the relevant physics being studied

- Small radius: less affected by
contamination from pileup and

underlying event, good for resolving
Individual partons

10
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-~ There Is no single way to define a jet

- Instead, a Jet is defined by its
algorithm

> Choice of jet definition depends on
the relevant physics being studied

- Small radius: less affected by
contamination from pileup and

underlying event, good for resolving
iIndividual partons

- Large radius: captures more
perturbative fragmentation


https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php

Typically use sequential recombination
algorithms to form jets

Use some distance metric to determine
closest pair of particles

Cluster the closest pair of particles G
together into a "pseudo-jet’ C

Continue doing this until AR™ between -
any pair of constituents is larger some
maximum value R (the jet radius)

* AR2 = An2 + A¢?

This is an anqular distance metric commonly
used at hadron colliders 12



https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php

Typically use sequential recombination
algorithms to form jets

Use some distance metric to determine
closest pair of particles

Cluster the closest pair of particles G
together into a "pseudo-jet’ C

Continue doing this until AR™ between -
any pair of constituents is larger some
maximum value R (the jet radius)

13



https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php

Typically use sequential recombination
algorithms to form jets

Use some distance metric to determine
closest pair of particles

Cluster the closest pair of particles G
together into a "pseudo-jet’ C

Continue doing this until AR™ between -
any pair of constituents is larger some
maximum value R (the jet radius)

14



https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php

Typically use sequential recombination
algorithms to form jets

Use some distance metric to determine
closest pair of particles

Cluster the closest pair of particles G
together into a "pseudo-jet’ C

Continue doing this until AR™ between -
any pair of constituents is larger some
maximum value R (the jet radius)

15



https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php

Typically use sequential recombination
algorithms to form jets

Use some distance metric to determine
closest pair of particles >

Cluster the closest pair of particles G
together into a "pseudo-jet’ C

Continue doing this until AR™ between -
any pair of constituents is larger some
maximum value R (the jet radius)
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Typically use sequential recombination
algorithms to form jets

Use some distance metric to determine
closest pair of particles

Cluster the closest pair of particles
together into a “pseudo-jet”

Continue doing this until AR™ between
any pair of constituents is larger some
maximum value R (the jet radius)
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what is a jet?
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what is a jet?



https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php
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» Different clustering algorithms
~ produce different jets ;
> Jets with the same
constituents will have
different clustering histories
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> The constituents and
clustering of a jet can tell  }

you a lot about QCD
I> No single correct jet definition!

» Strategic choices can lead
to better sensitivity
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jet reconstruction
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https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php

the detectors

- ATLAS and CMS
are general-purpose
detectors at the LHC
with a broad range
of physics goals




* not to scale

the detectors

Tracking detectors

~ Precise angular
resolution, especially
for low pr particles

» Measure charged
particles

~ Trajectory of particles
bent by magnetic
field, giving ability to
measure the
momentum

Tracking Detectors:
Measures momentum

_of charged particles




* not to scale

the detectors

Calorimeters

EM Calorimeter: :'

Measures energy of all |
particles, especially |
relevant for photons

and electrons

» Precise measurements of
energies of all particles

~ Angular resolution limited
by cell area

a; Hadronic Calorimeter: ;
. Measures energy of all particles,
- especially for hadronic showers |
~ with longer radiation length

| O —

e —— —

Detector.

momentum
ad particles




the deteetors

~ Muon Spectrometer N
- Measures muons, which |
; are able to pass through |

the rest of the detector t

Hadronic Calorimet

Measures energy of all p
especially for hadronic s
with longer radiation |




iInputs to jet reconstruction

» Need calorimeter information to detect all
particles, and for precise energy measurements

» Sometimes just use this information

~ ATLAS used these for many years
(topoclusters)




iInputs to jet reconstruction

> Need calorimeter information to detect all
particles

~ (Glves precise energy measurements

~ Tracking information provides precise angular
information

~ Also provides information on the position of
the vertex where the particles are produced

» No information on neutral particles...




iInputs to jet reconstruction

> Need calorimeter information to detect all
particles

~ (Glves precise energy measurements

~ Tracking information provides precise
angular information

- But misses neutral particles...

~ Can combine tracking and
calorimeter information to create
more powerful objects (particle-
flow algorithms)

- Typically what is used by ATLAS
and CMS 3



Naively, can think of collisions as two protons colliding

Protons are composite objects — individual partons
(quarks/gluons) collide

Primarily interested high-pt (hard) collisions

32



https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php

Reality Is much more complicated

Many simultaneous collisions (pileup),
usually only (up to) one hard collision

Produces a lot of low-pt hadrons, with
relatively uniform distribution

Collisions happen in slightly different
positions, and at slightly different times

Expect to eventually have up to 200
collisions per bunch crossing!

