Dark Matter: OROTON *recipe to search it at colliders*

MATTS

 M_{WON}

MEUTRAL

Deborah Pinna

(University of Wisconsin-Madison)

Undergraduate Summer Internship

10 July 2024

Few words about me …

Deborah Pinna

- Scientist at University of Wisconsin-Madison (based at CERN)
- PhD in Zurich at UZH
- originally from Sardinia (Italy)

Research

- Searches for Dark Matter, Beyond the Standard Model particles and Standard Model measurements at the CMS Experiment

Hobbies

- climbing, painting, traveling

- **Different empirical evidence of DM** from astrophysical observations at different scales
	- first indication from Zwicky's dispersion velocity measurements of galaxies in Coma cluster
	- existence of DM confirmed by measurements of stars and gas circular velocities within a galaxy by Ford and Rubin
		- from Newtonian dynamics expected velocity v(r) of these objects:

$$
v(r) = \sqrt{\frac{GM(r)}{r}}
$$

- **Different empirical evidence of DM** from astrophysical observations at different scales
	- first indication from Zwicky's dispersion velocity measurements of galaxies in Coma cluster
	- existence of DM confirmed by measurements of stars and gas circular velocities within a galaxy by Ford and Rubin
		- from Newtonian dynamics expected velocity $v(r)$ of these objects: $v(r) =$

- **Different empirical evidence of DM** from astrophysical observations at different scales
	- first indication from Zwicky's dispersion velocity measurements of galaxies in Coma cluster
	- existence of DM confirmed by measurements of stars and gas circular velocities within a galaxy by Ford and Rubin
		- from Newtonian dynamics expected velocity v(r) of these objects:

$$
v(r) = \sqrt{\frac{GM(r)}{r}}
$$

- **Different empirical evidence of DM** from astrophysical observations at different scales
	- first indication from Zwicky's dispersion velocity measurements of galaxies in Coma cluster
	- existence of DM confirmed by measurements of stars and gas circular velocities within a galaxy by Ford and Rubin
		- from Newtonian dynamics expected velocity v(r) of these objects:

$$
v(r) = \sqrt{\frac{GM(r)}{r}}
$$

Is this what we measured?

- **Different empirical evidence of DM** from astrophysical observations at different scales
	- first indication from Zwicky's dispersion velocity measurements of galaxies in Coma cluster
	- existence of DM confirmed by measurements of stars and gas circular velocities within a galaxy by Ford and Rubin
		- from Newtonian dynamics expected velocity $v(r)$ of these objects: $v(r) =$

Is this what we measured?

 $-$ v \approx const. \rightarrow M \propto r

- **Different empirical evidence of DM** from astrophysical observations at different scales
	- first indication from Zwicky's dispersion velocity measurements of galaxies in Coma cluster
	- existence of DM confirmed by measurements of stars and gas circular velocities within a galaxy by Ford and Rubin
		- from Newtonian dynamics expected velocity $v(r)$ of these objects: $v(r) =$

Is this what we measured?

- $-$ v \approx const. \rightarrow M \propto r
- non-luminous matter halo with spherical distribution in galaxy outer part

- **Different empirical evidence of DM** from astrophysical observations at different scales
	- previous examples are based on gravity description, many attempt to explain by Modified Newtonian Dynamics (MOND)
	- from gravitational lensing confirmation of non-luminous matter presence in the universe
- **Merging of two clusters of galaxies**
	- **stars** behave as collisionless particles (orange and white)
	- **intracluster hot gas** experiences ram pressure, distributed toward the system centre after collision (pink clumps)

- **Different empirical evidence of DM** from astrophysical observations at different scales
	- previous examples are based on gravity description, many attempt to explain by Modified Newtonian Dynamics (MOND)
	- from gravitational lensing confirmation of non-luminous matter presence in the universe

Merging of two clusters of galaxies

- **stars** behave as collisionless particles (orange and white)
- **intracluster hot gas** experiences ram pressure, distributed toward the system centre after collision (pink clumps)
- **- From lensing highest mass density regions shown by blue regions**

- **Different empirical evidence of DM** from astrophysical observations at different scales
	- previous examples are based on gravity description, many attempt to explain by Modified Newtonian Dynamics (MOND)
	- from gravitational lensing confirmation of non-luminous matter presence in the universe

Merging of two clusters of galaxies

- **stars** behave as collisionless particles (orange and white)
- **intracluster hot gas** experiences ram pressure, distributed toward the system centre after collision (pink clumps)
- **- From lensing highest mass density regions shown by blue regions**

