Calorimetry

"everything not tracking" (in CMS)

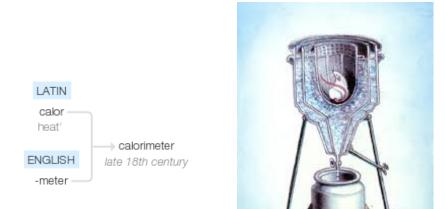
David Yu (LPC/Nebraska) on behalf of the ECAL and HCAL groups with thanks to F. Ferri, F. Cavallari, P. de Barbaro, J. Dittmann, T. Laird and the previous induction speakers

the nalt

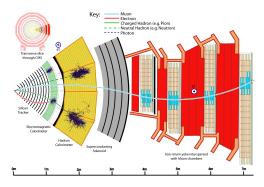
min iden

CMS Induction Course, July 8, 2024

((J7+11) x2) x (72)


Who am I?

- LPC support staff, focus on US contributions to CMS operations.
- Research scientist at University of Nebraska; soon to be assistant professor at University at Buffalo.
- Current research:
 - Searches for exotic particles (especially dark matter), Higgs measurements, calorimetry
- What am I excited about in the next 10 years?
 - Phase-II upgrade detectors, especially HGCAL.
 - The Next Collider (muon collider?).
- Outside of work:
 - Running, cycling, photography



What is a calorimeter?

What is a *particle physics* calorimeter?

- Calorimeters are particle detectors that measure the energy of incoming particles by absorbing them and converting the energy into some measurable signal.
 - Electrons, photons, and hadrons (e.g., pions, kaons, protons, neutrons, ...).
- Basic idea: bash the particle into dense material, creating a "shower," and then measure the secondary particles in the shower:

What is a *particle physics* calorimeter?

Key features:

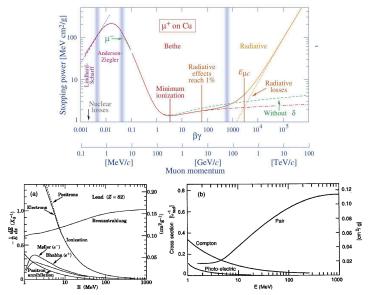
- Stochastic process⇒better at high energies (opposite of tracking).
- Incoming particle is destroyed.
 - Calorimeters are also the shielding for the muon detectors! Only muons make it through to the muon detectors.
- Two fundamental processes: electromagnetic showers (simpler) and hadronic showers (more complex).
 - The different physics behind the two types of shower drive the art and science of calorimetry.

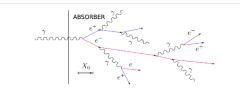
(a) CMS ECAL crystals

(b) CMS HCAL barrel

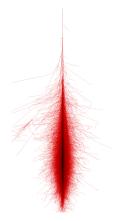
(c) ATLAS LAr slice

Electrons vs. photons vs. muons



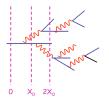

FIG. 1. (a) Fractional energy lost in lead by electrons and positrons as a function of energy (Particle Data Group, 2002). (b) Photon interaction cross section in lead as a function of energy (Fabjan, 1987).

July 8, 2024


The "simple" case: electromagnetic showers

- At high energies ($\gtrsim 20$ MeV), only two processes matter:
 - **Bremsstrahlung** $(1e^{\pm} \rightarrow 1\gamma)$ and
 - **Pair production** $(1\gamma \rightarrow 1e^+ + 1e^-)$
- At low energies (≤ 20 MeV): ionization, photoelectric, Compton.
- critical energy, $E_c \approx 610$ MeV/(Z + 1.24): energy at which the average energy losses by radiations equal those by ionization
- A cascade process ("shower") develops until the energy of charged secondaries is degraded to the regime dominated by ionization loss

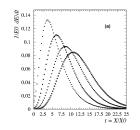
(i.e. no production of new particles)



e.m. shower example

EM showers

Radiation length, X_0 : average distance for e^{\pm} to reduce energy by factor of 1/e(similarly photons, $\frac{9}{7}X_0$).

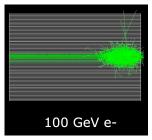


A simplified model:

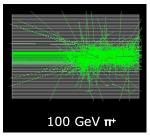
- Electron with *E* > *E*_c: travel one *X*₀, emit photon with 0.5*E*.
- Photon with E > E_c: travel one X₀, split into e⁺e⁻.
- Electron with *E* < *E*_c: deposit energy via ionization.

