CERN Solvay Camp – 2024

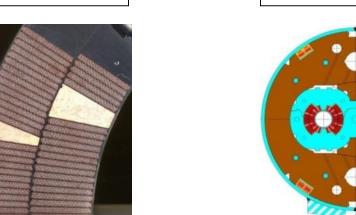
Introduction to Superconducting Magnets

Susana Izquierdo Bermúdez susana.izquierdo.bermudez@cern.ch

Presented by Carmen Abad Cabrera carmen.abad.cabrera@cern.ch

Goal of the course

- Overview of superconducting magnets for particle accelerators (dipoles and quadrupoles)
- Exciting, fancy and dirty mixture of physics, engineering, and chemistry
 - Chemistry and material science: superconducting materials
 - Quantum physics: the key mechanisms of superconductivity
 - Classical electrodynamics: magnet design
 - Mechanical engineering: support structures
 - Electrical engineering: powering of the magnets and their protection
 - Cryogenics: keep them cool ...
 - Cost optimization also plays a relevant role


Superconducting strand



Superconducting cable

Superconducting coil

References

Superconducting magnets for particle accelerators are a vast domain. This lecture will be especially focused on magnets for colliders, with a special eye on the CERN high energy infrastructures (LHC and HL-LHC). They are based on:

- P. Ferracin, E. Todesco, S. Prestemon, "Superconducting accelerator magnets", US Particle Accelerator School, www.uspas.fnal.gov.
- E. Todesco, "Masterclass -Design of superconducting magnets for particle accelerators", https://indico.cern.ch/category/12408/

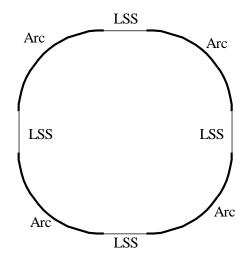
Many thanks to Paolo F., Ezio T. and Luca B., for all the material I took from them for this course, and for everything I learnt from them on superconducting magnets!

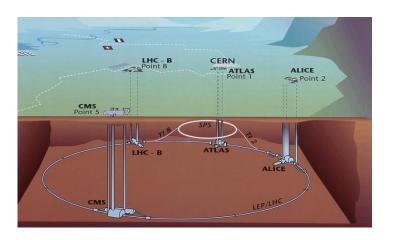
Outline

- Particle accelerators, magnets and the need of superconductors
- Superconducting magnets
 - Conductor
 - Magnetic design and coil fabrication
 - Mechanical design and assembly
 - Quench, training and protection
- Future outlook

Outline

- Particle accelerators, magnets and the need of superconductors
- Superconducting magnets
 - Conductor
 - Magnetic design and coil fabrication
 - Mechanical design and assembly
 - Quench, training and protection
- Future outlook


The LHC


"The Arc"

- **Dipoles**: magnetic field steers (bends) the particles in a ~circular orbit
- **Quadrupoles**: magnetic field provides the force necessary to stabilize linear motion.
 - They act as a spring: focus the beam
 - Prevent protons from **falling** to the bottom of the aperture due to the **gravitational force** (it would happen in less than 60 ms!)
- Correctors

"Long straight sections (LSS)"

- Interaction regions (IR) where the experiments are housed
 - Quadrupoles for strong focusing in interaction point
 - Dipoles for beam crossing in two-ring machines
- Regions for other services
 - Beam injection (dipole kickers)
 - Accelerating structure (RF cavities)
 - Beam dump (dipole kickers)
 - Beam cleaning (collimators)

Energy level in the LHC

Energy: Ability of making a work. Typically, we measure it in Joules or Calories. In the LHC, in Tera-Electron-Volts (13 TeV). How much is that?

- A Tera is One Million of Millions
- An Electron-Volt is the energy acquired by one electron (or proton) accelerated by a potential of 1 volt.

The **energy of each proton** is: :

$$7TeV = 7 \cdot 10^{12}eV = 7 \cdot 10^{12} \cdot 1.6 \cdot 10^{-19}C \cdot 1V = 1.1 \cdot 10^{-6}J$$

In the beam, we have about 310.000 billons of protons (which can seem a lot, but they are $5 \cdot 10^{-10} g$), so the **energy of the beam** is:

$$310 \cdot 10^{12} \cdot 1.1 \cdot 10^{-6} J = 340 \text{ MJ} (340.000 \text{ kJ})$$

If we compare it with a Bic Mac:

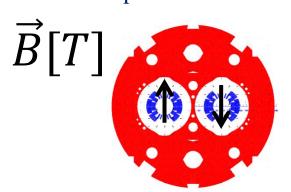
A Bic Mac is 500 kcal = 2MJ, and its weight is around 200 grams

The beam energy in the LHC is 340 MJ concentrated in a mass of $5 \cdot 10^{-10}$ grams.