- **- If only visible matter in galaxies the highest mass concentration would coincide with hot gas distribution**
- **- The observed separation points to presence of collisionless DM. This without assumptions on gravitational force law description**

DM characteristics

- **stable** on cosmological scale, relic density
- **electrically neutral** does not significantly emit, reflect, or absorb light
- **massive** interacts gravitationally
- **not made of baryons** (protons, neutrons) 25% of our universe is made of DM from Cosmic Microwave
- **A possible DM candidate in the Standard Model?**

QUARKS

DM characteristics

- **stable** on cosmological scale, relic density
- **electrically neutral** does not significantly emit, reflect, or absorb light
- **massive** interacts gravitationally
- **not made of baryons** (protons, neutrons) 25% of our universe is made of DM from Cosmic Microwave
- **A possible DM candidate in the Standard Model?**

QUARKS

DM characteristics

- **stable** on cosmological scale, relic density
- **electrically neutral** does not significantly emit, reflect, or absorb light
- **massive** interacts gravitationally
- **not made of baryons** (protons, neutrons) 25% of our universe is made of DM from Cosmic Microwave
- **A possible DM candidate in the Standard Model?**

DM characteristics

- **stable** on cosmological scale, relic density
- **electrically neutral** does not significantly emit, reflect, or absorb light
- **massive** interacts gravitationally
- **not made of baryons** (protons, neutrons) 25% of our universe is made of DM from Cosmic Microwave

A possible DM candidate in the Standard Model?

- **neutrinos?**
	- neutrinos were relativistic when gravity began to bind large scale structure
	- if DM relativistic then larger structure would have formed earlier in the evolution of the universe
	- from observations, **dark matter non-relativistic** at the time of galaxies formation

DM characteristics

- **stable** on cosmological scale, relic density
- **electrically neutral** does not significantly emit, reflect, or absorb light
- **massive** interacts gravitationally
- **not made of baryons** (protons, neutrons) 25% of our universe is made of DM from Cosmic Microwave

A possible DM candidate in the Standard Model?

- **neutrinos?**
	- neutrinos were relativistic when gravity began to bind large scale structure
	- if DM relativistic then larger structure would have formed earlier in the evolution of the universe
	- from observations, **dark matter non-relativistic** at the time of galaxies formation

Recap

- **Empirical evidence of DM** from astrophysical observations at different scales
	- interacts gravitationally, long lived and neutral
	- **- no information about its nature**

We saw what DM cannot be, but what can be DM?

- most studied class of theories: let's assume DM is a weakly interacting massive particle

Recap

- **Empirical evidence of DM** from astrophysical observations at different scales
	- interacts gravitationally, long lived and neutral
	- **- no information about its nature**

We saw what DM cannot be, but what can be DM?

- most studied class of theories: let's assume DM is a weakly interacting massive particle

Assuming DM-SM interactions enables different searches:

- **indirect detection**,

search for stable final SM products (neutrinos, gamma rays, positrons, antiprotons and their antiparticles) from annihilation of DM particles

- **direct detection**,

search for nuclear recoils produced in the elastic scattering of DM particles on nuclei

- **colliders**,

search for DM particles produced in high energy collisions

Recap

- **Empirical evidence of DM** from astrophysical observations at different scales
	- interacts gravitationally, long lived and neutral
	- **- no information about its nature**

We saw what DM cannot be, but what can be DM?

- most studied class of theories: let's assume DM is a weakly interacting massive particle

Assuming DM-SM interactions enables different searches:

- **indirect detection**,

search for stable final SM products (neutrinos, gamma rays, positrons, antiprotons and their antiparticles) from annihilation of DM particles

- **direct detection**,

search for nuclear recoils produced in the elastic scattering of DM particles on nuclei

- **colliders**,

search for DM particles produced in high energy collisions

Recap

- **Empirical evidence of DM** from astrophysical observations at different scales
	- interacts gravitationally, long lived and neutral
	- **- no information about its nature**

We saw what DM cannot be, but what can be DM?

- most studied class of theories: let's assume DM is a weakly interacting massive particle

Assuming DM-SM interactions enables different searches:

- **indirect detection**,

search for stable final SM products (neutrinos, gamma rays, positrons, antiprotons and their antiparticles) from annihilation of DM particles

- **direct detection**,

search for nuclear recoils produced in the elastic scattering of DM particles on nuclei

- **colliders**,

search for DM particles produced in high energy collisions

Recap

- **Empirical evidence of DM** from astrophysical observations at different scales
	- interacts gravitationally, long lived and neutral
	- **- no information about its nature**

We saw what DM cannot be, but what can be DM?

