ECFA focus topic on ZH angular distributions and CP studies

4 ZHang — Zh angular distributions and CP studies

Expert Team: Cheng Li, Chris Hays, Gudrid Moortgat-Pick, Ivanka Bozovic, Ken Mimasu, Markus Klute, Sandra Kortner

Angular distributions in Zh production can be used to increase sensitivity to both CP-even and CP-odd interactions of the Higgs boson. The Higgs self-coupling vertex appears at next-to-leading order in Zh production, and a global analysis of CP-even interactions including angular distributions from this process can improve the sensitivity to the self-coupling. The presence of a CP-odd component in Higgs-boson interactions can be probed by reconstructing the Higgs and Z boson decay planes, or by measuring and utilizing the polarizations of the Higgs-boson decay particles. These CP-odd interactions could provide an ingredient to explain the observed matter-antimatter asymmetry in the universe. Prior analyses of Zh production have found good sensitivity to CP-odd interactions, and a further understanding of this sensitivity is a primary goal of this topic.

Chris Hays, Oxford University

18 March 2024

ZH angular distributions and CP studies

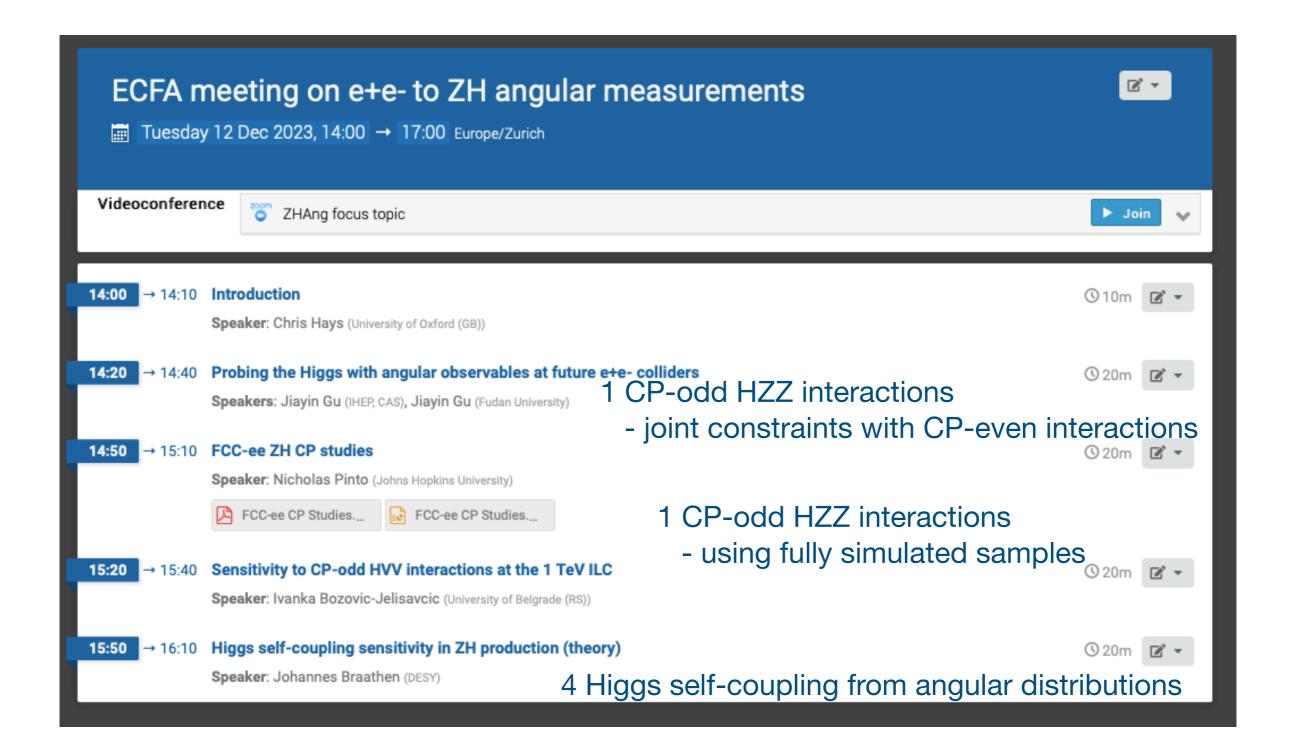
15 focus topics have been defined as a central element of the next ECFA report Expert teams formed to develop a work plan for the topics