Thus, the LHC beam has the energy of 170 Bic Mac, concentrated in a mass 400.000.000 (400 billons) smaller.

Do we need superconductors?

Principle of synchrotrons:


Driving particles in the same accelerating structure several times.

• Electro-magnetic field accelerates particles

$$\vec{F} = e\vec{E}$$

• Magnetic field steers the particles in a ~ circular orbit

$$\vec{F} = e\vec{v} \times \vec{B}$$

Particle energy

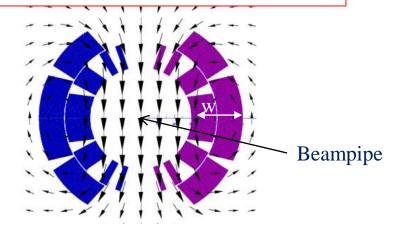
LSS

LSS

$$\hat{p} = e \hat{p} \rho$$

• Particle accelerated \rightarrow energy increased \rightarrow magnetic field increased ("synchro") to keep the particles on the same orbit of curvature ρ

Lesson 1: If we want more energetic particles, either we make stronger magnets or we increase the size of our accelerator.


Do we need superconductors?

The magnetic field produced by an electromagnets is proportional to the current density and the size of the coil.

$$B_{y} = -\frac{\mu_0 J_0}{2} w$$

J_o = current density w = coil width

In normal conducting magnets (resistive), $J \sim 5 \text{ A/mm}^2$ In superconducting magnets, $J_e \sim 600\text{-}700 \text{ A/mm}^2$

Lesson 2: If we want magnets with B>2T and a reasonable size (and energy consumptions), superconductors are needed

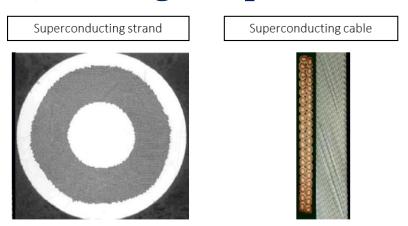
So the answer to the question if we need superconductors is:

Do we need superconductors?

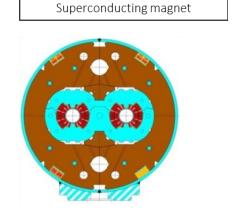
Lesson 1: If we want more energetic particles, either we make stronger magnets or we increase the size of our accelerator.

$$p = eB\rho$$

Lesson 2: If we want magnets with B>2T and a reasonable size (and energy consumptions), superconductors are needed

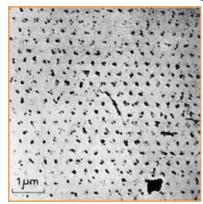

$$B_y = -\frac{\mu_0 J_0}{2} w$$

So the answer to the question if we need superconductors is:



Outline

- Particle accelerators, magnets and the need of superconductors
- Superconducting magnets
 - Conductor
 - Magnetic design and coil fabrication
 - Mechanical design and assembly
 - Quench, training and protection



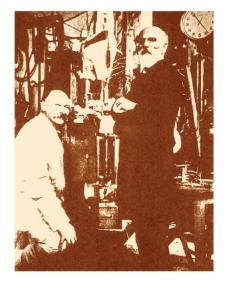
• Future outlook

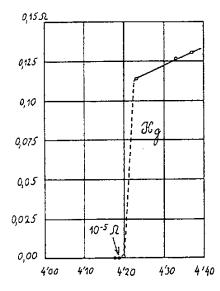
Superconducting magnets

- The science of superconducting magnets is an exciting, fancy and dirty mixture of physics, engineering, and chemistry
 - Chemistry and material science: superconducting materials
 - Quantum physics: the key mechanisms of superconductivity
 - Classical electrodynamics: magnet design
 - Mechanical engineering: support structures
 - Electrical engineering: powering of the magnets and their protection
 - Cryogenics: keep them cool ...
- Very different order of magnitudes

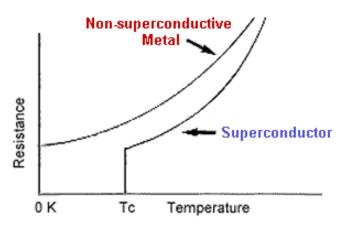
Quantized fluxoids penetrating a superconductor used in accelerator magnets

