

International UON Collider

Collaboration

14 March 2024

Plans for collective effects studies in the ionisation cooling system

> Joséphine Potdevin Xavier Buffat Tatiana Pieloni

Outline

- 1. Collective effects in cooling introduction & motivation
- 2. Optimized cooling line rectilinear (RC) & final (FC) cooling
- **3. Basic collective effects** theory & first results
 - 1. Transverse & longitudinal space charge
 - 2. Beam loading
 - 3. Beam break-up
- 4. Conclusion next steps

Outline

- 1. Collective effects in cooling introduction & motivation
- 2. Optimized cooling line rectilinear (RC) & final (FC) cooling
- **3. Basic collective effects** theory & first results
 - 1. Transverse & longitudinal space charge
 - 2. Beam loading
 - 3. Beam break-up
- 4. Conclusion next steps

Ionisation cooling of a muon beam

The goal of ionisation cooling

- Reduce **emittance** $\epsilon_{\perp} \sim \mu m$, $\epsilon_{\parallel} \sim mm \rightarrow$ low beam sizes $\sigma_{x,y}, \sigma_z$
- At low energy (< 200MeV)
- With good muon transmission → high beam intensity N_q
- > To get high luminosity in collision

$$L \propto N_q^2 / (\sigma_{x,y} \sigma_z)$$

The ingredients for ionisation cooling

Solenoid → focus the beam transversly Absorber (LH2 or LiH) + dipoles → reduce 4/6D emittance **RF cavities** → restore longitudinal momentum

Study of collective effects in ionisation cooling

Important to study for muon collider to understand and mitigate what may cause limitations to

- Beam intensity → beam loss
- Beam quality → coherent & incoherent instabilities / tune & energy spread → emittance blow-up
- Decrease of luminosity

Collective effects will impact the line design

- > Absorber material choice because of wakes
 - > LH_2 → liquid, not conductor
 - \succ LiH \rightarrow solid, conductor
- > RF cavity choice because of beam loading
- > Lattice design (e.g. DA with space charge)

Zhu Ruihu @ Muon Cooling Working Group Meeting,01.26.2023

Study of collective effects in ionisation cooling

Collective effects in non-relativistic charged beams in LINAC

Approach to problem solving

- Reasonably define an optimized cooling line parameters since there is no baseline yet
- Make coarse approximations to
 - Discern potential problems areas & understand overall limitations
 - Identify where require more thorough theory derivation & simulation on RF track

- Transverse & longitudinal space charge
- Beam loading
- Beam break-up

Outline

- 1. Collective effects in cooling introduction & motivation
- 2. Optimized cooling line rectilinear (RC) & final (FC) cooling
- **3. Basic collective effects** theory & first results
 - 1. Transverse & longitudinal space charge
 - 2. Beam loading
 - 3. Beam break-up
- 4. Conclusion next steps

Optimized cooling line

(a)

0.4

0.2

-0.2

-0.4

-0.6

A-stages

- Goal \rightarrow initial 6D cooling of 21 micro bunches
- Parameters \rightarrow from Stratakis & Palmer paper
- Composition \rightarrow 4 stages of # cells (66-130)

B-stages

- Goal \rightarrow carry on 6D cooling of 1 bunch
- Parameters → from Zhu Ruihu
- Composition \rightarrow 10 stages of # cells (21-69) \rightarrow

FC-cells

- Goal \rightarrow final 4D cooling under high magnetic field ~40T
- Parameters → from Elena Fol
- Composition \rightarrow 9 cells each divided in 2 parts, cooling & acceleration

All parameter tables of the cooling line as well as the methodology behind finding / approximating the parameter can be found in back-up slides

Stratakis, R. Palmer, DOI 103/PhysRevSTAR 18 031003

Optimized cooling line

A-stages

- Goal → initial 6D cooling of 21 micro bunches
- Parameters → <u>from Stratakis & Palmer</u> paper
- Composition \rightarrow 4 stages of # cells (66-130)