Now documented in arXiv:2401.07564

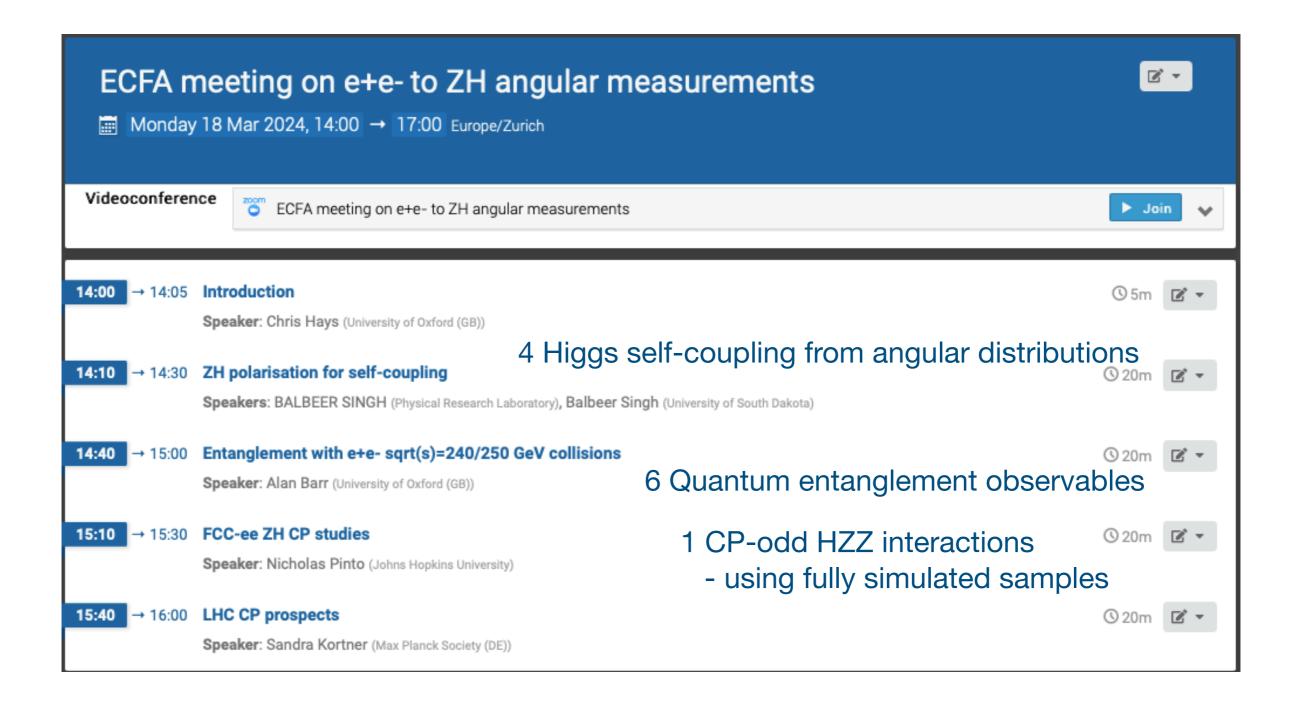
Areas of study for the "ZHang" focus topic:

- 1 CP-odd HZZ interactions
 - using fully simulated samples
 - in an asymmetric colllider
 - with polarized beams
 - joint constraints with CP-even interactions
- 2 Connecting CP-odd constraints to specific models
- 3 CP-odd $H\tau\tau$ interactions
- 4 Higgs self-coupling from angular distributions
- 5 Global SMEFT analysis extended to NLO, dimension-8 operators
- 6 Quantum entanglement observables

First meeting



Today's meeting



CP-odd interactions: hVV status

Snowmass 2021 quantified sensitivity in terms of the CP-odd fraction fcP

$$A(hV_1V_2) = \frac{1}{v} \left[a_1^{hVV} m_{V_1}^2 \epsilon_{V_1}^* \epsilon_{V_2}^* + a_2^{hVV} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{2} a_3^{hVV} \epsilon^{\mu\nu\rho\sigma} f_{\mu\nu}^{*(1)} f^{*(2)}_{\rho\sigma} \right]$$

$$f_{\text{CP}}^{hVV} = \frac{|a_3^{hVV}|^2}{\sum_i |a_i^{hVV}|^2 (\sigma_i/\sigma_3)}$$