	LAr	Fe	Pb	U	С
X_0 [cm]	14.0	1.76	0.56	0.32	18.8

Longitudinal shape (1, 10, 100, 1000 GeV):


- Shower max: $t_{\text{max}} \approx \ln \frac{E}{E_c} + t_0$, $(t_0 = -0.5 \text{ for } e^{\pm} \text{ and } +0.5 \text{ for } \gamma)$.
- Containment: $t_{95\%} \approx t_{max} + 0.08Z + 9.6$. Rule of thumb: $25X_0$ for 99% containment up to E = 300 GeV.

Transverse shape:

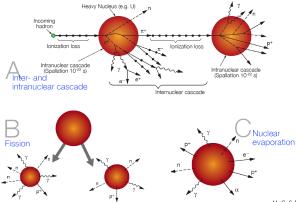

• Moliere radius $R_M \approx X_0$

dryu@fnal.gov

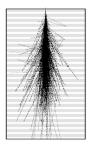
The complex case: hadronic showers

(a) EM shower

(b) Hadronic shower


Hadronic showers are much more complicated than EM showers:

- Relevant processes: strong interaction and nuclear physics.
 - Production of secondary particles in hadron-nucleus collisions.
 - Development of EM shower inside hadronic shower! $(\pi^0 \rightarrow \gamma \gamma)$
 - Nuclear reactions: protons and neutrons released from nuclei.
 - "Invisible energy": undetectable energy from binding energy, target recoil, slow processes.
- Fluctuations and "compensation":
 - Because of invisible energy, a e^{\pm}/γ leaves a bigger signal than a π^{\pm} .
 - ⇒ fluctuations in the "EM fraction" change the observed energy! Leading contributor to energy resolution, and a driving factor in calorimeter design ("compensation").
 - Shower shape also has large fluctuations.


Thanks to N. Akchurin

The complex case: hadronic showers

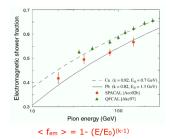
- multi-particle production, typically mesons (π^{\pm} , π^{0} , K, ...)
- Important: $\sim \frac{1}{3}$ of secondaries are π^0 s, which decay immediately via $\pi^0 \rightarrow \gamma\gamma$. \Rightarrow EM shower inside hadronic shower!
- This happens every interaction ⇒ EM fraction increases w/energy
- Nuclei breakup leading to spallation neutrons/protons

H.-C. Schultz-Coulon

The non-EM component

	Lead	Iron
Ionization by pions	19%	21%
Ionization by protons	37%	53%
Total ionization	56%	74%
Nuclear binding energy loss	32%	16%
Target recoil	2%	5%
Total invisible energy	34%	21%
Kinetic energy evaporation neutrons	1 0%	5%
Number of charged pions	0.77	1.4
Number of protons	3.5	8
Number of cascade neutrons	5.4	5
Number of evaporation neutrons	31.5	5
Total number of neutrons	36.9	10
Neutrons/protons	10.5/1	1.3/1

- Energy deposit and composition of non-EM shower component, in Pb and Fe.
- Lower table: particles per GeV of non-EM energy.


The EM fraction

Key fact: neutral pions decay immediately to two photons, $\pi^0 \rightarrow \gamma \gamma$.

- On average, $\approx 1/3$ of particles produced are π^0 s.
- The π^0 energy goes into an EM shower; one-way street, that energy remains EM.

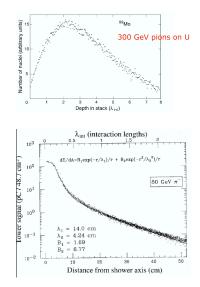
Simple stepwise model of hadronic shower:

- First generation (incoming hadron hits a nucleus): f_{em} = 1/3.
- Second generation: $f_{em} = 1/3 + (1/3 \text{ of } 2/3) = 5/9.$
- Third generation: $f_{\text{em}} = 1/3 + (1/3 \text{ of } 2/3) + (1/3 \text{ of } 4/9) = 19/27.$
- ... $f_{\rm em}^{\rm N} = 1 (1 1/3)^{\rm N}$.
- Stop when available energy can't create more pions; depends on how many pions produced per generation, (m).

Compensation (oversimplifiedⁿ)

Compensation: selectively increase the hadron energy deposition, or decrease the e.m. one, to eliminate differences in the average response

- not an easy task at all
- can be attempted by a suitable choice of the hardware
- and/or by being clever at analysis level
- fluctuations in the average e.m. component of an hadronic shower makes it challenging to keep a good resolution
- many ingredients come into play at this stage: design strategies, costs, physics goals, collision type, etc.