B-stages

- Goal → carry on 6D cooling of 1 bunch
- Parameters → from Zhu Ruihu
- Composition \rightarrow 10 stages of # cells (21-69)

FC-cells

- Goal → final 4D cooling under high magnetic field ~40T
- Parameters → <u>from Elena Fol</u>
- Composition → 9 cells each divided in 2 parts, cooling & acceleration

All parameter tables of the cooling line as well as the methodology behind finding / approximating the parameter can be found in back-up slides

Outline

- 1. Collective effects in cooling introduction & motivation
- 2. Optimized cooling line rectilinear (RC) & final (FC) cooling
- **3. Basic collective effects** theory & first results
 - 1. Transverse & longitudinal space charge
 - 2. Beam loading
 - 3. Beam break-up
- 4. Conclusion next steps

Transverse space charge - theory

<u>Theory</u>

- Forces generated directly by the charge distribution of beam line
- Defocusing effect → expect optical quantities to depend on beam current
- Non linear forces → transverse tune spread

Approximation

- Gaussian bunched beam
- Equation derived for decoupled beam X
- Space charge treated as small focusing error
- Emittance ~ constant for whole cell

As in muon collider configuration, beam is fully coupled, $\beta_x = \beta_y$ and $\epsilon_x = \epsilon_y$, end up with

• Perveance
$$K = \frac{2I}{\beta_0^3 \gamma_0^3 I_c}$$
,
• Characteristic beam current $I_c = \frac{4\pi\epsilon_0 mc^3}{q}$
• Peak beam current $I = qn_q\beta_0 c$

- Muon linear density $n_q = \frac{N_q}{\sqrt{2\pi}\sigma_z}$
- Cell length L

From Wolski, 'Beam dynamics in high energy particle accelerators', Chp13

Transverse space charge - Results

- SC higher at end of cooling \rightarrow smallest $\sigma_{x,y}$ and $\epsilon_{x,y}$
- SC not negligible at initial cooling → higher charge intensity
- SC causes maximum tune shifts comparable to maximum tune accepted for DA

Chris' plot (done on initial cooling \rightarrow let's see for FC) shows that tune spread has consequences of DA

- Need to derive more appropriate equation for fully coupled beam
- Need simulate beam losses / DA including SC
- ◆ D.Stratakis et al. found mainly longitudinal space charge effect that can be compensated with higher RF gradiant → to be further studied

Longitudinal space charge - theory

<u>Theory</u>

- Forces generated directly by the charge distribution of beam line
- Modification of focusing potential
- Non linear longitudinal forces → momentum spread

Space charge longitudinal potential

$$V(z) = \frac{IZ_0gc}{2\beta_0\gamma_0^2\sigma_z^2\omega_0}z\exp\left(-\frac{z^2}{2\sigma_z^2}\right)$$

Longitudinale space charge momentum spread

$$\Delta\delta(z) = \frac{qV(z)}{cP_0}$$

Evaluate the potential difference between $z \in \{-\sigma_z, \sigma_z\}$ to find maximum energy difference between head and tail of bunch

Approximation

- Gaussian bunched beam
- Longitudinal variations in charge density slow
- Emittance, current, energy ~ constant for whole cell
- Beam pipe radius ~5 x beam transverse size

$$V(\sigma_z) - V(-\sigma_z) = \frac{IZ_0 gL e^{-1/2}}{2\pi\beta^2 \gamma^2 \sigma_z}$$

with

- Geometry factor $g = 1 + 2\ln\left(\frac{b}{a}\right)$
- Beam pipe radius $b = 5\sigma_z$
- Beam cross section radius σ_z
- Impedance of free space $Z_0 = 376.73\Omega$
- Peak beam current I
- Cell length L

