

Nicholas Pinto (JHU), Andrei Gritsan (JHU), Jan Eysermans (MIT), Valdis Slokenbergs (JHU)

ECFA meeting on e+e- \rightarrow ZH angular measurements

18 March 2024

Massachusetts Institute of Technology

Past Studies: Snowmass 2013

arXiv:1309.4819

Past Studies: Snowmass 2022

arXiv:2205.07715

					·									
		E (GeV)	\mathcal{L} (fb ⁻¹)	f_{CP}^{HVV}	collider	energy	$\int \mathcal{L} dt \; (\mathrm{fb}^{-1})$	production	σ (fb)	decay	$\sigma \times \mathcal{B}$ (fb)	$N_{ m prod}$	$N_{ m reco}$	$f_{ m jet}$
8	$e^+e^- \rightarrow ZH$			JUI	pp	$14 { m TeV}$	3000	$gg \to H$	49850	$H \to Z Z^* \to 4\ell$	6.23	18694	5608	0.1
	$\sqrt{s} = 250 \mathrm{GeV}, \mathscr{L} = 250 \mathrm{fb}^{-1}$	250	250	$(+3.4 \cdot 10^{-4})$	pp	$14~{\rm TeV}$	3000	$V^*V^* \to H$	4180	$H \to Z Z^* \to 4\ell$	0.52	1568	470	0.6
-	6 6 6 6 6 7 6 7 6 8 % CL 7 8 % CL 7 CL CL CL CL CL CL CL CL CL CL	200 200			pp	$14~{\rm TeV}$	3000	$W^* \to WH$	1504	$H \to Z Z^* \to 4\ell$	0.19	564	169	0.5
<u>∽</u> 6⊢		250	2,500	$\pm 3.9 \cdot 10^{-5}$	pp	$14 { m ~TeV}$	3000	$Z^* \to ZH$	883	$H \to Z Z^* \to 4\ell$	0.11	331	99	0.5
_ ma		350 350	$\pm 1.2 \cdot 10^{-4}$	pp	$14 { m TeV}$	3000	$t\bar{t} \rightarrow t\bar{t}H$	611	$H \to ZZ^* \to 4\ell$	0.08	229	69	1.0	
\mathfrak{R}				pp	$14 { m TeV}$	3000	$V^*V^* \to H$	4180	$H\to\gamma\gamma$	9.53	28591	8577	0.6	
8 4 = -		350 3,500	2 500	$\pm 2.9 \cdot 10^{-5}$	pp	$14 { m TeV}$	3000	$Z^* \to ZH$	883	$H \to b\bar{b}, Z \to \ell\ell$	34.3	102891	690	_
u (3,500		e^+e^-	$250~{\rm GeV}$	250	$Z^* \to ZH$	240	$H \to b\bar{b}, Z \to \ell\ell$	9.35	2337	1870	_
21		500 500	500	$\pm 4.2 \cdot 10^{-5}$	e^+e^-	$350~{\rm GeV}$	350	$Z^* \to ZH$	129	$H \to b\bar{b}, \ Z \to \ell\ell$	5.03	1760	1408	-
			$\pm 4.3 \cdot 10$	e^+e^-	$500 { m GeV}$	500	$Z^* \to ZH$	57	$H \to b\bar{b}, Z \to \ell\ell$	2.22	1110	888	-	
-		500 5,000	$\pm 1.3 \cdot 10^{-5}$	e^+e^-	$1 { m TeV}$	1000	$Z^* \to ZH$	13	$H \to b\bar{b}, Z \to \ell\ell$	0.51	505	404	_	
				e^+e^-	$250~{\rm GeV}$	250	$Z^*Z^* \to H$	0.7	$H ightarrow b ar{b}$	0.4	108	86	-	
		1,000 1,000	$\pm 1.0 \cdot 10^{-5}$	e^+e^-	$350~{\rm GeV}$	350	$Z^*Z^* \to H$	3	$H \rightarrow b\bar{b}$	1.7	587	470	_	
-0.002				e^+e^-	$500 {\rm GeV}$	500	$Z^*Z^* \to H$	7	$H \rightarrow b\bar{b}$	4.1	2059	1647	-	
		1,000	10,000	$ \pm 3.0 \cdot 10^{-6} $	e^+e^-	$1 { m TeV}$	1000	$Z^*Z^* \to H$	21	$H \rightarrow b \overline{b}$	12.2	12244	9795	_
			-											

Signal: $e^+e^- \rightarrow ZH, Z \rightarrow ll (7.7\%), H \rightarrow b\bar{b} (58\%)$. Background: $e^+e^- \rightarrow ZZ \rightarrow ll b\bar{b}, N_{reco,Background} \sim 1/10^{\text{th}}$ of signal, Z mass, angles input to combine (template fit), f_{CP}^{HVV} returned at 68% CL. 4+ different samples (SM Signal, BSM Signal, Background, SM/BSM Interference) used to produce fits.