A 15m truck unloading a 27 tons LHC dipole




Large Hardon Collider 27 km, 8.33 T,14 TeV 1300 tons NbTi

• The cost optimization also plays a relevant role

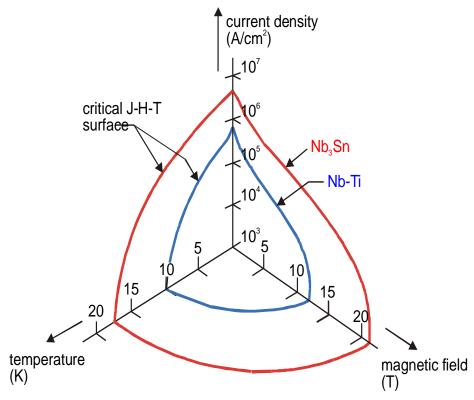

Superconductivity

• In 1911, Kammerling-Onnes, discovered superconductivity (**ZERO resistance** of mercury wire at 4.2 K)

- The temperature at which the transition takes place is called critical temperature T_c
- Observed in many materials
 - but not in the typical best conductors (Cu, Ag, Au)
- At $T > T_c$, superconductor very poor conductor

Practical superconductors

50 years later ...

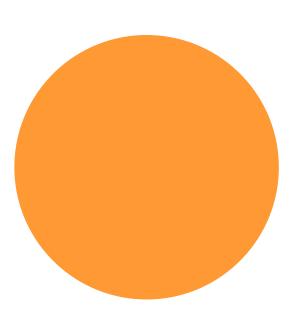

Nb and Ti \rightarrow ductile alloy

Extrusion + drawing

- T_c is ~9.2 K at 0 T
- B_{C2} is ~14.5 T at 0 K
- Firstly in **Tevatron** (80s), then all the other
- ~50-200 US\$ per kg of wire
- (1 euro per m)

• Nb and Sn → intermetallic compound

- Brittle, strain sensitive, formed at \sim 650-700 $^{\circ}$ C
- T_C is ~18 K at 0 T
- B_{C2} is ~28 T at 0 K
- Used in **NMR**, **ITER**
- ~700-1500 US\$ per kg of wire
- (5 euro per m)

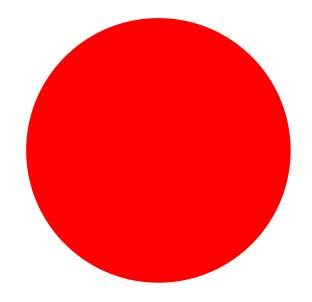

Critical surface for Nb-Ti and Nb₃Sn

Practical superconductors

Typical operation parameters

(for a 0.85 mm diameter strand)

Cu

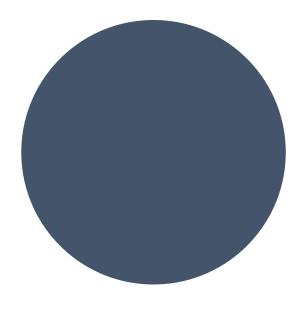


 $J_e \sim 5 \text{ A/mm}^2$

 $I \sim 3 A$

B = 2 T

Nb-Ti



 $J_{\rho} \sim 600-700 \, \text{A/mm}^2$

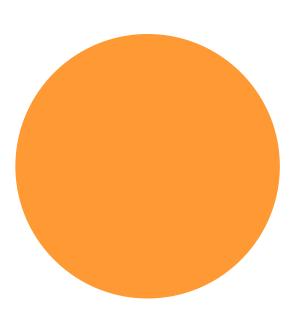
 $I \sim 300-400 \,\mathrm{A}$

B = 8-9 T

 Nb_3Sn

 $J_e \sim 600\text{-}700 \text{ A/mm}^2$

 $I \sim 300-400 \,\mathrm{A}$

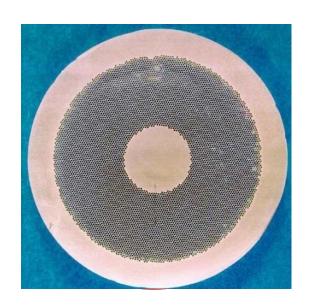

B = 12-13 T

Practical superconductors

Typical operation parameters

(for a 0.85 mm diameter strand)