- most studied class of theories: let's assume DM is a weakly interacting massive particle

Assuming DM-SM interactions enables different searches:

- **indirect detection**,

search for stable final SM products (neutrinos, gamma rays, positrons, antiprotons and their antiparticles) from annihilation of DM particles

- **direct detection**,

search for nuclear recoils produced in the elastic scattering of DM particles on nuclei

- **colliders**,

search for DM particles produced in high energy collisions

Complementarity essential: eg. info about lifetime in case of DM discovery at colliders (~10-7s), particle properties compared with cosmological constraints

- **electron (muon)**, from tracks in inner tracker and energy in calorimeter (track in muon spectrometer)

-
-

- **electron (muon)**, from tracks in inner tracker and energy in calorimeter (track in muon spectrometer)
- **photon**, from energy deposits in electromagnetic calorimeter
-

- **electron (muon)**, from tracks in inner tracker and energy in calorimeter (track in muon spectrometer)
- **photon**, from energy deposits in electromagnetic calorimeter
- **jets from quarks and gluons**, produced partons hadronize in colour-neutral particles groups, so-called jet. Parton energy and momentum reconstructed clustering all particles from hadronization

- **electron (muon)**, from tracks in inner tracker and energy in calorimeter (track in muon spectrometer)
- **photon**, from energy deposits in electromagnetic calorimeter
- **jets from quarks and gluons**, produced partons hadronize in colour-neutral particles groups, so-called jet. Parton energy and momentum reconstructed clustering all particles from hadronization
- **- Dark matter?**

DM signature at colliders

- **DM could be produced at colliders (rare process)**
	- **no direct trace in the detector, but** could create a *pT* imbalance *(MET)*
	- -
		- -
			-
			-

-
-

DM signature at colliders

- **DM could be produced at colliders (rare process)**
	- **no direct trace in the detector, but** could create a *pT* imbalance *(MET)*
	- **- conservation of momentum:**
		- no information about longitudinal momentum of colliding partons
		- $-$ *but* total initial parton $p_T=0$
			- **−** need to be conserved after the collision $\sum \overrightarrow{p}_T = 0$
			- if $\sum \overrightarrow{p}_T = 0$ some particles escaped the detector $\textsf{carrying}\,\, \hat{E}_T^{miss} = -\, \sum \overrightarrow{p}_T$
			- $|E_T^{miss}| =$ missing transverse energy (MET)
- -
	-

DM signature at colliders

- **DM could be produced at colliders (rare process)**
	- **no direct trace in the detector, but** could create a *pT* imbalance *(MET)*
	- **- conservation of momentum:**
		- no information about longitudinal momentum of colliding partons
		- but total initial parton $p_T=0$
			- **−** need to be conserved after the collision $\sum \overrightarrow{p}_T = 0$
			- if $\sum \overrightarrow{p}_T = 0$ some particles escaped the detector $\textsf{carrying}\,\, \hat{E}_T^{miss} = -\, \sum \overrightarrow{p}_T$
			- $|E_T^{miss}| =$ missing transverse energy (MET)
- **to see the invisible we need the visible …**
	- need **visible particle** to which DM particle recoils against
	- **"mono-X searches"**: *X* includes jets, vector bosons, top, …

Dark matter phenomenology: guess "who"

We do not have information about the DM nature, how to discover DM?

- -
- -

Dark matter phenomenology: guess "who"

We do not have information about the DM nature, how to discover DM?

- we can remain very general and make very **little assumptions**
	- eg. for this board: "is it a 2D shape?"
- -

Dark matter phenomenology: guess "who"

We do not have information about the DM nature, how to discover DM?

- we can remain very general and make very **little assumptions**
	- eg. for this board: "is it a 2D shape?"
- we can make be make more assumptions and tests **more specific models**
	- eg. for this board: "is it a 2D shape, yellow color and with only 90° angles?"

