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Ionisation cooling of a muon beam

The goal of ionisation cooling

§ Reduce emittance 𝜖!~𝜇𝑚, 𝜖∥~𝑚𝑚 à low beam
sizes 𝜎#,% , 𝜎&	

§ At low energy (< 200MeV)
§ With good muon transmission à high beam

intensity 𝑁'
Ø To get high luminosity in collision

𝐿 ∝ 𝑁!"/(𝜎#,%𝜎&)

The ingredients for ionisation cooling

§ Solenoid à focus the beam transversly
§ Absorber (LH2 or LiH) + dipoles à reduce 4/6D

emittance
§ RF cavities à restore longitudinal momentum

Zhu Ruihu @ Muon Cooling Working Group Meeting,01.26.2023 

https://indico.cern.ch/event/1372773/
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Study of collective effects in ionisation cooling

Important to study for muon collider to understand and mitigate what may cause limitations to
§ Beam intensity à beam loss
§ Beam quality à coherent & incoherent instabilities / tune & energy spread à emittance blow-up
Ø Decrease of luminosity

Collective effects will impact the line design
Ø Absorber material choice because of wakes

Ø LH2 à liquid, not conductor
Ø LiH à solid, conductor

Ø RF cavity choice because of beam loading
Ø Lattice design (e.g. DA with space charge)

Zhu Ruihu @ Muon Cooling Working Group Meeting,01.26.2023 

https://indico.cern.ch/event/1372773/
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Study of collective effects in ionisation cooling
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Approach to problem solving

1. A-stages - 6D cooling 
of 21 µbunchs

2. B-stages - 6D cooling 
of merged bunch

3. FC-cells - 4D final 
transverse cooling 
before acceleration 
and collision

Rectilinear 
cooling (RC)

Final 
cooling (FC)

§ Reasonably define an optimized cooling 
line parameters since there is no 
baseline yet

§ Today examine initial analytical estimation 
of 3 effects that can degrade the quality of 
the beam
§ Transverse & longitudinal space 

charge
§ Beam loading
§ Beam break-up 

§ Make coarse approximations to
§ Discern potential problems areas & 

understand overall limitations
§ Identify where require more 

thorough theory derivation & 
simulation on RF track
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Optimized cooling line

Zhu Ruihu @ Muon Cooling Working 
Group Meeting,01.26.2023 

D. Stratakis, R. Palmer, DOI: 
10.1103/PhysRevSTAB.18.031003 

Elenal Fol @ Muon Cooling Working Group 
Meeting,11.30.2023 

A-stages
§ Goal à initial 6D cooling of 21 micro 

bunches
§ Parameters à from Stratakis & Palmer 

paper
§ Composition à 4 stages of # cells (66-130)

B-stages
§ Goal à carry on 6D cooling of 1 bunch
§ Parameters à from Zhu Ruihu
§ Composition à 10 stages of # cells (21-69)

FC-cells
§ Goal à final 4D cooling under high 

magnetic field ~40T 
§ Parameters à from Elena Fol
§ Composition à 9 cells each divided in 2 

parts, cooling & acceleration

All parameter tables of the cooling line as well as the methodology behind 
finding / approximating the parameter can be found in back-up slides

https://indico.cern.ch/event/1372773/
https://indico.cern.ch/event/1372773/
https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.031003
https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.031003
https://indico.cern.ch/event/1351066/
https://indico.cern.ch/event/1351066/
https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.031003
https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.031003
https://indico.cern.ch/event/1372773/
https://indico.cern.ch/event/1351066/
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Optimized cooling line
A-stages

§ Goal à initial 6D cooling of 21 micro 
bunches

§ Parameters à from Stratakis & Palmer 
paper

§ Composition à 4 stages of # cells (66-130)

B-stages
§ Goal à carry on 6D cooling of 1 bunch
§ Parameters à from Zhu Ruihu
§ Composition à 10 stages of # cells (21-69)

FC-cells
§ Goal à final 4D cooling under high 

magnetic field ~40T 
§ Parameters à from Elena Fol
§ Composition à 9 cells each divided in 2 

parts, cooling & acceleration

All parameter tables of the cooling line as well as the methodology behind 
finding / approximating the parameter can be found in back-up slides

https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.031003
https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.031003
https://indico.cern.ch/event/1372773/
https://indico.cern.ch/event/1351066/
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Transverse space charge - theory
Theory