Target of f_{CP} < 10⁻⁵ based on a benchmark model point of the 2HDM

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1300	125	125	3000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1000	250	20	1000	
hZZ/hWW	$4 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	✓	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3\!\cdot\!10^{-5}$	$3.0 \cdot 10^{-6}$	\checkmark	√	✓	√	$< 10^{-5}$

e+e- expectations use leptonic Z decays and assume equivalent sensitivity with quarks pp expectations based on CMS projections using VBF production

2209.07510

CP-odd interactions: hVV possibilities

Joint analysis of SMEFT constraints on SU(2), U(1), and mixing operators (CHW, CHB, CHWB) Complementarity with LHC VBF, Wh, Zh measurements Include hZZ* and hWW* decays

Joint analysis of CP-odd and CP-even constraints

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1300	125	125	3000	$\left \text{(theory)} \right $
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1000	250	20	1000	
hZZ/hWW	$4 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	✓	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	$3.0 \cdot 10^{-6}$	\checkmark	\checkmark	✓	√	$< 10^{-5}$

Experimental sensitivity at FCC-ee with 5/ab per experiment including backgrounds

Experimental sensitivity at ILC including beam polarization scenarios including backgrounds

Sensitivity at proposed HALHF collider

Potential gains from optimal observables or other multivariate methods

CP-odd interactions: Polarization for hVV

Decay-lepton correlations as probes of anomalous ZZH and γ ZH interactions in $e^+e^- \rightarrow$ HZ with polarized beams

Saurabh D. Rindani*, Pankaj Sharma

PLB 693, 134 (2010)

2. Polarization effects in the process $e^+e^- \rightarrow HZ$

We consider the process

$$e^{-}(p_1) + e^{+}(p_2) \to Z^{\alpha}(q) + H(k)$$

 $\to \ell^{+}(p_{l^+}) + \ell^{-}(p_{l^-}) + H(k),$ (2)

Table 1The 95% CL limits on the anomalous ZZH and γ ZH couplings, chosen nonzero one at a time, from various observables with unpolarized and longitudinally polarized beams.

	Observable	Coupling		Limits for polarizations			
			$\overline{P_L = 0.0}$ $\overline{P_L = 0.0}$	$P_L = 0.8$ $\bar{P}_L = 0.6$	$P_L = 0.8$ $\bar{P}_L = -0.6$		
X_1	$(p_1-p_2).q$	$\operatorname{Im} ilde{b}_Z$	4.11×10^{-2}	8.69×10^{-2}	9.94×10^{-3}		
		$\operatorname{Im} ilde{b}_{\gamma}$	1.49×10^{-2}	2.06×10^{-2}	1.22×10^{-2}		
X_2	$P.(p_{l^-} - p_{l^+})$	$\operatorname{Im} \widetilde{b}_Z$	4.12×10^{-2}	5.99×10^{-2}	3.84×10^{-2}		
		$\operatorname{Im} ilde{b}_{\gamma}$	5.23×10^{-1}	3.12×10^{-1}	5.52×10^{-2}		
<i>X</i> ₃	$(\vec{p}_{l^-} imes \vec{p}_{l^+})_{z}$	$\operatorname{Re} \tilde{b}_Z$	1.41×10^{-1}	2.97×10^{-1}	3.40×10^{-2}		
		Re $ ilde{b}_{\gamma}$	5.09×10^{-2}	7.05×10^{-2}	4.15×10^{-2}		
X_4	$(p_1 - p_2).(p_{l^-} - p_{l^+}) \times (\vec{p}_{l^-} \times \vec{p}_{l^+})_z$	$\operatorname{Re} \tilde{b}_Z$	2.95×10^{-2}	4.29×10^{-2}	2.75×10^{-2}		
		Re $ ilde{b}_{\gamma}$	3.81×10^{-1}	2.24×10^{-1}	3.95×10^{-2}		
X_5	$(p_1 - p_2).q(\vec{p}_{l^-} \times \vec{p}_{l^+})_z$	$\operatorname{Im} \overset{\cdot}{b_Z}$	7.12×10^{-2}	1.04×10^{-1}	6.64×10^{-2}		
		$\operatorname{Im} b_{\gamma}$	9.10×10^{-1}	5.42×10^{-1}	9.53×10^{-2}		
X_6	$P.(p_{l^-}-p_{l^+})(\vec{p}_{l^-} imes \vec{p}_{l^+})_Z$	$\operatorname{Im} b_Z$	7.12×10^{-2}	1.50×10^{-1}	1.72×10^{-2}		
		$\operatorname{Im} b_{\gamma}$	2.58×10^{-2}	3.57×10^{-2}	2.10×10^{-2}		
X_7	$[(p_1 - p_2).q]^2$	$\operatorname{Re} b_Z$	1.75×10^{-2}	2.54×10^{-2}	1.63×10^{-2}		
		$\operatorname{Re} b_{\gamma}$	2.23×10^{-1}	1.34×10^{-1}	2.35×10^{-2}		
X_8	$[(p_1-p_2).(p_{l^-}-p_{l^+})]^2$	$\operatorname{Re} b_Z$	1.53×10^{-2}	2.22×10^{-2}	1.42×10^{-2}		
		$\operatorname{Re} b_\gamma$	1.94×10^{-1}	1.16×10^{-1}	2.04×10^{-2}		