Dark matter? phenomenology at colliders

(more parameters)

Dark matter? phenomenology at colliders

Dark matter? phenomenology at colliders

Recap

- DM could be produced at colliders, **rare process**
- long lived and neutral, **will appear as MET**
- **Signature: which DM process we want to study?**
	- **phenomenology,** eg. simplified model
	- **X visible particles,** which decays?
	- **- allow to identify main characteristics of process of interest (signal)**

Recap

- DM could be produced at colliders, **rare process**
- long lived and neutral, **will appear as MET**
- **Signature: which DM process we want to study?**
	- **phenomenology,** eg. simplified model
	- **X visible particles,** which decays?
	- **- allow to identify main characteristics of process of interest 14 (signal)**

example

DM

Recap

- DM could be produced at colliders, **rare process**
- long lived and neutral, **will appear as MET**

1- Selection

- many SM processes can have similar characteristics (or fake them) as the signal - **SM background**
-
-

Recap

- DM could be produced at colliders, **rare process**
- long lived and neutral, **will appear as MET**

1- Selection

- many SM processes can have similar characteristics (or fake them) as the signal - **SM background**
-
-

Recap

- DM could be produced at colliders, **rare process**
- long lived and neutral, **will appear as MET**

1- Selection

- many SM processes can have similar characteristics (or fake them) as the signal - **SM background**
- these SM processes are much more probable than signal
- **- require additional criteria to enhance the signal vs background - signal region (SR)**

How do we search for DM at colliders? tamination is quoted for two *mc*-*M^f* hypotheses. The errors on the expected background from simulation include only statistical uncertainties. SR *E*/T *>*160

$Recap$

TT 27.21 *±* 1.17

- DM could be produced at colliders, **rare process** DY 0.13 *±* 0.03 **Example 3.5 × 1.25**
- long lived and neutral, **will appear as MET** QCD 0.00 *±* 0.00 *n* \sim 0.1010 $\frac{1}{2}$ 1010 *p* 1108 *p* 1108 *p* 1108 *p* 1108 *p* 1111 *p* 1111

2- Background Backgrounds 46.12 *±* 1.81 sc: *Mc*1 GeV, *Mf*10 GeV 9.10 *±* 4.31

- DM production is a **rare process**. We need a **precise modeling and evaluation of SM bkg** in SR essential to "see" the signal sc: *Mc*50 GeV, *Mf*300 GeV 0.98 *±* 0.05 **−** DM producti Events / 20 GeV $90 \rightarrow \text{Data}$ QCD Z→ll Z→vv \blacksquare Single Top \blacksquare ttV \blacksquare VV \blacksquare W + Jets 2.2 fb⁻¹ (13 TeV) **CMS** Events / 20 GeV **Bridge CMS** → Data QCD Z→ll Z→νν

Single Top LitY DW DW+Je \blacksquare Single Top \blacksquare ttV \blacksquare VV \blacksquare W + Jets 2.2 fb⁻¹ (13 TeV) **CMS**

Preliminary

 $\overline{\Box}$ tt $(2l)$

 $\frac{1}{2}$ $\frac{1}{2}$

 \Box tt(2l)

1200 *Preliminary*

800 1000

- Achieved through use of multiple co ⁸
- CR definition: similar to the SR, go^s

1.5

How do we search for DM at colliders? Paraching and strategy in the strategy of the

Recap

- DM could be produced at colliders, *rare* process
- long lived and neutral, *will appear as MET*

3- Results

- **DM appears as excess of events in MET tail in SR wrt SM background** - improve bkg description from region deprived of ts in MET tail in SR Wrt
	- no very striking signature, eg. mass peak, m_T kinematic endpoint
- **excess of events in data**. Did we find DM? *excess of events in data*. Did we find DM?
- **no excess**, interpret result in terms of model parameters

Experimental challenges

- accurate *E* calibration/resolution of visible objects *("fake" MET from mis-measured jets)*
- * precise particle reconstruction and identification
- mitigate effects from additional *pp* collisions (pile-up)
- * MET thresholds affected by trigger (very high collision rates)

University of Zurich^{UZH}

1 - Selection: events categorized based on jet nature \triangleright

***** jet mass consistent with V

 $ec. R=0.4$

- * not selected as mono-V
- ≥ 1 jets, p $_{\text{T}}$ (j) > 100 GeV
- * b-tagged jets veto

3- Results: interpretation in terms of DM model, **upper limits** at 95% CL on cross sectionD

- F_{ref} $\mathcal{L} = \frac{\pi}{4}$ $\mathcal{L} = \frac{\pi}{4}$ systemation the signal strength \mathcal{L} scenarios with scalar (left) and pseudoscalar (right) mediators and coupling values of *g*^q = 1.0, **μ= / th, μ=1 exclude the theory value, μ<1 exclude below theory value,** μ **>1 does not exclude the solid line indicate below theory value, μ>1 does not exclude theory value**
- boundary *µ* = 1. In the case of a pseudoscalar mediator, *m*med values up to 480 GeV are ex**parameter: cannot scan all parameters at once. Fixed ones only affect xsec but not kinematic (selection)**