§ Forces generated directly by the charge
distribution of beam line

§ Defocusing effect à expect optical quantities to
depend on beam current

§ Non linear forces à transverse tune spread

Approximation

§ Gaussian bunched beam✅
§ Equation derived for decoupled beam❌
§ Space charge treated as small focusing error✅
§ Emittance ~ constant for whole cell✅

Δ𝜈! ≈ − "#
$%&

with

From Wolski, ’Beam dynamics in high energy particle accelerators’, Chp13

As in muon collider configuration, beam is fully 
coupled, 𝛽! = 𝛽" and 𝜖! = 𝜖", end up with

• Perveance  𝐾 = #$
%!"&!"$#

,

• Characteristic beam current 𝐼' =
()*!+'"

,
• Peak beam current 𝐼 = 𝑞𝑛,𝛽-𝑐
• Muon linear density 𝑛, =

.$
#)/%

• Cell length 𝐿
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Transverse space charge - Results

Chris’ plot (done on initial cooling à let’s see for FC)
shows that tune spread has consequences of DA
Ø Need to derive more appropriate equation for fully

coupled beam
Ø Need simulate beam losses / DA including SC

Chris Roger @ MuCol WP8 Cooling Cell Workshop

§ SC higher at end of cooling à smallest 𝜎!," and 𝜖!,"
§ SC not negligible at initial cooling à higher charge

intensity
§ SC causes maximum tune shifts comparable to maximum

tune accepted for DA

v D.Stratakis et al. found mainly longitudinal space charge effect that can be compensated with higher RF gradiant à to be 
further studied

https://indico.cern.ch/event/1335151/contributions/5727254/
https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.044201
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Longitudinal space charge - theory
Theory

§ Forces generated directly by the charge
distribution of beam line

§ Modification of focusing potential
§ Non linear longitudinal forces à momentum

spread

Approximation

§ Gaussian bunched beam✅
§ Longitudinal variations in charge density slow✅
§ Emittance, current, energy ~ constant for whole

cell✅
§ Beam pipe radius ~5 x beam transverse size✅

𝑉 𝜎& – 𝑉 −𝜎& =
𝐼𝑍(𝑔𝐿𝑒)*/,

2𝜋𝛽,𝛾,𝜎&

From Wolski, ’Beam dynamics in high energy particle accelerators’, Chp12

Evaluate the potential 
difference between 
𝑧 ∈ {− 𝜎!, 	𝜎! }	

to find maximum energy 
difference between head 

and tail of bunch 

with

• Geometry factor 𝑔 = 1 + 2ln 1
2

• Beam pipe radius 𝑏 = 5𝜎3
• Beam cross section radius 𝜎3
• Impedance of free space 𝑍- = 376.73Ω
• Peak beam current 𝐼
• Cell length 𝐿

𝑉 𝑧 =
𝐼𝑍(𝑔𝑐

2𝛽(𝛾(,𝜎&,𝜔(
𝑧	exp −

𝑧,

2𝜎&,

Δ𝛿(𝑧) =
𝑞𝑉 𝑧
𝑐𝑃(

Space charge longitudinal potential

Longitudinale space charge momentum 
spread
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Longitudinal space charge – Results 1/2

Ø Momentum spread caused by longitudinal space charge mostly affected by
1. Intensity of the beam
2. Energy of the beam higher SC mom spread at beginning of cooling line
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Longitudinal space charge – Results 2/2

Ø The space charge induced momentum spread is in the same order of magnitude as the beam’s
initial momentum spread in RC where the beam intensity is higher

Ø Potential impact on lattice design
Ø Need for RF track simulations

Ø In FC no problem from longitudinal SC, thanks to low beam intensity and long bunch size



17

Beam loading - theory
Theory

§ When passing in RF cavity – beam’s EM field
interacts with cavity à additional voltage

§ Beam induced voltage Vind resonates in cavity
at 𝜔-./ 	frequency à head and tail of bunch see
different voltages