CMS approach: clearly separate e.m. and hadron calorimeters, and be clever at analysis level (Global Event

Hadronic shower shapes

 Key parameter: interaction length, λ_{int}, the average distance a hadron travels before a nuclear interaction.

	LAr	Fe	Pb	U	С
λ_{int} [cm]	83.7	16.8	17.1	10.5	38.1
X_0 [cm]	14.0	1.76	0.56	0.32	18.8

- Containment rule of thumb: aim for 9λ_{int}. Hadronic calorimeters have to be big!
 - Fun fact: the CMS HCAL doesn't meet the rule of thumb! Only ~ 5λ_{int} at η = 0.
- Tranverse shape: narrow EM core, wide had. tails.

Hadronic shower fluctuations

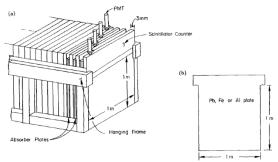
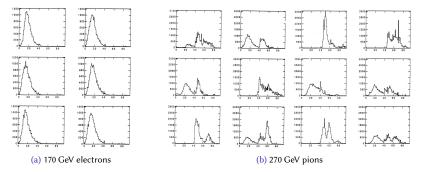
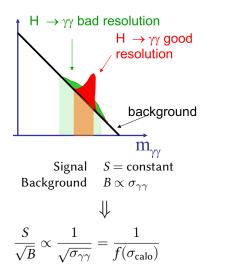
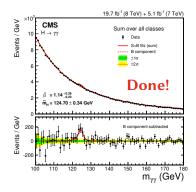



Fig. 1. (a) Schematic overview of the hanging file calorimeter (HFC). There was no transverse segmentation. The maximum depth of the calorimeter can be configured up to 2.2 m with a maximum number of 105 read-out planes. Each scintillator counter was read out separately. (b) Schematic drawing of the absorber plate.

 Hanging file calorimeter: measured showers with fine longitudinal granularity.


Hadronic shower fluctuations

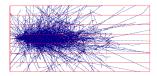


• EM showers are pretty uniform, had. showers have huge variations.

What are we aiming for?

Best possible energy resolution $\sigma_{
m calo}$ (compatible with the LHC environment).

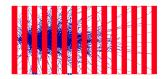
But also:


- jet resolution (analogous reasons)
- small fluctuations in the transverse missing energy: large MET sign of new physics!

Design goals:

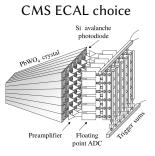
- Detection of both charged and neutral particles
 - only muons escape (and ν)
- Detection based on stochastic processes
 - precision increases with energy
- Dimensions necessary to **containment** scale with log *E*
 - allow compactness
- Granularity plays a fundamental role
 - transverse: impact position measurement, particle ID on topological basis
 - Iongitudinal: direction measurement
- Fast response
 - high rate capability, trigger

Two main possibilities (oversimplified¹):

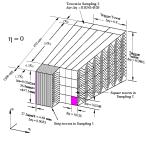

Homogeneous calorimeters: all the energy is deposited in the active medium

- Excellent energy resolution
- No information on longitudinal shower shape

Cost


Sampling calorimeters: the shower is sampled by layers of active medium (low-*Z*) alternated with dense radiator (high-*Z*)

- Limited energy resolution
- Longitudinal segmentation: detailed shower shape information


Two main possibilities (oversimplified¹):

Homogeneous calorimeters: all the energy is deposited in the active medium **Sampling** calorimeters: the shower is sampled by layers of active medium (low-*Z*) alternated with dense radiator (high-*Z*)

Excellent energy resolution

ATLAS ECAL choice

Longitudinally segmented

dryu@fnal.gov

Two main possibilities (oversimplified¹):

Homogeneous calorimeters: all the energy is deposited in the active medium **Sampling** calorimeters: the shower is sampled by layers of active medium (low-*Z*) alternated with dense radiator (high-*Z*)