Cu

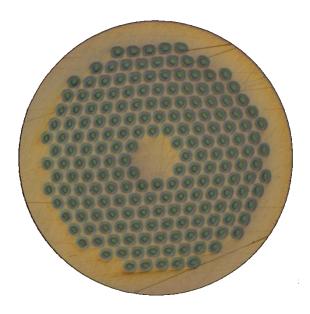


 $J_e \sim 5 \text{ A/mm}^2$

 $I \sim 3 A$

B = 2 T

Nb-Ti

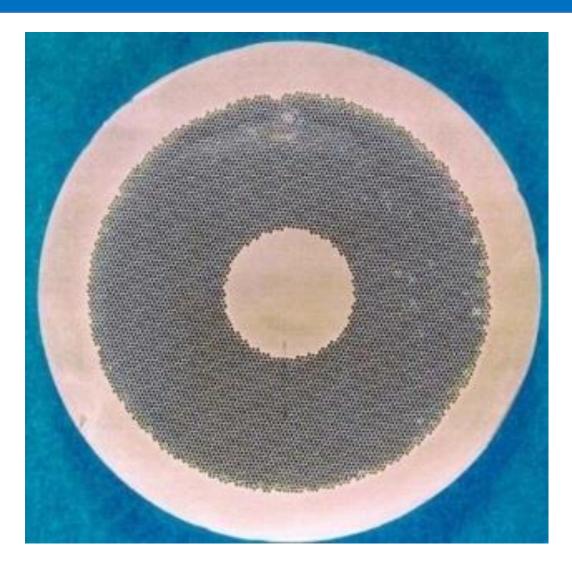


 $J_{e} \sim 600-700 \, \text{A/mm}^{2}$

 $I \sim 300-400 \,\mathrm{A}$

B = 8-9 T

 Nb_3Sn



 $J_e \sim 600\text{-}700 \text{ A/mm}^2$

 $I \sim 300-400 \text{ A}$

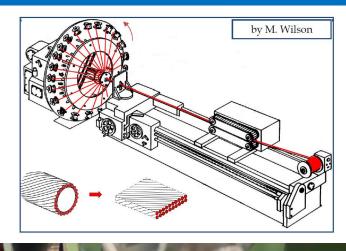
B = 12-13 T

Strand: a multifilament wire

- Superconducting materials are produced in small filaments and surrounded by a stabilizer (typically copper) to form a "multi-filament wire" o "strand"
- Why small filaments are needed?
 - **Stability** (flux jumps)
 - Magnetic field quality
 - Persistent currents
 - Inter-filament coupling currents
- Why are they embedded in a copper matrix?
 - **Protection**, to redistribute the current in case of quench

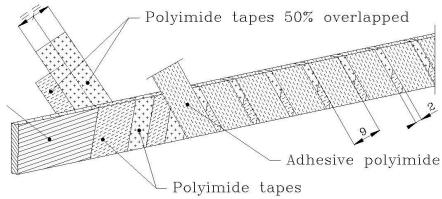
The cable

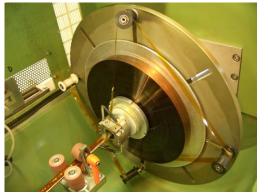
- Most of the superconducting coils for particle accelerators wound from a multi-strand cable (**Rutherford cable**). The strands are **twisted** to
 - Reduce inter-strand coupling currents
 - Losses and field distortions.
 - Provide more **mechanical stability**
 - **Current redistribution** (in case a defect in one strand)
 - Reduction the **number of turns** (easier winding, lower inductance)
 - Reduction strand piece length


Fabrication of the Rutherford cable

- Fabrication of the Rutherford cable:
 - Strands wound on spools mounted on a rotating drum
 - Strands twisted around a conical mandrel into rolls
 - The rolls compact the cable and provide the final shape