Previous Results:

- Target: ee \rightarrow ZH, H \rightarrow X (recoil), Z $\rightarrow \mu\mu$ (3.4%):
- Selection and samples from a Higgs recoil analysis.
- Detector simulation uses DELPHES fast sim.
- Template fit made from angular distributions.
- Uses Reco data, FCC signal yield and luminosity.
- Considers Snowmass background
 - ZZ background ~10% of signal
- 68% CL $f_{CP}^{HZZ} \approx \pm 3.7 * 10^{-5}$
- ECFA Report 12 December 2023

Updates for Today:

- Examine behavior of spikes at the extrema of the cosine plots.
- Update cuts to reduce background. Include a new cut on the cosine parameter.
- Produce updated likelihood fits with all background samples and yields reflective of updated cuts.

Behavior of $\cos \theta_2$ Endpoints

• $\cos \theta_2$ is the angle between muon and recoil direction.

Events at $\cos \theta_2$ Endpoints and Correlations to Other Observables:

$\cos \theta_2$ of $Z/\gamma^* \longrightarrow \mu\mu$ and $\tau\tau$:

Horns are nearly all from $\tau\tau$ events. No events in the bins below 0.98.

New Cuts Being Made: N-1 Plots

All Cuts Made

All Cuts Made: Angular Distributions

Comparing Angular Distributions to Snowmass Study

Comparing Cut Flows: Old vs New Cuts

Original Selection: Signal Selection Efficiency ~ 68% Signal : Background ~ 0.1

FCCAnalyses: FCC-ee Simulation (Delphes)

Updated Selection:

Signal Selection Efficiency ~ 47.9% Signal : Background ~2.5

FCCAnalyses: FCC-ee Simulation (Delphes)

How Template Fits are Made

- 3D histogram filled with 1 angle on each axis.
- 10 bins/axis
- ~55000 entries/bin on average.
- Examples for 0⁺hypothesis shown on the right.

Progression of fits with Reconstructed Signal H \rightarrow X, Z $\rightarrow \mu\mu$:

Updated selection @ 250 fb^-1

Updated selection @ 7200 fb^-1

Expected yields:

• 0⁺ and 0⁻ signal fixed to same cross section.

Updated selection @ 250 fb^-1

Updated selection @ 7200 fb^-1

$\int Ldt(fb^{-1})$	production	Yield	$\int Ldt(fb^{-1})$	production	Yield
250	$ee \rightarrow ZH(0^+)$	809.2	7200	$ee \rightarrow ZH(0^+)$	23303.9
250	$ee \rightarrow ZH(0^{-})$	809.3	7200	$ee \rightarrow ZH(0^{-})$	23306.6
250	$ee \rightarrow ZH(Positive int)$	388.7	7200	$ee \rightarrow ZH(Positive int)$	11200.7
250	$ee \rightarrow ZH(Negative int)$	389.5	7200	$ee \rightarrow ZH(Negative int)$	11238.5
250	$ee \rightarrow WW$	133.7	7200	$ee \rightarrow WW$	3849.9
250	$ee \rightarrow ZZ$	86.1	7200	$ee \rightarrow ZZ$	2480.4
250	$ee \rightarrow \mu\mu$	48.2	7200	$ee \rightarrow \mu\mu$	1388.2
250	$ee \rightarrow \nu \nu Z$	11.1	7200	$ee \rightarrow \nu \nu Z$	319.3
250	$ee \rightarrow \tau \tau Z$	11.1	7200	$ee \rightarrow \tau \tau Z$	145.0
250	$e\gamma \rightarrow eZ$	0.0	7200	$e\gamma \rightarrow eZ$	1.1
250	$\gamma e \rightarrow \mathrm{eZ}$	0.0	7200	$\gamma e \rightarrow eZ$	2.1
250	$\gamma\gamma \to \tau\tau$	0.0	7200	$\gamma c \rightarrow \tau \tau$	1.1
250	$\gamma\gamma ightarrow \mu\mu$	0.0	1200	$\gamma \gamma \rightarrow 1 T$	1.4

Conclusions

- Updated likelihood fits incorporate all backgrounds considered in the cross-sectional study and now represent more realistic constraints on f_{CP}^{Hzz} .
- The techniques of this analysis can be extended to other channels / couplings.
- Can extend improve this study by optimizing binning.