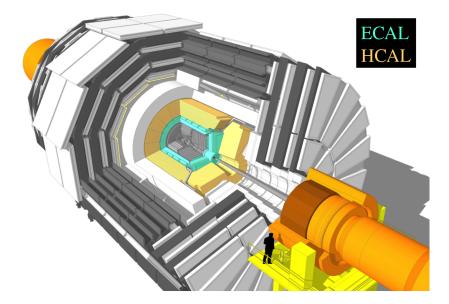
CMS ECAL choice

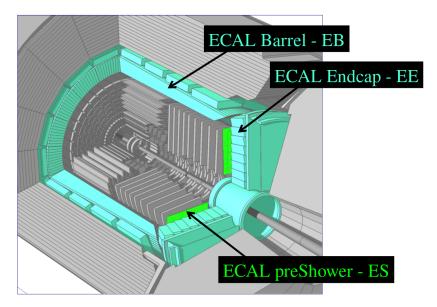
CMS HCAL choice

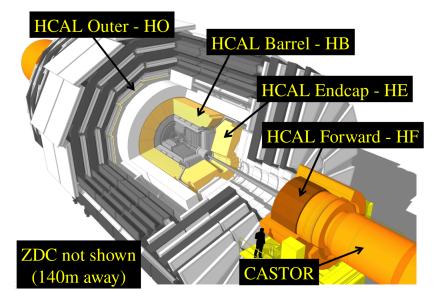
Building a calorimeter - a HOW TO guide

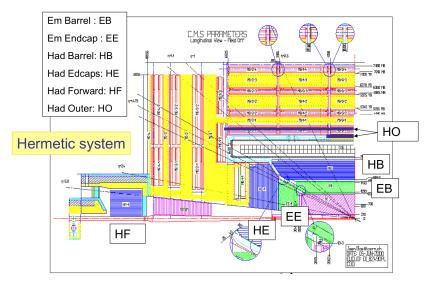
Particle interaction with matter

 \rightarrow depends on the impinging particle and on the kind of material

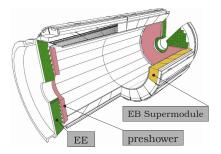

■ Energy loss transferred to a detectable signal → depends on the material, typically light (or charges, e.g. ATLAS)


Signal collection


 \rightarrow depends on the signal, many techniques of collection

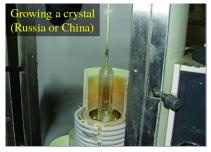

- Conversion to electrical signal and digitization → depends on the signal and granularity, also many techniques
- Do it for a unit of detector, then repeat to cover as much solid angle as possible

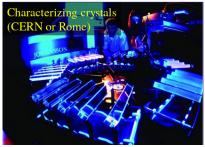
 \rightarrow build a hermetic system

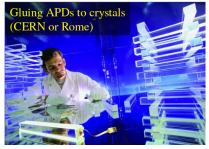


The CMS ECAL

- Homogeneous, hermetic, high granularity PbWO₄ crystal calorimeter
 - density of 8.3 g/cm³, radiation length 0.89 cm, Molière radius 2.2 cm, $\approx 80\%$ of scintillating light in ≈ 25 ns, refractive index 2.2, light yield spread among crystals $\approx 10\%$
- **Barrel**: 61200 crystals in 36 super-modules, $|\eta| < 1.48,$ Avalanche Photo-Diode (APD) readout **Endcaps**: 14648 crystals in 4-Dees,
 - Vacuum Photo-Triode (VPT) readout
 - **Preshower** (endcaps only): $3X_0$ of Pb/Si strips,


 $1.48 < |\eta| < 3.0$,


 $1.65 < |\eta| < 2.6$

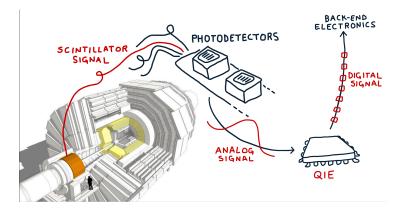

- Solenoidal magnetic field: 3.8 T ECAL fully contained in the coil
- CMS tracker coverage: $|\eta| < 2.5$

Production of the ECAL crystals (75848)

The CMS HCAL

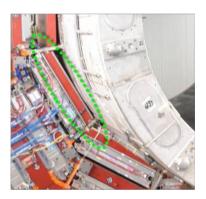
Barrel (HB)

- 36 brass/scintillator wedges
- 17 longitudinal layers, 5 cm brass, 3.7 mm scintillator
- $\bullet \ |\eta| < 1.3$



Endcap (HE)

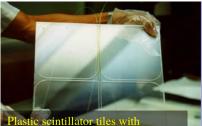
- Two brass/scintillator discs
- 19 longitudinal layers, 8 cm brass, 3.7 mm scintillator
- $1.3 < |\eta| < 3.0$


The CMS HCAL

The CMS HCAL

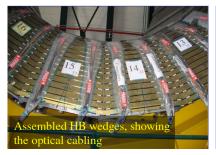
Outer (HO)

- Scintillator tiles (outside magnet yoke)
- 1 or 2 longitudinal layers, 10 mm scintillator
- $\bullet \ |\eta| < 1.3$



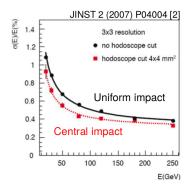
Forward (HF)

- Steel absorber/quartz fiber
- 20 deg wedges, $\approx 1000 \text{ km}$ fibers
- $\blacksquare \ 3 < |\eta| < 5$


Assembly of HCAL barrel (wedges + megatiles)

embedded wavelength-shifting fibres

One of 36 brass wedges showing gaps for the scintillators



Detector parts (modules) produced. Then? Happy?