CP-odd interactions: hff & loop-induced

Target of f_{CP} < 10⁻² based on a benchmark model point of the 2HDM

	T											
Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1300	125	125	3000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1000	250	20	1000	
$h\gamma\gamma$	_	0.50	✓	_	_	_	_	_	0.06	_	_	$< 10^{-2}$
$hZ\gamma$	_	~ 1	\checkmark	_	_	_	~ 1	_	_	_	_	$< 10^{-2}$
hgg	0.12	0.011	√	_	_	_	_	_	_	_	_	$< 10^{-2}$
$htar{t}$	0.24	0.05	✓	_	_	0.29	0.08	✓	_	_	✓	$< 10^{-2}$
h au au	0.07	0.008	\checkmark	0.01	0.01	0.02	0.06	_	√	√	\checkmark	$< 10^{-2}$
$h\mu\mu$	_	_	_	_	_	_	_	_	_	√	_	$< 10^{-2}$

Possibilities:

Complete experimental analysis of $h \to \tau\tau$ including uncertainties $hZ\gamma$ and $h\gamma\gamma$ sensitivity

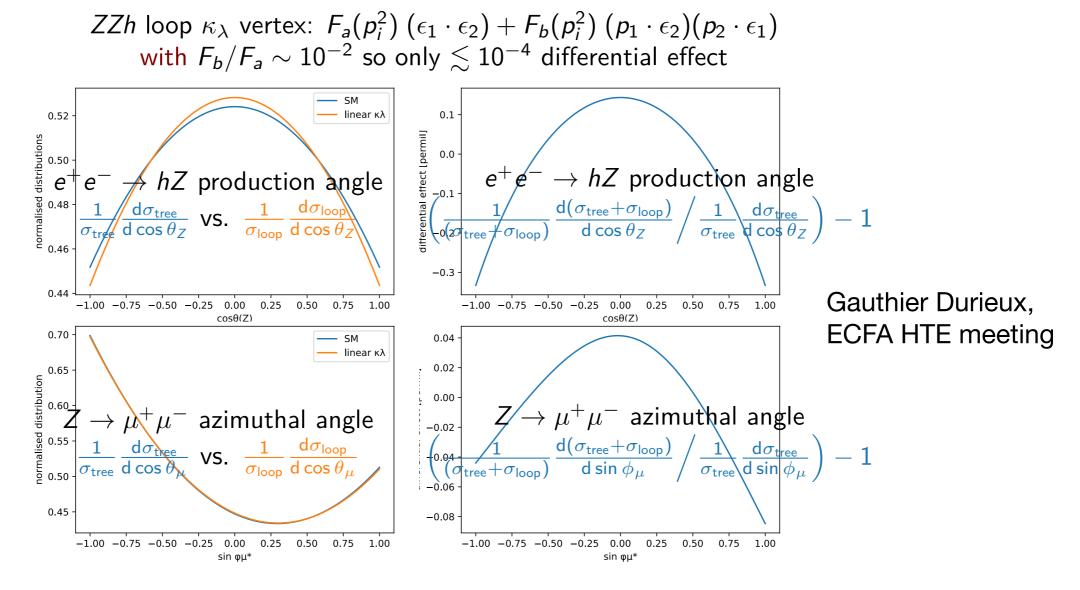
Joint SMEFT CP-even + CP-odd analysis

Extend benchmark models

CP-even interactions

Zh has sensitivity to self-coupling through NLO loop

Can angular information improve sensitivity? How does sensitivity change in a global NLO SMEFT analysis? Can we extend a global SMEFT analysis to dimension-8 and $1/\Lambda^4$?