From Wolski, 'Beam dynamics in high energy particle accelerators', Chp12

Longitudinal space charge – Results 1/2

- > Momentum spread caused by longitudinal space charge mostly affected by
 - 1. Intensity of the beam
 - 2. Energy of the beam
- higher SC mom spread at beginning of cooling line

Longitudinal space charge – Results 2/2

- The space charge induced momentum spread is in the same order of magnitude as the beam's initial momentum spread in RC where the beam intensity is higher
 - Potential impact on lattice design
 - Need for RF track simulations
- > In **FC no problem** from longitudinal SC, thanks to low beam intensity and long bunch size

Beam loading - theory

<u>Theory</u>

- When passing in RF cavity beam's EM field interacts with cavity → additional voltage
- Beam induced voltage V_{ind} resonates in cavity at ω_{res} frequency → head and tail of bunch see different voltages
- Expect energy spread caused by beam loading

Approximation

- Geometric factor R/Q taken from presentations
 @ the 'MuCol WP8 Cooling Cell Workshop
 - D.A.Giove, 'Status of 650 MHZ cavity design'
 - <u>C.Barbagallo, 'Status of 704 MHz cavity</u> <u>design'</u>
 - G.S.Mauro, '3 GHZ RF for the RFMTF'

R/Q	Real RF frequency of design [MHz]	Line RF frequency [MHz]
194.73	704	704
200.00	-	24-86
223.00	650	352
466.00	3000	1056

$$V_{ind} = N_q q \frac{R}{Q} \omega_{res}$$

Beam loading - results

Beam loading effects

- BL important in RC where
 - Charge density is high (starts at Nq ~ 1e14)
 - RF frequency is high ($325MHz \rightarrow 1056MHz$)
 - Beam induced voltage atteins almost 90% of the RF voltage in B7 (where RF cavity goes from 704MHz to 1054MHz
 - > BL is unacceptable with high frequency RF \rightarrow revise RF choices and design
 - BL must be added / considered for RF track simulations
- BL not a problem in FC

Beam break-up – 1/2

<u>Theory</u>

- Due to transverse wake force, beams' tails betatron oscillations may resonate with the wake leading to a transverse break-up of the beam
- Oscillation amplitude of the tail relative to the head characterised by growth parameter Υ

Approximation

- Look only at dipolar beam break-up here
- 2 macroparticle model
- Neglect BNS damping X
- Use only resistive wall wake of relativistic beam at low frequency → classical thick wall of copper

Relative permeability μ_r

Conductivity σ_c

- LINAC length L_0
- Betatron wavenumber $k_{\beta} = \frac{2\pi}{\beta}$
- ¹ From Chao, 'Physics of collective beam instabilities in high energy accelerators', Chp3

19

² From A. Koschik et al., 'Transverse resistive wall impedance and wake function witj "inductive bypass"

Beam break-up 2/2

<u>Results</u>

- Resistive wall wake equation of a relativistic beam with big pipe size results does not seem to increase the tail's betatrons motion → negative growth parameter of less than 10⁻³
- Moreover, with BNS damping, which will probably be strong (→to include in theory & RF track simulations) resistive wall wake will certainly not be a problem
- Need to evaluate Υ for all transverse wake of non-relativistic beams
 - Wake in matter
 - Wake at transition
 - Plasma wake

\rightarrow First step evaluate wake function – Non trivial

V. M. Malkin and N. J. Fisch and S. Ahmed et al. found that plasma waves are not important limiting factors in ionization cooling

Outline

- 1. Collective effects in cooling introduction & motivation
- 2. Optimized cooling line rectilinear (RC) & final (FC) cooling
- **3. Basic collective effects** theory & first results
 - 1. Transverse & longitudinal space charge
 - 2. Beam loading
 - 3. Beam break-up