Performance at Test Beams: text book

 Perfect calibration, no magnetic field, no material upstream, negligible irradiation, controlled environment

Time resolution: constant term $\approx 20 \text{ ps}$

from time difference of crystals in the same e.m. shower

A success of 20 years of R&D

Energy resolution

 e^{\pm} , central impact, 3×3 barrel crystals:

$$\frac{\sigma(E)}{E} = \frac{2.8\%}{\sqrt{E}} \oplus \frac{0.128}{E(GeV)} \oplus 0.3\%$$

- $\blacksquare\,$ constant term to be kept $\ll 1\%$
- stochastic term also affected by the material upstream

$$\pi^{\pm}$$
 w/ECAL+HCAL:

$$\frac{\sigma(E)}{E} = \frac{84.7\%}{\sqrt{E}} \oplus \frac{7.6\%}{E(GeV)}$$

July 8, 2024

In situ operations: from ideal to real

Light yield variations:

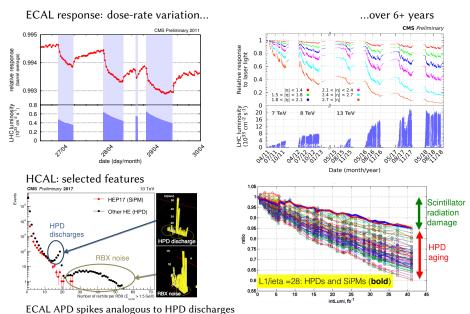

- **ECAL scintillation light** \rightarrow temperature dependence: $\Delta S/S \sim -2\%/^{\circ}$ C @ 18 °C
- ECAL crystal transparency → radiation dose-rate dependence
- HCAL scintillator response → radiation dose dependence

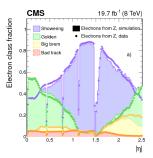
Photo-detector response:

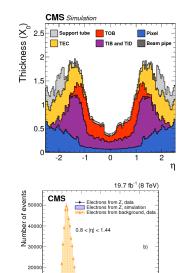
- gain temperature dependence: $\Delta G/G \sim -2\%/^{\circ}C$
- APD → gain High-Voltage dependence: $\Delta G/G \sim 3\%/V$ direct ionization effects, a.k.a. "spikes"
- VPT, HPD, PMT → response dependence on the incremental charge at the cathode
- $\blacksquare \text{ HPD} \rightarrow \text{ discharges, noise effects, radiation damage}$
- **SiPM** \rightarrow dark current, temperature/voltage dependence

 $\rightarrow \text{Excellent environmental stability} (\times 2 \text{ to } \times 3 \text{ better than required})$ $\rightarrow \text{Dedicated monitoring system and calibration techniques}$ [?]

A glimpse of the challenges

Not only calorimetry-induced fun


Tracker material in front of ECAL:


- photon conversions
- bremsstrahlung losses for electrons

3.8 T solenoidal magnetic field:

spread of the *e*, γ energy along φ , at \approx constant η

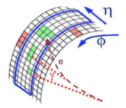
ightarrow Specific energy reconstruction algorithms and corrections

0.4

fbrem

dryu@fnal.gov

July 8, 2024

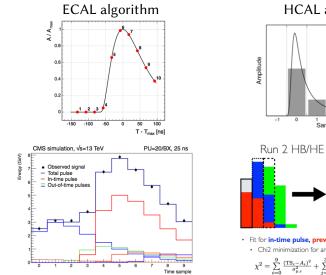

10000

Ingredients for precision physics

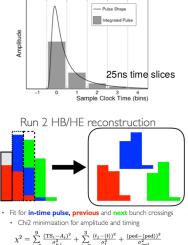
(ECAL example)

Electrons and photons deposit energy over several crystals (70% in one, 97% in a 3×3 array), spread in φ , collected by "clustering" algorithms

$$E_{e,\gamma} = \mathcal{G} \ \mathcal{F}_{e,\gamma} \sum_{i} c_{i} s_{i}(t) \mathcal{A}_{i}$$