§ Expect energy spread caused by beam loading

Approximation

§ Geometric factor R/Q taken from presentations
@ the ‘MuCol WP8 Cooling Cell Workshop
§ D.A.Giove, ‘Status of 650 MHZ cavity

design’
§ C.Barbagallo, ‘Status of 704 MHz cavity

design’
§ G.S.Mauro, ‘3 GHZ RF for the RFMTF’

𝑉'() =	𝑁*𝑞
𝑅
𝑄𝜔+,-

From ‘Proceedings of the General CAS course on Introduction to Particle Accelerators’, on Radio-Frequency (RF) Systems

R/Q Real RF frequency 
of  design [MHz]

Line RF frequency 
[MHz]

194.73 704 704

200.00 - 24-86

223.00 650 352

466.00 3000 1056

https://indico.cern.ch/event/1335151/contributions/5727257/
https://indico.cern.ch/event/1335151/contributions/5727257/
https://indico.cern.ch/event/1335151/contributions/5727258/
https://indico.cern.ch/event/1335151/contributions/5727256/
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Beam loading - results

§ BL important in RC where 
§ Charge density is high (starts at Nq ~ 1e14)
§ RF frequency is high (325MHz à 1056MHz)
§ Beam induced voltage atteins almost 90% of the RF voltage in B7 (where  RF cavity goes 

from 704MHz to 1054MHz
Ø BL is unacceptable with high frequency RF à revise RF choices and design
Ø BL must be added / considered for RF track simulations 

§ BL not a problem in FC
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Beam break-up – 1/2
Theory

§ Due to transverse wake force, beams’ tails
betatron oscillations may resonate with the wake
leading to a transverse break-up of the beam

§ Oscillation amplitude of the tail relative to the head
characterised by growth parameter Υ

Approximation

§ Look only at dipolar beam break-up here
§ 2 macroparticle model✅
§ Neglect BNS damping❌
§ Use only resistive wall wake of relativistic beam at

low frequency à classical thick wall of copper

Υ = −
𝑁*𝑟/𝑊0 𝑧 𝐿/

4𝑘1𝛾𝐿
4𝜋𝜖/ 𝑊230

! 𝑡 > 0 =
𝑐𝐿

𝜋
4
5𝑎4

𝜇/𝜇+
𝜎6

1
𝑡

1 From Chao, ‘Physics of collective beam instabilities in high energy accelerators’, Chp3
2 From A. Koschik et al., ‘Transverse resistive wall impedance and wake function witj “inductive bypass”’

1
2

• Classical muon radius 𝑟"
• Transverse wake for one cavity period 𝑊#
• Cavity period	𝐿
• LINAC length 𝐿"
• Betatron wavenumber 𝑘$ =

%&
$

• Time 𝑡 = 𝑧/𝑣
• Beam pipe radius 𝑎 = 5𝜎! 
• Cell length 𝐿
• Relative permeability 𝜇'
• Conductivity 𝜎(

Evaluate the wake at 𝑧 = −𝜎!

https://accelconf.web.cern.ch/e04/PAPERS/WEPLT023.PDF
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Beam break-up 2/2
Results

§ Resistive wall wake equation of a relativistic beam with big pipe size results does not seem to 
increase the tail’s betatrons motion à negative growth parameter of less than 10-3

§ Moreover, with BNS damping, which will probably be strong (àto include in theory & RF track 
simulations)  resistive wall wake will certainly not be a problem

§ Need to evaluate Υ for all transverse wake of non-relativistic beams
§ Wake in matter 
§ Wake at transition
§ Plasma wake

à First step evaluate wake function – Non trivial 

v V. M. Malkin and N. J. Fisch and S. Ahmed et al. found that plasma waves are not important limiting factors 
in ionization cooling

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.85.5575
https://www.sciencedirect.com/science/article/pii/S0168900215007226
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§ Few critical items were identified based on coarse models on collective effetcs
§ Transverse SC  in FC and its impact on DA à Theory of fully coupled beam with SC + RF track 

simulation including SC
§ Longitudinal SC in RC and its impact on momentum spread à RF track simulation including SC
§ Beam loading in end of RC (high frequency cavities) à improve design (R/Q, frequency)