4. Conclusion – next steps

Conclusion & next steps

- Few critical items were identified based on coarse models on collective effetcs
 - Transverse SC in FC and its impact on DA → Theory of fully coupled beam with SC + RF track simulation including SC
 - Longitudinal SC in RC and its impact on momentum spread \rightarrow RF track simulation including SC
 - Beam loading in end of RC (high frequency cavities) \rightarrow improve design (R/Q, frequency)
- No clear issues with wake were identified at this point but significant studies needed to quantify wakes in *unusual* setup of ionisation cooling
 - Wake in material
 - Wake at interface
 - Plasma from ionisation cooling

MInternational UON Collider Collaboration

Thank you for attention

Back-up slides

Parameters of the cooling line 1/2

- Parameters stages Charge separation (CS), Bunch merge (BM), final muon numbers Nq = 4e12 → Grant Agreement No: 101094300, MuCoL, "A Design Study for a Muon Collider complex at 10 TeV centre of mass", "TENTATIVE PARAMETERS AVAILABLE"
- A-stages → Diktys Stratakis et al., "Rectilinear six-dimensional ionization cooling channel for a muon collider: A theoretical and numerical study"
- B-stages → Ruihu Zhu, Muon Cooling, <u>https://indico.cern.ch/event/1372773/</u>
- Final cooling FC-stages → Results p10 of Elena Fol, Muon Cooling https://indico.cern.ch/event/1351066/, and the github parameters https://github.com/MuonCollider-WG4/muon_final_cooling/blob/main/FCchannel_025m_RFcav (parameters)
 - Separate FC cells between cooling part (solenoid + absorber) and acceleration part (drift + RF acceleration + RF rotation)
 - Approximate beam sizes and emittances, at the cooling part (missing) to be the same as the accelerating part & likewise for Nq, i.e. the number of particles stays constant during the whole FC cell and the transmission percentage is applied after the cell
- Momentum \rightarrow A/B-stages momentum is chosen to be the one after RF acceleration
- Minimum beta transverse A-stage anf FC-stages → 2*(Pz)/(10*0.3*B)[cm] from
 <u>https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.091001</u>
 for momentum approximately having 30MeV/c less than after RF acceleration for A-stages (Pz-30MeV)
- **Beta longitudinal** \rightarrow from https://www.researchgate.net/publication/259106391_Comments_on_Ionization_Cooling_Channel_Characteristics where lambda rf is approximated to be one of the rotation RF cavity for the FC-stages (for longitudinal focusing) where V' is the average voltage gradient $\sqrt{2 e^3}$ where $\sqrt{2$

$$\beta_L = \sqrt{\frac{\lambda_{rf}\beta^3 \gamma \, m_\mu c^2 \alpha_p}{2\pi e V' \cos(\phi_s)}}$$

Parameters of the cooling line 2/2

- RF phases → A/B-stages are given. FC-stages rotational are given and acceleration phase are on crest 0 degrees
- Number of bunches → A-stages 21, B-stages 1, FC-stages 1
- Transmission → A/B-stages: each cell's transmission. FC-stages: cumulative transmission
 Made such that in each cell there is the maximum muon intensity i.e. the transmission is applied at the end of the cell
- Configuration of the cells →
 A1-2 W+D+3xRF+D+W
 A3-4 W+D+nxRF+D+W
 A3-4 W+D+nxRF+D+W
 A4 W+D+4xRF+D+W
 B1-9 W+D+nxRF+D+W
 B1-9 W+D+nxRF+D+W
 FC1-5 4m of entry sol, main sol + absorber, exit sol, drift, n x RF rot, m x RF acc
 FC6-8 4m of entry sol, main sol + absorber, exit sol, n x RF acc, drift, m x RF acc
- Number of cells \rightarrow A/B-stages have a lot of cells in each stage FC-stages are each composed of one cell only
- R/Q ratio chosen → 223 Ohm for 650MHz as WP8 https://indico.cern.ch/event/1335151/contributions/5727257/ for A/B-stages with RF 352MHz 194.73 Ohm for 704MHz as WP8 https://indico.cern.ch/event/1335151/contributions/5727258/ for B5-B6-stages with RF 704MHz 466.4 Ohm for 3GHz as WP8 https://indico.cern.ch/event/1335151/contributions/5727258/ for B7-B10-stages with RF