 \mathcal{A}_i : single channel amplitude, pulse fit in the time domain

- $S_i(t)$: single-channel time-dependent response corrections, via a dedicated laser monitoring system
 - C_i : inter-calibration of the single channel response, using physics: φ and time-invariance of the energy flow in minimum-bias events, $\pi^0, \eta \to \gamma\gamma$ and $Z \to ee$ invariant mass peak, electron E/p
- $\mathcal{F}_{e,\gamma}$: particle energy correction (geometry, clustering, ...)
 - \mathcal{G} : global scale calibration, with $Z \rightarrow ee$ events


Resolution, efficiency and particle ID: $Z \rightarrow ee$

\mathcal{A} mplitude reconstruction

$E_{e,\gamma} = \mathcal{G} \mathcal{F}_{e,\gamma} \sum_{i} c_i s_i(t) \mathcal{A}_i$

HCAL algorithm

*c*_ialibration

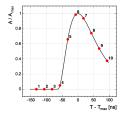
 $E_{e,\gamma} = \mathcal{G} \mathcal{F}_{e,\gamma} \sum_{i} c_{i} s_{i}(t) \mathcal{A}_{i}$

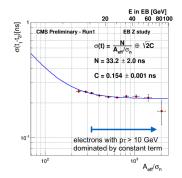
Main principle: use **well know physics as reference** signal (e.g. a resonance, exploit symmetry features, etc.)

ECAL

- Light monitoring system
- azimuthal symmetry of the energy flow
- $\ \ \, \blacksquare \ \ \pi^0,\eta\to\gamma\gamma$
- Electron *E* over tracker *p*
- **Z** \rightarrow *ee* invariant mass

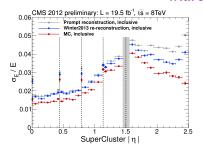
HCAL


- Light monitoring system
- azimuthal symmetry of the energy flow
- m.i.p. deposits (HE)
- π^+ (HCAL *E* ECAL *E*) over tracker *p*
- **Z** \rightarrow *ee* invariant mass for HF

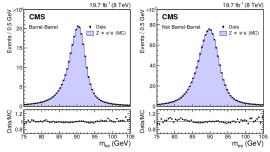

Many more subleties and challenges, calibrating a detector is an art ;-)

Gift: time resolution performance (ECAL)

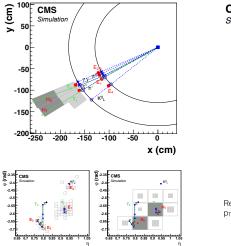
- **Better than** O(1 ns) **stability required** for precise energy determination \rightarrow **regular calibrations**
- Fast scintillation response ($\approx 80\%$ of light within 25 ns), shaping time (≈ 40 ns), and sampling rate (40 MHz) allows for excellent time-resolution

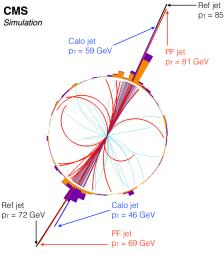

- From the time difference between the highest energy crystal of each of the two electrons from a *Z* → *ee*
- Noise term consistent with Test-Beam
- Constant term of ≈ 150 ps, much better than design, uniform and stable in time
 - residual differences with Test-Beam qualifications ascribed to the clock distribution system

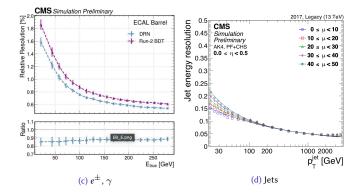
dryu@fnal.gov


Energy resolution performance (ECAL) With electrons from Z

 $\rightarrow Fit to Z \rightarrow ee of a Breit-Wigner convolved with a Gaussian function [?]$

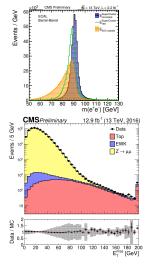

 \rightarrow Simulation tuned to match performance observed *in situ* with $Z \rightarrow ee$ events

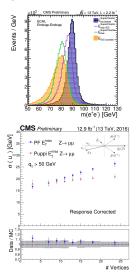

- scale: data → simulation
- resolution: sim. → data


Team spirit: combine information

Particle Flow, or Global Event Description, in pictures

Final results: energy resolution

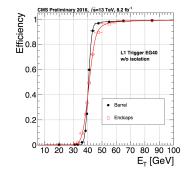



Satisfied? Can improve further...

...with multivariate techniques (MVA, BDT, NN, etc.)