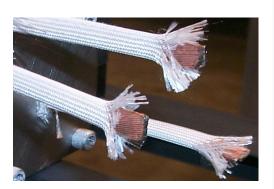
CERN cabling machine





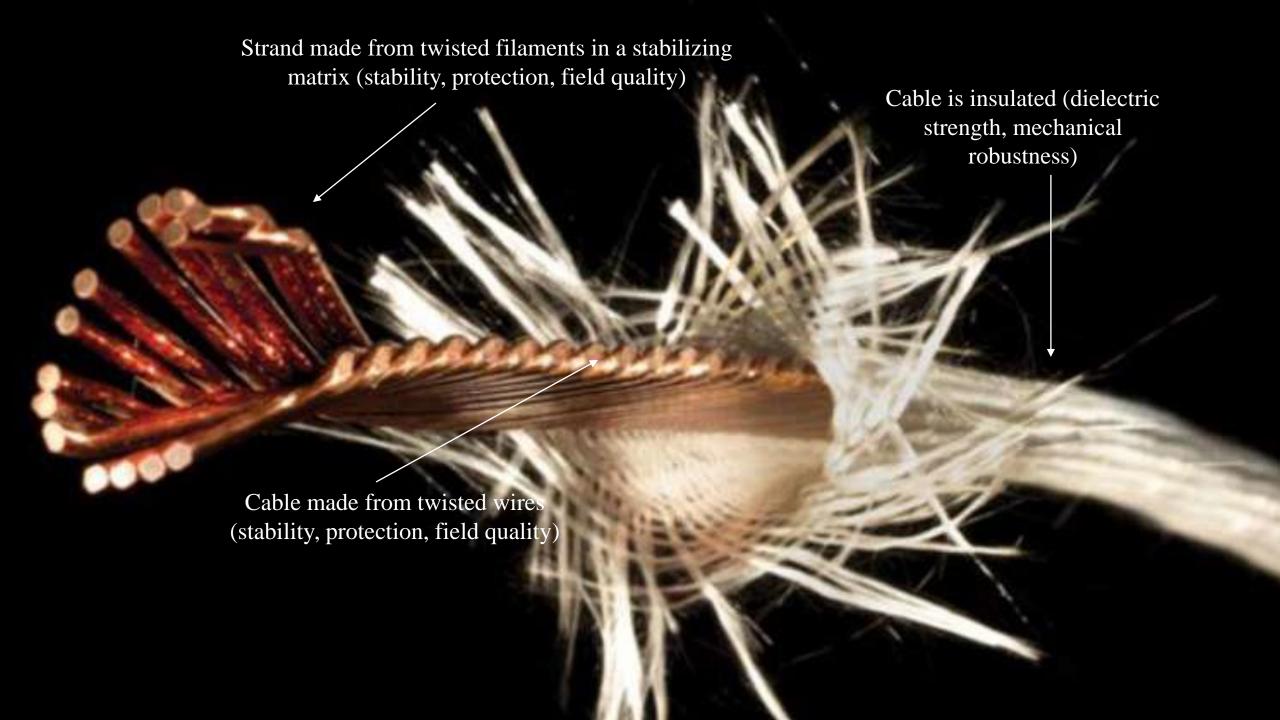
Cable insulation

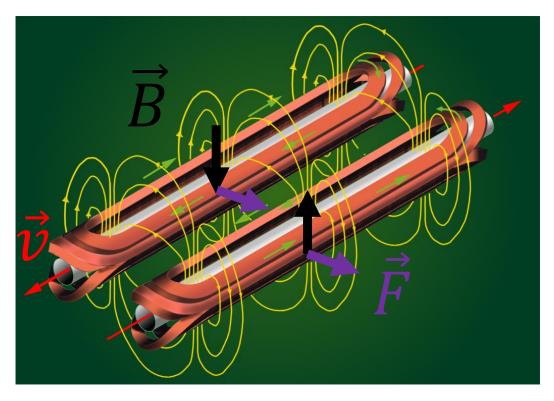
- The cable insulation must feature
 - Good **electrical properties** to withstand turn-to-turn *V* after a quench
 - Good mechanical properties to withstand high pressure conditions
 - Porosity to allow penetration of helium (for non-impregnated coils)
 - Radiation hardness (depending on the location in the machine)
- In Nb-Ti magnets the most common insulation is a series of overlapped layers of polyimide (Kapton®).
- In the LHC case: two polyimide layers 50.8 µm thick wrapped around the cable with a 50% overlap, with another adhesive polyimide tape 68.6 µm thick wrapped with a spacing of 2 mm.



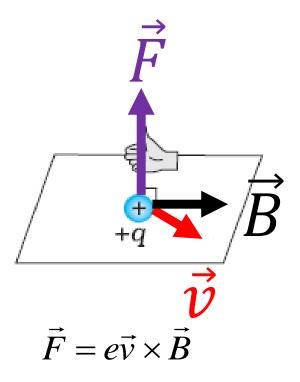
Cable insulation

- In Nb₃Sn magnets, where cable are reacted at 600-700 °C, the most common insulation is fiberglass: tape or sleeve or braided.
 - Braided insulation is done in industry for HL-LHC cables
- Typically, the insulation thickness varies between 100 and 200 μm.