Rindani & Sharma

2. Polarization effects in the process $e^+e^- \rightarrow HZ$

We consider the process

$$e^{-}(p_1) + e^{+}(p_2) \to Z^{\alpha}(q) + H(k)$$

 $\to \ell^{+}(p_{l^{+}}) + \ell^{-}(p_{l^{-}}) + H(k),$ (2)

3. Observables

We have evaluated the expectation values of observables X_i (i = 1, 2, ..., 8) for unpolarized and longitudinally polarized beams, and observables Y_i (i = 1, 2, ..., 6) for transversely polarized beams. The observables X_i and Y_i are respectively sensitive to longitudinal transverse beam polarizations. The definitions of X_i and Y_i are found respectively in Tables 1 and 3.

Table 1The 95% CL limits on the anomalous ZZH and γ ZH couplings, chosen nonzero one at a time, from various observables with unpolarized and longitudinally polarized beams.

	Observable	Coupling		Limits for polarizations			
			$\overline{P_L = 0.0}$	$P_L = 0.8$	$P_L = 0.8$		
			$\bar{P}_L = 0.0$	$\bar{P}_L = 0.6$	$\bar{P}_L = -0.6$		
X_1	$(p_1-p_2).q$	Im $ ilde{b}_Z$	4.11×10^{-2}	8.69×10^{-2}	9.94×10^{-3}		
		$\operatorname{Im} ilde{b}_{\gamma}$	1.49×10^{-2}	2.06×10^{-2}	1.22×10^{-2}		
X_2	$P.(p_{l^-} - p_{l^+})$	$\operatorname{Im} \widetilde{b}_Z$	4.12×10^{-2}	5.99×10^{-2}	3.84×10^{-2}		
		$\operatorname{Im} ilde{b}_{\gamma}$	5.23×10^{-1}	3.12×10^{-1}	5.52×10^{-2}		
X_3	$(\vec{p}_{l^-} imes \vec{p}_{l^+})_z$	$\operatorname{Re} \widetilde{b}_Z$	1.41×10^{-1}	2.97×10^{-1}	3.40×10^{-2}		
		$\operatorname{Re} ilde{b}_{\gamma}$	5.09×10^{-2}	7.05×10^{-2}	4.15×10^{-2}		
X_4	$(p_1 - p_2).(p_{l^-} - p_{l^+}) \times (\vec{p}_{l^-} \times \vec{p}_{l^+})_z$	$\operatorname{Re} \widetilde{b}_Z$	2.95×10^{-2}	4.29×10^{-2}	2.75×10^{-2}		
		$\operatorname{Re} ilde{b}_{\gamma}$	3.81×10^{-1}	2.24×10^{-1}	3.95×10^{-2}		
X_5	$(p_1 - p_2).q(\vec{p}_{l^-} \times \vec{p}_{l^+})_z$	$\operatorname{Im} b_Z$	7.12×10^{-2}	1.04×10^{-1}	6.64×10^{-2}		
		$\operatorname{Im} b_{\gamma}$	9.10×10^{-1}	5.42×10^{-1}	9.53×10^{-2}		
<i>X</i> ₆	$P.(p_{l^-}-p_{l^+})(\vec{p}_{l^-} imes \vec{p}_{l^+})_Z$	$\operatorname{Im} b_Z$	7.12×10^{-2}	1.50×10^{-1}	1.72×10^{-2}		
		$\operatorname{Im} b_{\gamma}$	2.58×10^{-2}	3.57×10^{-2}	2.10×10^{-2}		
<i>X</i> ₇	$[(p_1-p_2).q]^2$	$\operatorname{Re} b_Z$	1.75×10^{-2}	2.54×10^{-2}	1.63×10^{-2}		
		$\operatorname{Re} b_\gamma$	2.23×10^{-1}	1.34×10^{-1}	2.35×10^{-2}		
<i>X</i> ₈	$[(p_1-p_2).(p_{l^-}-p_{l^+})]^2$	$\operatorname{Re} b_Z$	1.53×10^{-2}	2.22×10^{-2}	1.42×10^{-2}		
		$\operatorname{Re} b_{\gamma}$	1.94×10^{-1}	1.16×10^{-1}	2.04×10^{-2}		

