Z polarization for Higgs self coupling

Balbeer Singh

Department of Physics University of South Dakota

> ECFA meeting March 18, 2024

arXiv:1805.03417 arXiv:2109.11134

- In collaboration with: S D Rindani, P Sarmah and K Rao

- Triple Higgs coupling at hadron collider
- Triple Higgs coupling at an e^+e^- collider
- $e^+e^- \rightarrow ZH$ production for triple Higgs coupling Int.J.Mod.Phys.A 35 (2020) 04, 2050011
- Angular distributions in Z decay
- Z polarization and triple Higgs coupling Nucl.Phys.B 975 (2022) 115649

Triple Higgs coupling

• Direct probe for triple Higgs coupling is $gg \rightarrow HH$

- High beam energy is required
- Indirect channel: λ_{3H} enters at NLO

ATL-PHYS-PUB-2017-001

Trilinear coupling with e^+e^- beam

• Higgs associated production is sensitive to λ_{3H} at NLO in e^+e^- collider: Indirect measurement

$$\lambda_{3H} = \lambda_{SM}(1)$$

0.02

0.01

0.00

-0.01

-0.02

- With HZZ (δ_{Z}), combination of δ_{Z} and δ_h can be constrained
- δcz • Precision measurements at different c.o.m energies can be useful to constrain the combination of δ_h and O_Z

Sensitivity can be improved if δ_{z} can be removed somehow!

1312.3322

 $+ \delta_h$) δ_h Parameterises deviation to self coupling Can constrain δ_h in a model dependent way \longrightarrow FCC-ee at $\sqrt{s} = 240$ GeV by 28% $\mathscr{L} \sim 10 \text{ ab}^{-1}$ 1809.10041

Trilinear coupling at $e^+e^- \rightarrow ZH$

• Triple-higgs coupling can be measured through its contribution in one-loop diagram in single Higgs production

Production cross-section: $\frac{d\sigma_L}{d\Omega} = (1 - P_L \bar{P}_L)[A_L + B_L \sin^2 \theta]$

$$A_L = A_L^{\rm SM} + \Delta A_L, \qquad B_L = B_L^{\rm SM} + \Delta B_L$$

$$\Delta A_L = 2F_1(g_V^2 + g_A^2 - 2g_V g_A P_L^{\text{eff}}) K^{\text{SM}}$$

$$\Delta B_L = 2\left(F_1 + F_2 \sqrt{sq^0}\right) \frac{|q|^2}{2m_Z^2} (g_V^2 + g_A^2 - 2g_V g_A P_L^{\text{eff}})$$

Higgs top anomalous couplings will be suppressed at low c.o.m energy

$$F_{1,2}$$
 form factor for $Z^* \to ZH$

Trilinear coupling at $e^+e^- \rightarrow ZH$

- Fractional change in cross-section and 1σ limit on κ
- Polarized beam can improve sensitivity
- Fractional change is independent of polarization

• For $P_{e^-} = -0.8$ and $P_{e^+} = 0.3$ the accuracy to measure κ is about 57 %

2304.11573 1805.03417

$\mathscr{L} \sim 2 \text{ ab}^{-1}$

\sqrt{s}	P_L	\bar{P}_L	σ_L (fb)	$rac{\delta\sigma}{\sigma}/\kappa$	$\kappa_{ m lim}~(\%)$
250	0	0	242	1.278	70.0
	-0.8	0	288	1.278	64.2
	-0.8	+0.3	364	1.278	57.2
350	0	0	129	0.284	315
	-0.8	0	153	0.284	289
	-0.8	+0.3	193	0.284	257
500	0	0	56.9	-0.203	-440
	-0.8	0	67.6	-0.203	-403
	-0.8	+0.3	85.3	-0.203	-359
1000	0	0	12.7	-0.433	-206
	-0.8	0	15.1	-0.433	-189
	-0.8	+0.3	19.1	-0.433	-169

T-odd distributions

- - Anomalous ZZH coupling: Dimension-six operators in SMEFT
- T-odd distributions of the production cross-section can be used

• Extraction of trilinear coupling from ZH production is overwhelmed by tree level anomalous couplings

PRL 47(1981)983 1812.01576

Tree level contributions are T-even

Can constrain λ_{3H} independent of tree level anomalous couplings

We explore the possibility of using Z polarization for measuring trilinear Higgs coupling

Either less sensitive to tree level ZZH coupling or independent of it

Z polarization parameters

• Angular asymmetries are related to polarization parameters

- heta and ϕ are polar and azimuthal angles of final state fermion in the rest frame of V
- Polarization parameters can be extracted from polarized matrix elements