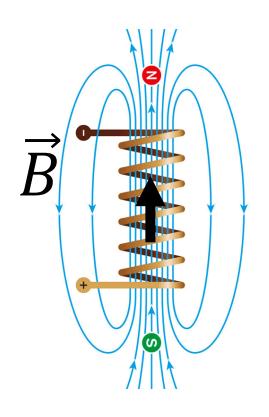

Fiber glass insulation for Nb₃Sn



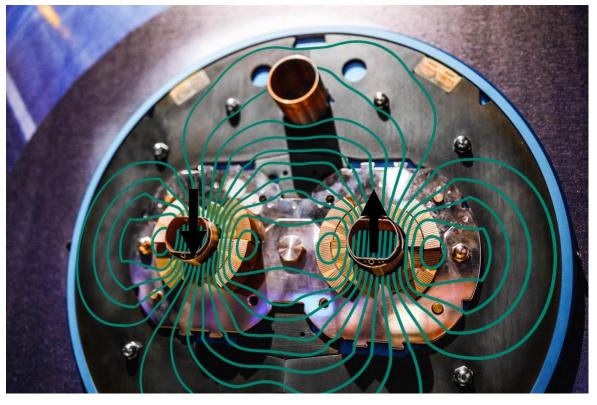
How to create a dipole field?


Solenoid coil

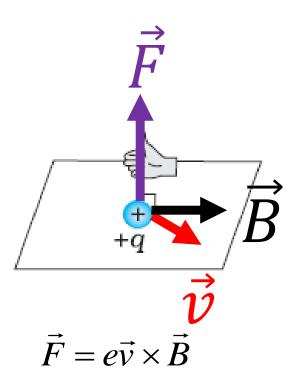
Superconducting dipole



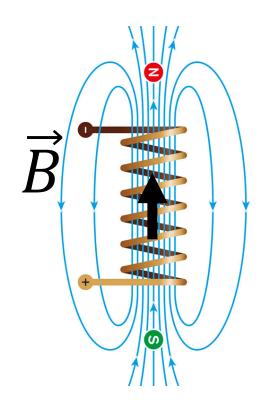
2 apertures

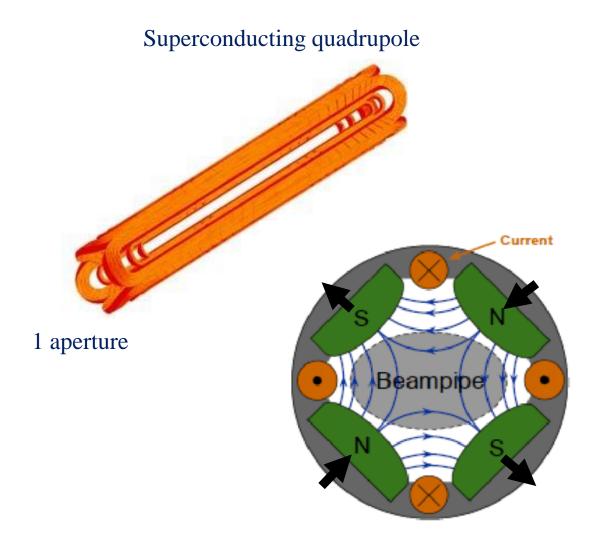


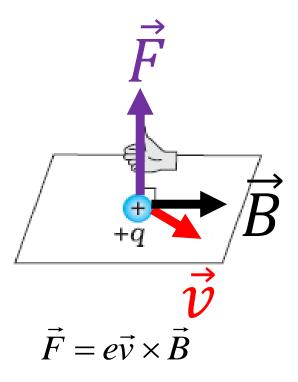
How to create a dipole field?


Solenoid coil

Superconducting dipole

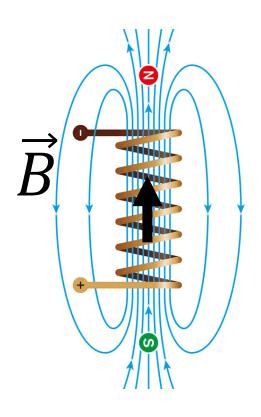


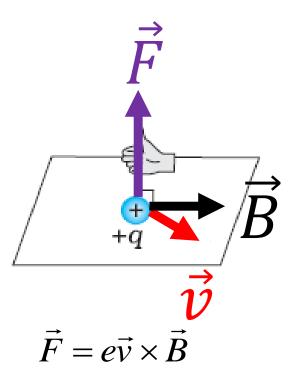

2 apertures



How to create a quadrupole field?