Rindani & Sharma

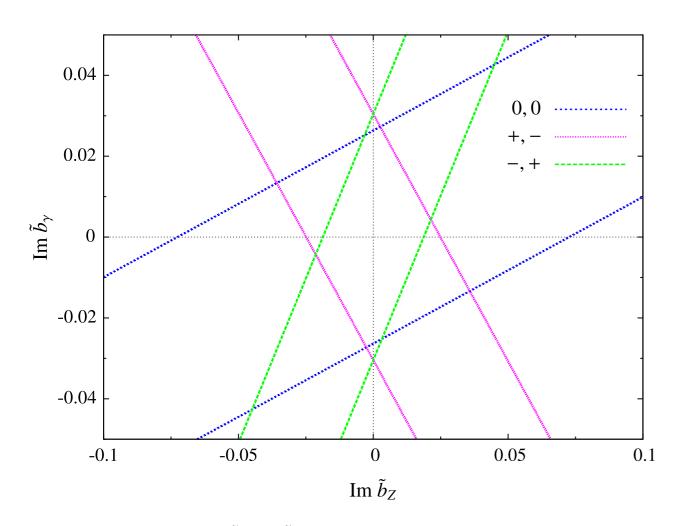


Fig. 1. The region in the $\text{Im } \tilde{b}_Z - \text{Im } \tilde{b}_\gamma$ plane accessible at the 95% CL with observable X_1 with different longitudinal beam polarization configurations.

Table 2 Simultaneous 95% CL limits on anomalous ZZH and γ ZH couplings from various observables using different longitudinal polarization combinations (0, 0), i.e., $P_I =$

observables using different longitudinal polarization combinations (0, 0), i.e., $P_L = 0$, $\bar{P}_L = 0$, (\pm , \mp), i.e., ($P_L = \pm 0.8$, $\bar{P}_L = \mp 0.6$).

Observable	Coupling	Limit on coupli	ing for the polariz	zation combination
		(0,0), (-,+)	(0,0), (+,-)	(-,+), (+,-)
X_1	$\operatorname{Im} ilde{b}_Z$	4.50×10^{-2}	3.59×10^{-2}	2.14×10^{-2}
	Im $ ilde{b}_{\gamma}$	4.28×10^{-2}	2.74×10^{-2}	3.04×10^{-2}
X_2	$\operatorname{Im} \tilde{b}_Z$	9.73×10^{-2}	7.56×10^{-2}	8.54×10^{-2}
	Im $ ilde{b}_{\gamma}$	3.06×10^{-1}	2.19×10^{-1}	1.37×10^{-1}
<i>X</i> ₃	$\operatorname{Re} \tilde{b}_Z$	1.54×10^{-1}	1.22×10^{-1}	7.29×10^{-2}
	Re $ ilde{b}_{\gamma}$	1.46×10^{-1}	9.31×10^{-2}	1.08×10^{-1}
X_4	$\operatorname{Re} \tilde{b}_Z$	5.37×10^{-2}	6.89×10^{-2}	6.10×10^{-2}
	Re $ ilde{b}_{\gamma}$	1.56×10^{-1}	2.18×10^{-1}	9.78×10^{-2}
X_5	$\operatorname{Im} b_Z$	1.67×10^{-1}	1.29×10^{-1}	1.48×10^{-1}
	$\operatorname{Im} b_{\gamma}$	5.27×10^{-1}	3.76×10^{-1}	2.36×10^{-1}
X_6	$\operatorname{Im} b_Z$	7.79×10^{-2}	6.18×10^{-2}	3.69×10^{-2}
	$\operatorname{Im} b_{\gamma}$	7.39×10^{-2}	4.72×10^{-2}	5.27×10^{-2}
<i>X</i> ₇	$\operatorname{Re} b_Z$	2.53×10^{-2}	1.27×10^{-2}	3.11×10^{-2}
	$\operatorname{Re} b_{\gamma}$	1.05×10^{-1}	5.74×10^{-2}	5.11×10^{-2}
<i>X</i> ₈	$\operatorname{Re} b_Z$	2.58×10^{-2}	2.05×10^{-2}	3.37×10^{-2}
	$\operatorname{Re} b_{\gamma}$	1.15×10^{-1}	6.33×10^{-2}	5.26×10^{-2}