Angular asymmetries

• In experiment one needs to compute asymmetries to extract polarization parameters

$$A_x = \frac{\sigma(\cos\phi > 0) - \sigma(\cos\phi < 0)}{\sigma(\cos\phi > 0) + \sigma(\cos\phi < 0)} = \frac{3\alpha P_x}{4} \qquad \qquad \alpha = -\frac{2c_V c_A}{c_V^2 + c_A^2}$$

Forward-backward asymmetry; CP even, T even

- Analysis needs to be done in the rest frame of Z
- Rest frame of Z is obtained by a combination of rotation and boost
- of Z
- For triple Higgs we will be interested in A_{v_7} which is T odd and CP even

• The polar and azimuthal angles of decay products are measured with respect to the would-be momenta

T-odd angular asymmetry

• A_{vz} is odd under naive time reversal

$$A_{yz} \equiv \frac{\sigma(\cos\theta\sin\phi > 0) - \sigma(\cos\theta\sin\phi < 0)}{\sigma(\cos\theta\sin\phi > 0) + \sigma(\cos\theta\sin\phi < 0)}$$

Can be realised from the transformation properties of $\cos\theta\sin\phi$

- Naive time reversal: Reversal of direction of all spins and momenta but not interchange of initial and final state
- CP-even angular asymmetry odd under naive time reversal is either less sensitive or independent of tree level anomalous couplings

Requires an absorptive part for non-zero value, CPT theorem!

- 1604.06677 1508.04592 1508.04592 1904.06663 $\frac{1}{0} = \frac{2}{\pi} \sqrt{\frac{2}{3}} T_{yz}$ $T_{yz} \rightarrow \text{Polarization component of Z}$

Z polarization for trilinear coupling

• A_{vz} gets contribution only from absorptive part of the amplitude

Sensitive to triple Higgs coupling appearing at loop level

• A_{v_7} measures interference between tree and loop level: leading contribution from loop level

known

2109.11134

At tree level SM: $a_7 = 1$ and $b_7 = 0$

• There can be other contribution at one loop like top Yukawa or WWH coupling which would already be well

Z polarization for trilinear coupling

• In SMEFT a_Z , b_Z gets contribution from dimension-six operator

$$A_{yz} = \left(\frac{2c_V c_A - P_L^{\text{eff}}(c_V^2 + c_A^2)}{4(c_V^2 + c_A^2 - 2P_L^{\text{eff}}c_V c_A)}\right) \left(\frac{|\vec{k}_Z|^2 \sqrt{s}}{(E_Z^2 + m_Z^2)m_Z}\right) \text{Im } b_Z$$

$$\operatorname{Im} b_Z = -m_Z^2 \operatorname{Im} F_2$$

$$P_L^{\text{eff}} = \frac{P_L - \bar{P}_L}{1 - P_L \bar{P}_L}$$

- Quadratic terms are suppressed by new physics scale
- Any tree level b_Z (real) will not contribute
- Initial polarized beam can improve sensitivity

 $\Phi^{\dagger}\Phi F_{\mu\nu}F^{\mu\nu}/\Lambda^2$

2109.11134

\sqrt{s}	Im b_Z
(GeV)	(for $\kappa = 1$)
240	-3.62×10^{-4}
250	-4.91×10^{-4}
350	-8.22×10^{-4}
365	-8.09×10^{-4}
380	$ -7.93 \times 10^{-4}$
500	-6.13×10^{-4}

Z polarization for trilinear coupling

Collider	c.m.	$10^4 \times A_{yz}$		Lumi-	Limit	
	energy	unpolarized	polarized	nosity	unpolarized	polarized
	(GeV)	beams	beams	(ab^{-1})	beams	beams
CEPC	240	-0.159		10	506	
CEPC	240	-0.159		20	358	
CLIC	380	-2.88	-10.6	0.5	124	31.0
FCC	240	-0.159		10	506	
FCC	250	-0.314		5	362	
FCC	365	-2.64		1.5	78.2	
ILC	250	-0.314	-1.23	2	573	119
ILC	250	-0.314	-1.23	5	362	75.3
ILC	350	-2.39	-9.38	30	19.4	4.03
ILC	500	-4.00	-15.7	4	31.6	6.57
ILC	500	-4.00	-15.7	10	20.0	4.16
ILC	500	-4.00	-15.7	30	11.5	2.40

2109.11134

- CP even and T-odd distributions can be useful to constrain triple Higgs coupling
- A_{vz} is the only CP even and T-odd asymmetry
- A_{vz} is proportional to the absorptive part of the amplitude, therefore isolates the loop level contributions
- e^+e^- polarized beam can be useful to improve accuracy
- For polarization combination $P_{e^-} = -0.8$ and $P_{e^+} = 0.3$ the accuracy to measure κ is about 57 % at $\mathscr{L} = 2 \operatorname{ab}^{-1}$
- Sensitivity may be improved by incorporating hadronic decay channels of Z as well

Thank you for your attention