1056MHz

As RF frequency is lower for FC stages \rightarrow try R/Q ratio of 200 Ohm

Parameters of the RC line

	Beam sizer[cm]	Beam size⊥[cm]	Beta:[cm]	Beta⊥[cm]	Emitı[mm]	Emit⊥[mm]	Length cell[m]	Momentum spread	Momentum[MeV/c]	Nq	Peak field[T]	Transmission[%]
CS	NaN	9.910712	NaN	57.77778	46.000	17.0000	NaN	NaN	238.0	1.028698e+14	2.4	90.0
A1	9.592434	6.023657	63.546123	57.77778	14.480	6.2800	2.00	0.150952	238.0	9.258286e+13	2.4	70.6
A2	5.460106	3.589933	64.251636	37.904762	4.640	3.4000	1.32	0.084980	229.0	6.536350e+13	3.5	87.5
A3	3.340354	2.337199	42.915261	26.388889	2.600	2.0700	1.00	0.077836	220.0	5.719306e+13	4.8	88.8
A 4	3.185342	1.729841	43.176177	20.218579	2.350	1.4800	0.80	0.073775	215.0	5.078744e+13	6.1	94.6
вм	NaN	4.330686	NaN	36.559140	9.910	5.1300	NaN	NaN	200.0	4.804492e+13	3.1	78.0
B1	7.453510	3.184808	64.726565	35.000000	8.583	2.8980	2.30	0.115154	200.0	3.747503e+13	3.1	86.1
B2	6.175193	2.433516	65.162359	30.000000	5.852	1.9740	1.80	0.094766	200.0	3.226600e+13	4.1	91.1
B 3	4.492381	1.702351	62.077770	20.000000	3.251	1.4490	1.40	0.072367	200.0	2.939433e+13	4.8	88.8
B4	3.865832	1.264516	63.137557	15.000000	2.367	1.0660	1.10	0.061229	200.0	2.610217e+13	6.2	91.7
B5	3.138860	0.852702	43.136779	10.000000	2.284	0.7271	0.80	0.072765	200.0	2.393569e+13	8.8	91.3
B6	2.883467	0.545307	38.689542	6.000000	2.149	0.4956	0.70	0.074528	200.0	2.185328e+13	11.7	88.2
B7	2.704872	0.376776	35.259445	4.000000	2.075	0.3549	0.60	0.076713	200.0	1.927459e+13	15.0	87.7
B 8	2.595608	0.284077	35.627604	3.000000	1.891	0.2690	0.60	0.072854	200.0	1.690382e+13	16.8	88.4
B9	2.637226	0.213951	39.360283	2.500000	1.767	0.1831	0.60	0.067002	200.0	1.494298e+13	18.1	82.2
B10	2.103449	0.167511	28.307722	2.000000	1.563	0.1403	0.60	0.074307	200.0	1.228313e+13	19.0	83.5