Solenoid coil




How to create a quadrupole field?

Solenoid coil

Superconducting quadrupole

Coil fabrication (Nb₃Sn)

Winding & Curing

JULL

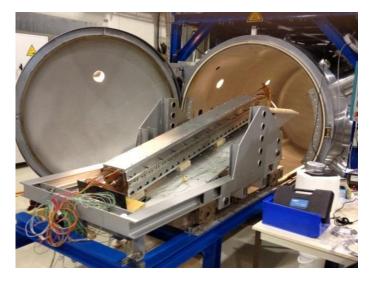
The cable is wound around a pole on a mandrel.

A ceramic binder is applied and cured (T~ 150 C) to have a rigid body easy to manipulate.

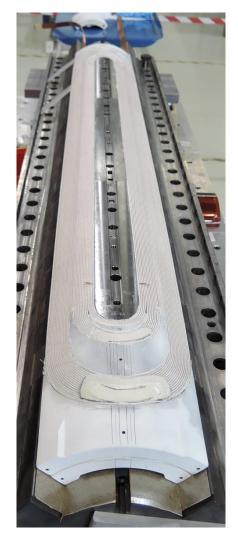
Reaction

Sn and Nb are heated to 650-700 C in vacuum or inert gas (argon) → Nb₃Sn

The cable becomes brittle



Impregnation



In order to have a **solid block**, the coil placed in a impregnation fixture

The fixture is inserted in a vacuum tank, evacuated → epoxy injected

Coil at different manufacturing steps

QQQQ After curing

After impregnation

Mechanical design

• In the presence of a magnetic field B, an electric charged particle q in motion with a velocity v is acted on by a force F_L called electro-magnetic (Lorentz) force [N]:

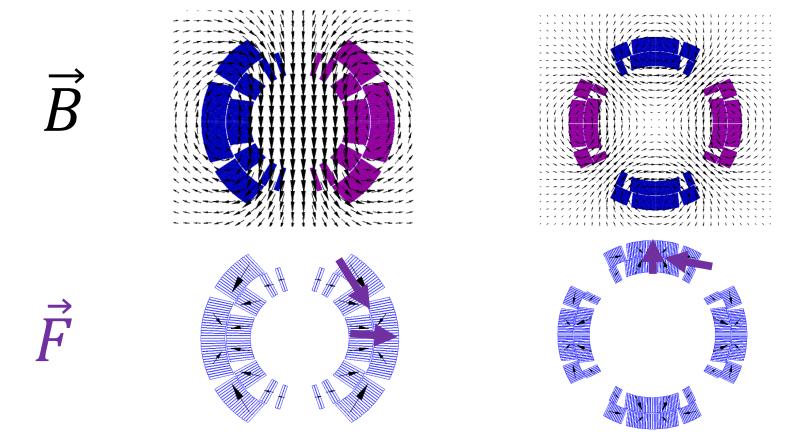
$$\vec{F}_L = q\vec{v} \times \vec{B}$$

• A conductor element carrying current density J (A/mm²) is subjected to a force density f_L [N/m³]

$$\vec{f}_L = \vec{J} imes \vec{B}$$

Some examples (values per aperture):

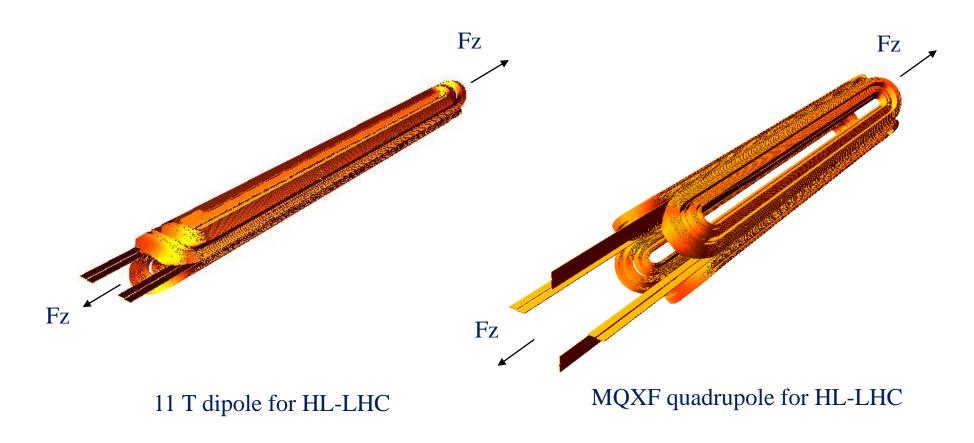
Nb-Ti LHC MB (8.3 T)