33
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Pileup adds noise to an event —
important to mitigate it

For charged particles, can identify the
associated vertex, and remove
particles not associated with the
vertex of interest (‘primary vertex’)

Several algorithms dedicated to pileup
mitigation for neutral particles (PUPPI,
Constituent Subtraction, SoftKiller, ...)

Not going through these algorithms
today

Typically apply pileup mitigation after
reconstructing particles, but before
clustering jets
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https://arxiv.org/abs/2009.04986

jet substructure and tagging




heavy particle decays

> Many particles decay before we detect them

> Top quarks decay to a \W-boson + a b-quark
(t — Wb)

> W-bosons decay in two main ways:
> Two quarks (W — qq): 68%
> Lepton + neutrino (W —4v): 32%

> This means that top quarks will decay to
either t — qgb or t — {vb

> When decaying to quarks (decaying
hadronically), the quarks will have parton
showers and hadronization, just like for
quark/gluon jets

37



poosted objects

> At rest (or in the reference frame of the

W), the decay products will be back-to-
back

> When the W has a large pr, decay

products become collimated (boosted
objects)

> Entire decay can be reconstructed into
a single jet!

» Similar story for top quark decays, but
with 3 decay products instead of 2

38
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et substructure

> Top jets tend to have three prongs, one for
each decay product

> Each quark will have an associated parton
shower and hadronization process — top
jets have more complexity than 3 distinct
prongs

CATLAS

1A EXPERIMENT

> Quark and gluon jets tend to be
more collimated into a single prong

> Still has some structure from the
parton shower, but typically less
pronounced




Jet substructure

> Each prong of a jet from a W or top decay
produces a narrow shower

> Most of the interesting physics in the high-
pt (hard) particles, and at relatively small
angles to one of the jet prongs

> Pileup tends to be roughly uniform, and low-
pT (SOft)

> Impacts jets everywhere, but most
noticeable at large angles, since it adds
particles where we would not expect them

> Often, remove (some of) these particles
through ‘Jet grooming

> Similar effects from the ‘underlying event

42




Jet grooming

ATL-PHYS-PUB-2017-020

different types of jets

> Many different grooming algorithms
(trimming, pruning, softdrop, ...), but
not discussing the details today

> Grooming essentially removes noisy £ 411 ad simuiation Preliminary | -
Information 5 F W sets QCD jets -
_ got4— T No grooming a
> Prongs of a jet much more apparent, £ F — With grooming
removes constituents from other o : :
parts of the collision, pileup, etc. 08 :
> Brings the mass of a W or top jet 008
closer to the W or top mass e :
~ Can make it easier to distinguish - e :

% 50 "1&150 200 250
Large-R jet mass [GeV]

W mass

43
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the Jet mass

> The invariant mass is defined as
M=\/(E1+E2)2_ ‘ \P%"‘PzzH

> For E >> m, approximately

. M = \/sz,lpT,Z(COSh(nl — 772) — COS(¢1 o ¢2))

> If we have any two particles with some
angle between them, they will have a non-
zero invariant mass!

> A decay does not change the invariant
mass of a system

> Parton showers result in jets that have
mass, even though quarks and gluons are
roughly massless!

» Large-angle emissions or high-pr
emissions — large masses

44
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the Jet mass

i 016

> The jet mass is an obvious observable £ ¢ ATiassimiaion fjﬁlmﬂﬁ}iﬂr‘axén&ﬁ) :

to distinguish between different types of | 0'14;_ — Gaussian fitto signal -

jets § 0.12 _-;%Eto\f\ggdeogvz[)=o.07 —

> Use invariant mass of all jet c_;v 010 v PPN

constituents S | -

, Z 0.08[- | -

> For top jets, the mass should be i - §

around 173 GeV 0.06 ‘i‘ —

> For W jets, around 80 GeV 0.04 ¢ ! \ :

> Clear physical meaning, but ool . f 3 b

performance depends on the transverse L | A :
momentum (pr) of the jets 656 40 66 é’g TR0 T8 T80 500

> At higher pT, g/g jets have larger M [GeV]