Parameters of the FC line

	Beam size:[mm]	Beam size⊥[cm]	Betai[cm]	Beta⊥[cm]	Emitı[mm]	Emit⊥[um]	Length cell[m]	Momentum spread	Momentum[MeV/c]	Nq	Peak field[T]	Transmission[%]
FC1-acc	229.0	0.779499	132.069547	27.619048	4.90	220.0	4.860	0.012800	145	1.025641e+13	3.500	97.0
FC2-acc	245.0	0.762573	193.881049	31.264368	7.30	186.0	5.200	0.018623	136	9.948718e+12	2.900	94.0
FC3-acc	236.0	0.854454	154.520537	42.201835	8.10	173.0	2.147	0.029205	138	9.641026e+12	2.180	91.0
FC4-acc	643.0	0.826265	223.619384	52.923602	21.00	129.0	3.978	0.045559	124	9.333333e+12	1.562	86.0
FC5-acc	801.0	0.675781	278.011717	45.667947	25.00	100.0	5.019	0.036776	107	8.820513e+12	1.562	81.0
FC6-acc	1142.0	0.625201	387.928256	56.648778	25.00	69.0	9.650	0.069273	95	8.307692e+12	1.118	74.0
FC7-acc	1300.0	0.541205	427.052245	55.264689	16.50	53.0	9.350	0.070847	95	7.589744e+12	1.146	62.0
FC8-acc	1693.0	0.417547	500.366368	47.120419	19.90	37.0	2.515	0.091314	81	6.358974e+12	1.146	51.0
FC9-acc	2068.0	0.387585	NaN	57.77778	26.53	26.0	NaN	0.129191	65	5.230769e+12	0.750	39.0
	Beam size([mm]	Beam size [cm]	Betailcml	Beta⊥[cm]	Emitr[mm]	Emit (um)	Longth collim	Momentum spread	Momontum[Mo]//o]	Na	Book field[T]	Transmission[%]
	Beam sizeı[mm]	Beam size⊥[cm]	Betai[cm]	Beta⊥[cm]	Emitı[mm]	Emit⊥[um]	Length cell[m]	Momentum spread	Momentum[MeV/c]	Nq	Peak field[T]	Transmission[%]
FC1-cool	Beam size1[mm] 229.0	Beam size⊥[cm] 0.191485	Betai[cm]	Beta⊥[cm] 1.666667	Emitı[mm] 4.90	Emit⊥[um] 220.0	Length cell[m] 4.0	Momentum spread 0.021822	Momentum[MeV/c]	Nq 1.025641e+13	Peak field[T] 40.0	Transmission[%] 97.0
FC1-cool FC2-cool	Beam size1[mm] 229.0 245.0	Beam size⊥[cm] 0.191485 0.179555	Betai[cm] 132.069547 193.881049	Beta⊥[cm] 1.6666667 1.733333	Emiti[mm] 4.90 7.30	Emit⊥[um] 220.0 186.0	Length cell[m] 4.0 4.0	Momentum spread 0.021822 0.027414	Momentum[MeV/c] 100 104	Nq 1.025641e+13 9.948718e+12	Peak field[T] 40.0 40.0	Transmission[%] 97.0 94.0
FC1-cool FC2-cool FC3-cool	Beam size1[mm] 229.0 245.0 236.0	Beam size⊥[cm] 0.191485 0.179555 0.175646	Betai[cm] 132.069547 193.881049 154.520537	Beta⊥[cm] 1.666667 1.733333 1.783333	Emiti[mm] 4.90 7.30 8.10	Emit⊥[um] 220.0 186.0 173.0	Length cell[m] 4.0 4.0 4.0	Momentum spread 0.021822 0.027414 0.042030	Momentum[MeV/c] 100 104 107	Nq 1.025641e+13 9.948718e+12 9.641026e+12	Peak field[T] 40.0 40.0 40.0	Transmission[%] 97.0 94.0 91.0
FC1-cool FC2-cool FC3-cool FC4-cool	Beam size1[mm] 229.0 245.0 236.0 643.0	Beam size⊥[cm] 0.191485 0.179555 0.175646 0.134387	Betai[cm] 132.069547 193.881049 154.520537 223.619384	Beta⊥[cm] 1.6666667 1.733333 1.783333 1.400000	Emiti[mm] 4.90 7.30 8.10 21.00	Emit⊥[um] 220.0 186.0 173.0 129.0	Length cell[m] 4.0 4.0 4.0 4.0	Momentum spread 0.021822 0.027414 0.042030 0.082259	Momentum[MeV/c] 100 104 107 84	Nq 1.025641e+13 9.948718e+12 9.641026e+12 9.333333e+12	Peak field[T] 40.0 40.0 40.0 40.0 40.0	Transmission[%] 97.0 94.0 91.0 86.0