3- Results: interpretation in terms of DM model, **upper limits** at 95% CL on cross sectionD

- F_{ref} $\mathcal{L} = \frac{\pi}{4}$ $\mathcal{L} = \frac{\pi}{4}$ systemation the signal strength \mathcal{L} scenarios with scalar (left) and pseudoscalar (right) mediators and coupling values of *g*^q = 1.0, **μ= / th, μ=1 exclude the theory value, μ<1 exclude below theory value,** μ **>1 does not exclude the solid line indicate below theory value, μ>1 does not exclude theory value**
- boundary *µ* = 1. In the case of a pseudoscalar mediator, *m*med values up to 480 GeV are ex**parameter: cannot scan all parameters at once. Fixed ones only affect xsec but not kinematic (selection)**

3- Results: interpretation in terms of DM model, **upper limits** at 95% CL on cross sectionD

below theory value, μ **>1 does not exclude the solid line indicate** boundary *µ* = 1. In the case of a pseudoscalar mediator, *m*med values up to 480 GeV are ex**below theory value, μ>1 does not exclude theory value**

(indicated by a darker shade in the color scale) are excluded. The observed exclusion reaches up to *m*med = 2.0 TeV for low values of *m*DM = 1 GeV (2.2 TeV expected). Yellow solid and **parameter: cannot scan all parameters at once. Fixed ones only affect xsec but not kinematic (selection)**

3- Results: interpretation in terms of DM model, **upper limits** at 95% CL on cross section \triangleright

below theory value, μ **>1 does not exclude the solid line indicate** boundary *µ* = 1. In the case of a pseudoscalar mediator, *m*med values up to 480 GeV are ex**below theory value, μ>1 does not exclude theory value**

up to *m*med = 2.0 TeV for low values of *m*DM = 1 GeV (2.2 TeV expected). Yellow solid and **parameter: cannot scan all parameters at once. Fixed ones only affect xsec but not kinematic (selection)**

DM+jet/V: interplay with direct detection ⁸²⁴ couplings between DM particles and nuclei are either spin dependent (axial-vector) or inde- $DM + iet/V$: interblay with direct detection \bullet cms: Exo-20-004 ⁸²⁶ limited relative to collider searches as a consequence of incoherence effects in the DM-nucleus ⁸²⁴ couplings between DM particles and nuclei are either spin dependent (axial-vector) or inde- $DM + iet/V$: interblay with direct detection \bullet cms: Exo-20-004 ⁸²⁶ limited relative to collider searches as a consequence of incoherence effects in the DM-nucleus

8 3- Results: lower limits at 90% CL on interaction cross section between DM candidates and the nuclei

Comparison

- DM particle non-relativistic: dominant DM-nuclei interactions described by spin-independent and spindependent scattering cross section Figure 18: Comparison of the simplified model constraints from this search (red line) to results From particle non-relativistic. Gorninant Divi-nuclei interactions described by spin-independent and spin-
dependent septiering eress soction vector (vector (vector and axial-vector mediators (right), which translate into spin-independent and spin-independent and spin-independent and spin-independent and spin-independent and spin-independent and spin-independent Figure 18: Comparison of the simplified model constraints from this search (red line) to results From particle non-relativistic. Gorninant Divi-nuclei interactions described by spin-independent and spin-
dependent septiering experience vector (left) and axial-vector (right), which translate into spin-independent and spin-independe
- *vector/scalar* mediator lead to a *SI* interaction **depending to the American couplings.**
	- *axial-vector/pseudo-scalar* lead to *SD* interaction
	- ***** comparison is very model dependent
		- * DD bounds may be valid for multiple models, LHC limits hold exclusively for considered simpl. model
- *comparisons recommendations [\[arXiv:1603.04156\]](https://arxiv.org/pdf/1603.04156.pdf)*

DM+jet/V: interplay with direct detection ⁸²⁴ couplings between DM particles and nuclei are either spin dependent (axial-vector) or inde- $DM + iet/V$: interblay with direct detection \bullet cms: Exo-20-004 ⁸²⁶ limited relative to collider searches as a consequence of incoherence effects in the DM-nucleus ⁸²⁴ couplings between DM particles and nuclei are either spin dependent (axial-vector) or inde- $DM + iet/V$: interblay with direct detection \bullet cms: Exo-20-004 ⁸²⁶ limited relative to collider searches as a consequence of incoherence effects in the DM-nucleus