 Reconstructed Z mass in data with different levels of energy reconstruction and corrections (regression)

■ From Z→ µµ events: missing distribution for PF MET and resolution for PF MET and regression-treated MET for PU mitigation (PUPPI)

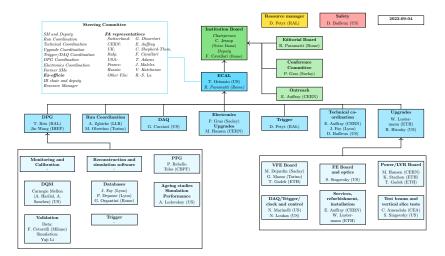

But remember: Spe melioris amittitur bonum

i.e. With the hope for the better, the good is lost

Trigger: another combined effort...

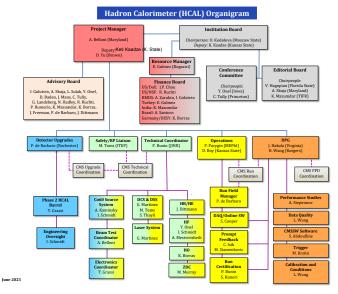
...which I leave to the data taking talk (speaker's team spirit ;-))

- At L1 custom hardware processors
 - from calorimetry and muons only, no pixel, no tracker
 - with coarse granularity (oversimplified^{*n*}: $\mathcal{O}(10)$ less)
- At HLT the whole detector information is used $100 \text{ kHz} \rightarrow 1 \text{ kHz}$
- Low rate AND high efficiency
- Sharpest possible turnon, i.e. best possible agreement "online" (HLT) and "offline" (full reco)
 - implies correcting both at L1 and HLT for detector changes (e.g. ECAL response)
 - and remove fake triggers from e.g. APD direct ionization, HPD discharges


40 MHz \rightarrow 100 kHz

General modus operandi (oversimplified³)

- + 2 experts on call 24/7
- + a team of prompt feedback and data certification
- both "+" get central shift points and are an excellent starting activity to be involved and feel the group


Main suspects for ECAL

Organigram + DoC & DGL (2023; see twiki)

Main suspects for HCAL

To give you the feeling of the organization (2023; see twiki).

July 8, 2024

Already convicted ECAL

Project manager

Toyoko Orimoto (Northeastern)

dryu@fnal.gov

Riccardo Parmatti (Roma)

Project

manager

Alberto Belloni (U. Maryland)

HGCAL

Project manager

Karl Gill

Deputy

Marcello Mannelli

HCAL

Deputy

David Yu (Nebraska/LPC)

Deputy

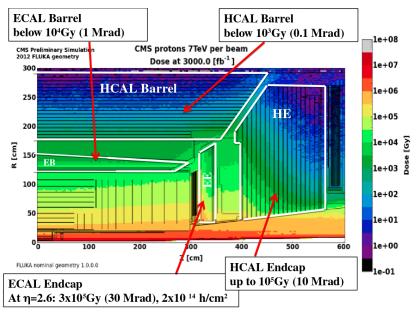
Keti Kaadze (Kansas State)

Deputy

Jim Strait

The future...

Maintain the current Phase 1 performance in High-Luminosity LHC


 \blacksquare $\times 5$ higher instantaneous luminosity w.r.t. Phase 1

150-200 PU events per BX

new regime for detectors, trigger, DAQ...

Calendar Year	2016 2017 2018	2019 2020	2021 2022	2023	2024	2025	2026
Long Shutdowns		LS2	L52		LS3		
Tracker: Outer	Design - Demo.	🚆 Pre-prod Prod Int	te.		Floa		stall. mm.
Pixel	Engin Proto.		🚆 Pre-prod Prod Inte.				Install. Comm.
Barrel Calorimeters	Design - Demo. 🎽 <mark> Engin Pro</mark>		G Pre-prod S Prod. Float		Integ.	Insall. Comm.	
Endcap Calorimeters	Design - Demo. 🎽 Engin.	Proto.	re-prod Prod Inte. Calrimet re-prod Prod Inte. Calrimet	er Endcap 1 er Endcap 2	Float	Install Float Co	mm.

Radiation levels

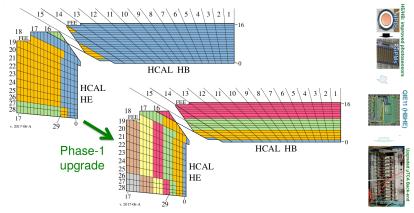
Upgrades of the central calorimetry (mostly)

ECAL: extract and refurbish the 36 EB supermodules during LS3

- retain crystals + APDs
- replace Front-End (FE) and Very-Front-End (VFE) readout (12.5 μs trigger latency): shorter shaping and full ECAL granularity at L1
- run colder to mitigate increase in radiation-induced APD dark current (noise)
- new off-detector electronics to cope with higher output bandwidth from FE