MasSSEeS
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145 GeV < m, < 205 GeV

designing a tagger O

|—=QCDjets| |

> To tag a jet, place a cut on some
observable

O
-
=

> This cut will result in some signal
efficiency (es) and background

efficiency (eB) 0.01l

Relative occurence
o
o
W

O
Q
N

4 Reject as
background
.0 0.8 1
t

» The optimal choice depends on 0
the context

—h

> Can also scan a range of potential " Fippingacoin
cuts on an observable to obtain s N

as a function of es

background efficiency: €g

Better -

o
|

46 0 _ .
signal efficiency: €g



1 | | | | | | | |

arxiv:1901.10342 Y

designing a tagger o i

> Typically use receiver-operator characteristic curves (
) to compare different tagging strategies

> Compares the background rejection as a function of the
signal efficiency (€g)

background efficiency: €g

> Be careful reading these plots — multiple options for the y-axis!

O | | | |
signal efficiency: €q

> Background efficiency (€5)

> Background rejection (1/€p)

» Some others not mentioned here — always check!
> In many cases, the ROC curves for different taggers can cross

> Optimal choice depends on if you want a high or low signal
efficiency

> e.g. with high statistics, you can throw away a lot of
events, so a lower signal efficiency might be fine

47

Signal efficiency (€ )


https://arxiv.org/abs/1901.10342

designing a tagger

> Combining observables can result in more powerful tagger

> For instance, D2

ATL-PHYS-PUB-2019-027

" =S LA B A B BN L B BN B
and the Jet Mass % 105§_ATLAS Slmulatlon Preliminary -
" S — T T T [ T T T [ T T T [ T T T [ T T [ E 13 TeV, anti-k R=1.0 jets E
dle fa|r| 5 [ ATLAS Simulation Preliminar 1 £ L Backgound:QCDjets — Groomed jets -
3 y 5 J
[9) 104 13 TeV, anti-k R=1.0 jets _ S 10 __i')%rgaIGV\\l/JetS 1500 GeV —
uncorrelated — can e " cugamcor:  — Groomed jets 3 5 E 00 g
. S — Signal: W jets N P [\ 68% mass window I
determine cuts on 2 [ 1000 Gev <p!™" < 1500 Gev -
& truth Better
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10°
T Improvement!
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summary

> Jets are complicated objects — reconstructing the jets relies on understanding
QCD and on innovative experimental techniques

> Lots of interplay between theoretical and experiment

>~ Developments in jet reconstruction feed directly into improving the scope and
quality of the research that we do at the LHC

>~ Precision of many results is limited by precision on jets and QCD —
Increasingly relevant as our statistical uncertainties shrink with more data

>~ There is a lot that | couldn’t cover in today's talk!

> How to calibrate jets, details of the algorithms, theory developments in jet
modeling, machine learning strategies, ...

> Feel free to reach out if you have any questions or thoughts!
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the coordinate system

> Use a cylindrical coordinate system to describe particle momenta

> Jet algorithms cluster particles together with similar angles

=0
77‘ n <0

> Typically use the

pseudorapidity n and n >0
azimuthal angle .
,/”//' T
> For hadron colligers, P iy

typically use the Ny v‘/
transverse momentum =l -
(p7) of a particle instead :

Of the energy \ center of
, N <>< e the LHC

51
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jet algorithms
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RQ

* Only depends on the distance between
particles

Cambridge-Aachen: d;; =

* Produces irregularly-shaped jets

 Clustering history related to parton
shower models

A2,
F , o . -2 -2 (¥
Anti-ke: dyj =min(k,;’, k)3
e Particles get clustered in with nearest
high-prt particle
* Produces circular jets (good for calibration)

 Clustering history not physically
meaningful
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Jet calibration

> Reconstructed jet energy differs from
the energy of the truth jet

> Pilleup adds energy to the jet

> Multiple detector components with
different behaviors

> Detector response changes with
energy of particle and type of
hadron

> And different types of jets
produce different particles

» (Gluons tend to have a broader
shower with more particles
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et calibrations -

Q
> Quarks and gluons have different distributions of particles  © >
> Gluon jets have more, and lower-pr particles, different A /)
types of hadrons that tend to be produced _ 4 N
» Different response for different jet flavors C e
~ >
T T T T - N
T [ ATLAS Simulation e diets i O
o 1.15 |s=13 TeV, Pythia 8 dijet g/‘d.t —
2 - Anti-k, R=0.4 jets (PFlow) wra 18IS -
S [ 02<In I<07 =~ ol - -
a 11 det - CJets _
T I b jets i
Q u _
g 105:_L ........ _:
0.95 ! Lo | : Ln :l T

pt_lf”e [GeV] 68
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jet modeling
> Jet energy scale differs among Monte Carlo 3
predictions