Conclusion & next steps

§ No clear issues with wake were identified at this point but significant studies needed 
to quantify wakes in unusual setup of ionisation cooling
§ Wake in material
§ Wake at interface
§ Plasma from ionisation cooling



Thank you
for attention
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Back-up slides
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Parameters of the cooling line 1/2

• Parameters stages Charge separation (CS), Bunch merge (BM), final muon numbers Nq = 4e12 à Grant Agreement No: 101094300, MuCoL, "A 
Design Study for a Muon Collider complex at 10 TeV centre of mass", "TENTATIVE PARAMETERS AVAILABLE”

• A-stages à Diktys Stratakis et al., “Rectilinear six-dimensional ionization cooling channel for a muon collider: A theoretical and 
numerical study“

• B-stages à Ruihu Zhu, Muon Cooling, https://indico.cern.ch/event/1372773/

• Final cooling FC-stages à Results p10 of Elena Fol, Muon Cooling https://indico.cern.ch/event/1351066/, and the github parameters 
https://github.com/MuonCollider-WG4/muon_final_cooling/blob/main/FCchannel_025m_RFcav (parameters)

• Separate FC cells between cooling part (solenoid + absorber) and acceleration part (drift + RF acceleration + RF rotation)
• Approximate beam sizes and emittances, at the cooling part (missing) to be the same as the accelerating part & likewise for Nq, 

i.e. the number of particles stays constant during the whole FC cell and the transmission percentage is applied after the cell

• Momentum à A/B-stages momentum is chosen to be the one after RF acceleration

• Minimum beta transverse A-stage anf FC-stages à 2*(Pz)/(10*0.3*B)[cm] from 
https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.091001 for momentum approximately having 30MeV/c less than after RF 
acceleration for A-stages (Pz-30MeV)

• Beta longitudinal à from https://www.researchgate.net/publication/259106391_Comments_on_Ionization_Cooling_Channel_Characteristics where 
lambda rf is approximated to be one of the rotation RF cavity for the FC-stages (for longitudinal focusing) where V’ is the average 
voltage gradient

https://indico.cern.ch/event/1372773/
https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.091001
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Parameters of the cooling line 2/2

• RF phases à A/B-stages are given. FC-stages rotational are given and acceleration phase are on crest - 0 degrees

• Number of bunches à A-stages – 21, B-stages – 1, FC-stages - 1

• Transmission à A/B-stages: each cell's transmission. FC-stages: cumulative transmission
Made such that in each cell there is the maximum muon intensity i.e. the transmission is applied at the end of the cell

• Configuration of the cells à A1-2 W+D+3xRF+D+W+D+3xRF+D+W
A3-4 W+D+nxRF+D+W

D = Drift A4 W+D+4xRF+D+W
W = Wedge B1-9 W+D+nxRF+D+W

FC1-5 4m of entry sol, main sol + absorber, exit sol, drift, n x RF rot, m x RF acc
FC6-8 4m of entry sol, main sol + absorber, exit sol, n x RF acc, drift, m x RF acc

• Number of cells à A/B-stages have a lot of cells in each stage
FC-stages are each composed of one cell only

• R/Q ratio chosen à 223 Ohm for 650MHz as WP8 https://indico.cern.ch/event/1335151/contributions/5727257/ à for A/B-stages with RF 352MHz
194.73 Ohm for 704MHz as WP8 https://indico.cern.ch/event/1335151/contributions/5727258/ à for B5-B6-stages with RF 

704MHz
466.4 Ohm for 3GHz as WP8 https://indico.cern.ch/event/1335151/contributions/5727256/ à for B7-B10-stages with RF 

1056MHz 
As RF frequency is lower for FC stages à try R/Q ratio of 200 Ohm 

https://indico.cern.ch/event/1335151/contributions/5727257/
https://indico.cern.ch/event/1335151/contributions/5727258/
https://indico.cern.ch/event/1335151/contributions/5727256/
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Parameters of the RC line
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Parameters of the FC line
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Parameters of the cooling RF system 1/2
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Parameters of the cooling RF system 2/2
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Rectilinear cooling beam parameters
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Final cooling beam parameters
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Rectilinear cooling lattice parameters
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Final cooling lattice parameters
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Beam break-up - results