FC1-cool FC2-cool FC3-cool FC4-cool FC5-cool	Beam size1[mm] 229.0 245.0 236.0 643.0 801.0	Beam size⊥[cm] 0.191485 0.179555 0.175646 0.134387 0.108012	Betai[cm] 132.069547 193.881049 154.520537 223.619384 278.011717	Beta⊥[cm] 1.666667 1.733333 1.783333 1.400000 1.166667	Emiti[mm] 4.90 7.30 8.10 21.00 25.00	Emit⊥[um] 220.0 186.0 173.0 129.0 100.0	Length cell[m] 4.0 4.0 4.0 4.0 4.0	Momentum spread 0.021822 0.027414 0.042030 0.082259 0.072425	Momentum[MeV/c] 100 104 107 84 2070	Nq 1.025641e+13 9.948718e+12 9.641026e+12 9.333333e+12 8.820513e+12	Peak field[T] 40.0 40.0 40.0 40.0 40.0	Transmission[%] 97.0 94.0 91.0 86.0 81.0
FC1-cool FC2-cool FC3-cool FC4-cool FC5-cool FC6-cool	Beam size1[mm] 229.0 245.0 236.0 643.0 801.0 1142.0	Beam size⊥[cm] 0.191485 0.179555 0.175646 0.134387 0.108012 0.087778	Betai[cm] 132.069547 193.881049 154.520537 223.619384 278.011717 387.928256	Beta⊥[cm] 1.666667 1.733333 1.783333 1.400000 1.166667 1.116667	Emiti[mm] 4.90 7.30 8.10 21.00 25.00 25.00	Emit⊥[um] 220.0 186.0 173.0 129.0 100.0 69.0	Length cell[m] 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Momentum spread 0.021822 0.027414 0.042030 0.082259 0.072425 0.122632	Momentum[MeV/c] 100 104 107 84 70 67	Nq 1.025641e+13 9.948718e+12 9.641026e+12 9.333333e+12 8.820513e+12 8.307692e+12	Peak field[T] 40.0 40.0 40.0 40.0 40.0 40.0	Transmission[%] 97.0 94.0 91.0 86.0 81.0 74.0
FC1-cool FC2-cool FC3-cool FC4-cool FC5-cool FC6-cool FC7-cool	Beam sizet[mm] 229.0 245.0 236.0 643.0 801.0 1142.0 1300.0	Beam size⊥[cm] 0.191485 0.179555 0.175646 0.134387 0.108012 0.087778 0.083006	Betai[cm] 132.069547 193.881049 154.520537 223.619384 278.011717 387.928256 427.052245	Beta1[cm] 1.666667 1.733333 1.783333 1.400000 1.166667 1.116667 1.300000	Emiti(mm) 4.90 7.30 8.10 21.00 25.00 25.00 16.50	Emit1[um] 220.0 186.0 173.0 129.0 100.0 69.0 53.0	Length cell[m] 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Momentum spread 0.021822 0.027414 0.042030 0.082259 0.072425 0.072425 0.122632 0.097139	Momentum[MeV/c] 100 104 107 84 2070 67 87 87	Nq 1.025641e+13 9.948718e+12 9.641026e+12 9.333333e+12 8.820513e+12 8.307692e+12 7.589744e+12	Peak field[T] 40.0 40.0 40.0 40.0 40.0 40.0 40.0	Transmission[%] 97.0 94.0 91.0 86.0 81.0 74.0 62.0
FC1-cool FC2-cool FC3-cool FC4-cool FC5-cool FC6-cool FC7-cool FC8-cool	Beam size1[mm] 229.0 245.0 236.0 643.0 801.0 1142.0 1300.0 1693.0	Beam size⊥[cm] 0.191485 0.179555 0.175646 0.134387 0.108012 0.087778 0.083006 0.063311	Betai[cm] 132.069547 193.881049 154.520537 223.619384 278.011717 387.928256 427.052245 500.366368	Beta⊥[cm] 1.666667 1.733333 1.783333 1.400000 1.16667 1.116667 1.11667 1.300000 1.083333	Emiti(mm) 4.90 7.30 8.10 21.00 25.00 25.00 16.50 19.90	Emit⊥[um] 220.0 186.0 173.0 129.0 100.0 69.0 53.0 37.0	Length cell[m] 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Momentum spread 0.021822 0.027414 0.042030 0.082259 0.072425 0.027245 0.122632 0.097139 0.132127	Momentum[MeV/c] 100 104 107 107 107 107 107 107 107 107 107 107	Nq 1.025641e+13 9.948718e+12 9.641026e+12 9.333333e+12 8.820513e+12 8.307692e+12 7.589744e+12 6.358974e+12	Peak field[T] 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	Transmission[%] 97.0 94.0 91.0 86.0 81.0 74.0 62.0 51.0