> Different hadrons, different distributions of
particles, etc. — different detector response

> More variation for gluon jets than quark jets ¢
> Especially among Monte Carlo predictions 2
> Challenging to produce a jet calibration that ¢
works universally 5
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et calibrations

© = ATLAS Simulation - E
. . . — 035 (5-13TeV, Pythia 8 dijet — MCJES =
~ Can use machine learning to derive a S 03 Antik, R=0.4jets (PFow) ... GSC ;
correction based on various jet S 025 07<Im I<13 .. GNNC  —
: O = =
properties = 0.2F -
S 015 =
- Can include any number of inputs S oib =
0.051 e T repppee
» Potential to replace full Monte Carlo N 0_05: — — —
calibration with a single step! S i
T—-_:"g—o.OS— o - R o -

. . . . _b ) _O.1r“' . . R . . . R . .

Up to 10% improvement in jet energy £ ¢ 30 {0 o1 0? 100 2410°

resolution! o pre [GeV]
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Jet calibrations

> Two different uncertainties on jet
modeling:

» Does the jet calibration apply if you
have jets of different flavors?

Jet p_response (R)
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Jet calibrations

> Two different uncertainties on jet
modeling:

» Does the jet calibration apply if you
have jets of different flavors?

Jet p_response (R)
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Jet calibrations

> Two different uncertainties on jet
modeling:

» Does the jet calibration apply if you

have jets of different flavors?

> Two-point difference between quark

and gluon jet response

» How uncertain are we of the predictions

used to derive the calibrations?

> Two-point difference between
different MC predictions
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— ATLAS Simulation
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> Two different uncertainties on jet modeling: £ ;o0 ++ E
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> How uncertain are we of the predictions = b —_— -
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> Corrections based on jet shape .
ignif int 2 CATiAS Simuiaton ,
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N-subjettiness

> J.e. Does this jet have N prongs?

= —1 n(AR, ., AR AR, 1)
T E— mln ° 9 o o o o
NT 0 zk Pk 1,k 2.k N,k

> Minimized when the jet has exactly N collimated prongs

> Top jets tend to have 3-prongs, while g/g jets tend to
have 1

> Ratios of N-subjettiness produces better separation,
since quark/gluon jets can have large values of 13

> Many taggers use 132 as an input to tagging tops

> Many ways to define the prongs of a jet
» Several possible algorithms, details not relevant here
» See arxiv:1011.2268 for more details

» See the notebook (part 1) for plotting this t32 =13/ 72
with our dataset
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https://arxiv.org/abs/1011.2268
https://arxiv.org/abs/1011.2268

energy correlation functions (ecfs)

arxiv:1409.6298

» ECFs are products of energies and angles of jet o

constituents, often used for taggers - Z Boson vs. QCD (Pythia 8)

. m;<100 GeV, pr>400 GeV, Ry=1.0 -
ECFIN.p= ), (HpT, ) (H I &, >ﬁ) 2 05
[ <ih<..<iyeJ b=1 c=b+1 § DP, =1
» Complicated formula, so consider the case of 3=2 2 04 QCD Jets
O Z Jet
ECF(Q2.p) = Z PrPrj(Ry) £ -
i<jeJ ~

S
bo

> Value increases for larger constituent pr or large
angle between constituents

> 1-prong jets have small values, 2-prong jets 0.0,
have large values

> Ratios of correlations can improve performance

» See the notebook (part 1) for plotting ECFs in our
dataset
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https://arxiv.org/abs/1409.6298

the soft drop algorithm

* Run jet finding using -_

the anti-k: algorithm .
j—1

’r’



the soft drop algorithm

 Recluster its constituents with
the Cambridge/Aachen - _ _
algorithm to get an angular- / Same jet constituents,

ordered shower history differ el':'t ;:Iuster Ing
istory
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https://arxiv.org/abs/1711.08341

the soft drop algorithm

/
—min(pr j1, PT.j2) AR 2,5
- Check it “(pr "+ pr ) > Zarl )

- If not, drop the softer branch (j2), and
repeat with the harder branch (j7)
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https://arxiv.org/abs/1307.0007

the soft drop algorithm

/
—min(pr j1, PT.j2) AR 2,5
- Checkif (o pr) ~ %R

- If so, stop grooming, and the jet is
defined
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the soft drop algorithm

>~ This gives us (approximate)
access to the original parton and
its splitting! J
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