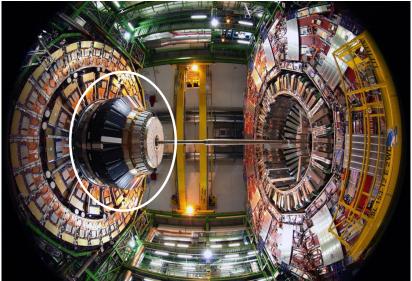
HCAL: mandatory replacement of the HB off-detector electronics

- already in 2016-17 year-end stop: replace PMTs of HF
- already in 2017-18 year-end stop: refurbish HE readout, HPD \rightarrow SiPM
- transition HB in LS2


MTD: m.i.p. timing detector - not a calorimeter, but worth mentioning

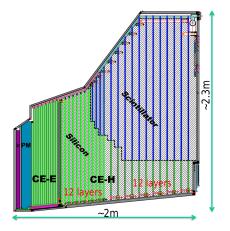
■ new device between the tracker and the calorimetry, both in barrel and endcap, providing the arrival time of charged particles with a ≈ 30 ps resolution

Longitudinal segmentation in the readout

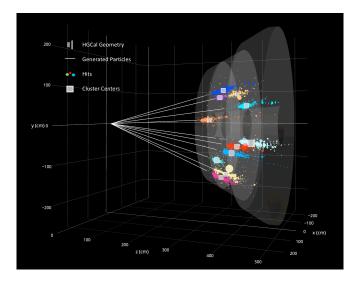

Phase 0 vs. Phase 1

- Occurs with the photodetector transition HPD \rightarrow SiPM
 - Phase 1 done (winter stop 2017/18): endcap segmentation fully exploited
 - Phase 2 during LS2 (just done!): barrel segmentation fully exploited
 - new opportunities to improve the offline reconstruction!
- and with an improved front-end electronics (from 7 bits to 8 bits) and μTCA technology for the electronic backhand

Forward calorimetry (for Phase 2)

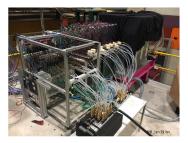

High Granularity CAL orimetry (HGCAL)

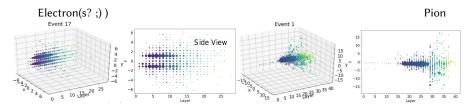
Forward calorimetry (for Phase 2)


High Granularity CAL orimetry (HGCAL)

- Complete replacement for EE and HE in LS3
- Sampling calorimeter with fine transverse granunlarity
- Silicon sensors in EE + FE and inner BH region: intrinsically rad-hard
- Hexagonal Si-sensors built-in into modules
- Modules with a W/Cu backing plate and PCB readout board

593 m³ of silicon, 6 M channels (0.5 or 1 cm² cells size), 21660 modules, 92000 Front-End ASICS, a new paradigm for calorimetry (3D-4D shower reconstruction)


HGCAL reconstruction


HGCAL: construction starting now!

Quite some activity ongoing to test the different parts of the future detector

- Test beams in 2018 (CERN, DESY)
- 28 layers CE-E, 12 layers CE-H-Si
- Testing noise, mip calibration, electron and pion reconstruction

Wrapup

Main take-aways:

- Calorimetry is a fun subject with a lot of underlying physics!
 - Tons of technology and design choices ⇒ artistry and science in detector design.
- Electromagnetic and hadronic showers behave quite differently.
 - EM showers: only a few processes, see full energy.
 - Hadronic showers: many processes (including internal EM showers), large fluctuations, and non-compensation: the different response to EM and hadronic components.
 - CMS currently has separate EM and hadronic calorimeters; however, HGCAL will do both!
- Fundamental parameters:
 - Radiation length (X₀) and interaction length (λ_{int}) govern shower shape.
 - Energy resolution: $\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E(GeV)} \oplus c$
- ECAL and HCAL are fundamental ingredients to achieve new physics discoveries as well as excellent measurement
- This was a fast and practical introduction to calorimetry at CMS. Many other, more in-depth resources are available!
 - E.g., R. Rusack et al's <u>detector lectures</u> at the FNAL LPC, <u>review</u> by Fabiola (CERN director general!)

July 8, 2024

Welcome to CMS!

- Each year, CMS members have about 3-4 months, 6 when starting, to invest in "Experimental Physics Responsibilities" (EPR). Our advice:
 - working on and understanding detectors is what makes us do better analyses
 - choose something you would really like to learn and you feel comfortable working with for several months
 - do not be afraid of the unknown: in few weeks anyone well motivated can give significant contributions
- CMS is a wonderful detector that keeps producing excellent results and offers golden opportunities for involvement!