8 3- Results: lower limits at 90% CL on interaction cross section between DM candidates and the nuclei

Comparison

- DM particle non-relativistic: dominant DM-nuclei interactions described by spin-independent and spindependent scattering cross section Figure 18: Comparison of the simplified model constraints from this search (red line) to results From particle non-relativistic. Gorninant Divi-nuclei interactions described by spin-independent and spin-
dependent septiering eress soction vector (vector (vector and axial-vector mediators (right), which translate into spin-independent and spin-independent and spin-independent and spin-independent and spin-independent and spin-independent and spin-independent Figure 18: Comparison of the simplified model constraints from this search (red line) to results From particle non-relativistic. Gorninant Divi-nuclei interactions described by spin-independent and spin-
dependent septiering experience vector (left) and axial-vector (right), which translate into spin-independent and spin-independe
- *vector/scalar* mediator lead to a *SI* interaction **depending to the American couplings.**
	- *axial-vector/pseudo-scalar* lead to *SD* interaction
	- ***** comparison is very model dependent
		- * DD bounds may be valid for multiple models, LHC limits hold exclusively for considered simpl. model
- *comparisons recommendations [\[arXiv:1603.04156\]](https://arxiv.org/pdf/1603.04156.pdf)*

initial state radiation are more central than in the VBF process. The free parameter of this model is the free pa

Simplified models … … many more mono-X **Reminder: choose X to increase xsec or bkg rejection** *vector axial-vector* g_{q} $\sum V_\mu \bar{q} \gamma^\mu q \parallel g_q$ *q* $\sum A_{\mu}\bar{q}\gamma^{\mu}\gamma^{5}q$ *q* **choose X to exploit coupling** ∝ **to quark mass (or increase xsec)** *scalar pseudoscalar* g_{q} ϕ $\frac{1}{\sqrt{2}}$ \sum *f* y_f *f* $f \mid g_q \frac{iA}{\sqrt{2}}$ $\sqrt{2}$ \sum *f* $y_f \bar{f} \gamma^5 f$ *DM mono-DM DM DM top W DM DM top DM+top: t/tW-channel DM+tt DM DM top top mono-H(bb) H mono-H(WW) H W W* l l v v mono-H(Z) *H Z Z* l l l l *mono-VV(=WW,ZZ) DM DM V V*

Simplified models: Higgs boson portal DM

Reminder:

- **EXTERS** Higgs decay branching fractions not yet sufficiently constrained
	- $-$ in SM, H \rightarrow inv ~0.1%
	- direct coupling H-DM will enhance H invisible decays

Higgs: a portal to the invisible?

DM-SM interactions mediated by Higgs boson

- direct coupling to DM enhance H invisible decays (SM ~0.1%)

Higgs production as in SM

- gluon fusion **(MET+j)**
- associated VH **(MET+V)**
- **vector-boson fusion (MET+2jets)**

-
- -

-
-

Higgs: a portal to the invisible?

Higgs: a portal to the invisible?

Higgs: a portal to the invisible? renormalizable models predicting a vectorial DM candidate require an extended dark Higgs $Higgs: a\;bortal\;to\; the\; invisible$. $\frac{1}{2}$ ans: arxiv1809.05937

Di-lepton high-mass resonances

137 fb⁻¹ (13 TeV)

 $-G_{\kappa\kappa}$, k/ \overline{M}_{Pl} = 0.05, M = 3.5 TeV

m(ee) [GeV]

 Z'_{SSM} , M = 5 TeV

 \blacksquare tt̄, tW, WW, WZ, ZZ, ττ

Data
γ/Z →e⁺e⁻

Jets

70 100 200 300 1000 2000

1 - Selection: resonance appears as peak wrt SM invariant mass spectrum

≭ 2 electrons *or* 2 opp-sign muons

2 - Bkg:

- **Z(ll)** main bkg, normalized from CR
- **QCD multi-jet, W+jets** with mis-identified leptons from CR

3 - Results: compare SM predictions with data, fit to dilepton invariant mass (systematic unc. included as nuisance parameters)

 10 10^{-4} 10^{-3} 10^{-4} 10^-

(Data - Bkg) / Bkg

−1 −0.5 0 Ω 1

9.2 Search 100 and 200 a
المساوات المساواة المساواة

9.2 Search for nonresonant signals **25**

Events / GeV

1 10 10^{2} $10¹$ $10⁴$ 10^{5} $10⁶$ 10^{7} 10^8

CMS