Parameters of the cooling RF system 1/2

	R/Q[Ω]	RF frequency[MHz]	RF gradiant[MV/m]	RF phase[deg]	RF length[cm]	RFs number
cs	NaN	NaN	NaN	NaN	NaN	NaN
A1	223.00	325.0	22.0	45.0	25.50	6.0
A2	223.00	325.0	22.0	45.0	25.00	4.0
A3	223.00	650.0	28.0	45.0	13.49	5.0
A 4	223.00	650.0	28.0	45.0	13.40	4.0
вм	NaN	NaN	NaN	NaN	NaN	NaN
B1	223.00	352.0	25.2	27.9	19.00	6.0
B2	223.00	352.0	24.0	30.7	19.00	5.0
B 3	223.00	352.0	24.9	27.4	19.00	4.0
B4	223.00	352.0	25.8	29.8	19.00	3.0
B5	194.73	704.0	23.0	24.5	9.50	5.0
B 6	194.73	704.0	30.4	20.6	9.50	4.0
B7	466.40	1056.0	25.0	23.7	6.50	5.0
B 8	466.40	1056.0	30.0	20.9	6.50	4.0
B9	466.40	1056.0	33.7	24.7	6.50	3.0
B10	466.40	1056.0	32.2	23.2	6.50	6.0

Parameters of the cooling RF system 2/2

	R/Q[Ω]	RF frequency[MHz]	RF gradiant[MV/m]	RF phase[deg]	RF length[m]	RF rot frequency[MHz]	RF rot gradiant[MV/m]	RF rot phase[deg]	RFs number	RFs rot number
FC1-acc	200	72.8000	16.041	90.0	0.25	117.0000	20.3400	180.0	12.0	3.0
FC2-acc	200	69.4000	15.662	90.0	0.25	72.8000	16.0400	180.0	10.0	2.0
FC3-acc	200	86.5140	17.486	90.0	0.25	86.5100	17.4900	180.0	5.0	1.0
FC4-acc	200	43.7575	12.436	90.0	0.25	43.7575	12.4336	180.0	12.0	1.0
FC5-acc	200	37.3350	11.487	90.0	0.25	37.3350	11.4870	180.0	10.0	1.0
FC6-acc	200	26.5900	9.690	90.0	0.25	26.5900	9.6900	180.0	10.0	5.0
FC7-acc	200	30.0000	10.300	90.0	0.25	30.0000	10.3000	180.0	9.0	1.0
FC8-acc	200	24.5080	9.307	90.0	0.25	24.5080	9.3070	0.0	1.0	1.0
FC9-acc	200	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Rectilinear cooling beam parameters

Rectilinear cooling beam parameters

Final cooling beam parameters

Final cooling beam parameters

Rectilinear cooling lattice parameters

Rectilinear cooling lattice parameters

Final cooling lattice parameters

Beam break-up - results

Head-tail growth ratio from dipolar beam break-up