- $F_{x} = 340 \text{ t per meter}$
 - ~300 compact cars
- $F_z = 27 t$

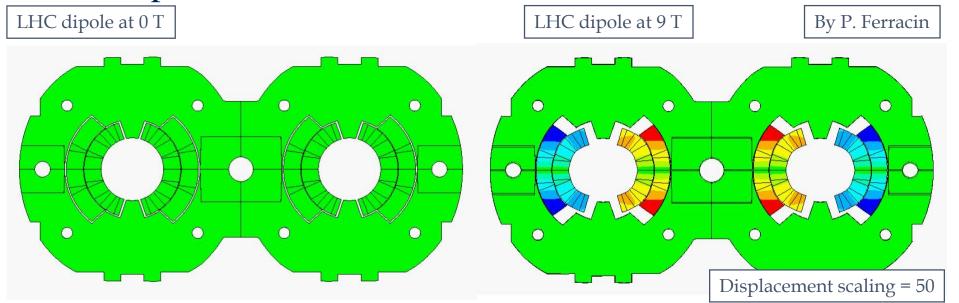
Nb₃Sn DS dipole (11T)

- $F_x = 620 \text{ t per meter}$
- $F_z = 47 \text{ t}$

Electro-magnetic force


- The e.m forces in a dipole/quadrupole magnet tend to push the coil
 - Towards the mid-plane in the azimuthal direction
 - Outwards on the radial direction.

Susana Izquierdo Bermudez


Electro-magnetic force

• In the coil ends, the electromagnetic forces tend to push the coil outwards in the longitudinal direction $(F_z > 0)$

Deformation and stress

- Effect of e.m forces
 - change in **coil shape** → effect on field quality
 - a **displacement** of the conductor \rightarrow potential release of frictional energy
 - Nb-Ti magnets: possible damage of kapton insulation at~150-200 MPa.
 - Nb₃Sn magnets: possible **conductor degradation** at about 150-200 MPa.
- All the components must be below stress limits.

Overview of the coil stress

- 1. Collaring: By clamping the coils, the collars provide
 - coil pre-stressing;
 - rigid support against e.m. forces
 - precise cavity

Overview of the coil stress

- 1. Collaring: By clamping the coils, the collars provide
 - coil pre-stressing;
 - **rigid support** against e.m. forces
 - precise cavity

- 2. Yoking: Ferromagnetic yoke around the collared coil provide
 - Magnetic function
 - Mechanical function (increase the rigidity of the coil support structure and limit radial displacement)
 - Alignment, assembly features...

Overview of the coil stress

- 1. Collaring: By clamping the coils, the collars provide
 - coil pre-stressing;
 - **rigid support** against e.m. forces
 - precise cavity

- 2. Yoking: Ferromagnetic yoke around the collared coil provide
 - Magnetic function
 - Mechanical function (increase the rigidity of the coil support structure and limit radial displacement)
 - Alignment, assembly features...

- 3. Shell welding: two half shells welded around the coil to provide
 - Helium container
 - Additional rigidity
 - If necessary, the welding press can impose the desired curvature on the cold mass

Overview of coil stress

4. Cool-down

- Components shrink differently
 - Again, coil positioning within 20-50 μm
- Significant variations of coil stress

5. Excitation

- The pole region of the coil unloads
 - Depending on the pre-stress, at nominal field the coil may unload completely

All these contributions taken into account in the mechanical design:

- Minimize **coil motion** (pre-stress)
- Minimize **cost and dimension** of the structure
- Maintain the maximum stress of the component below the plasticity limits
- ...and for (especially) Nb₃Sn coils, **limit coil stress** (150-200 MPa).

Quench definition

Quench = irreversible transition to normal state

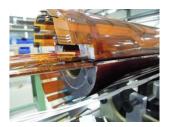
• **Heat generation > cooling**

Why do magnets quench?

Thermal energy released by

- Mechanical events
 - Frictional motion
 - Epoxy cracking
- Electromagnetic events
 - Flux-jumps ,AC loss

- Thermal events
 - Degraded cooling
- Nuclear events
 - Particle showers


What do we do when a magnet quenches?

Conversion magnetic energy

 \longrightarrow

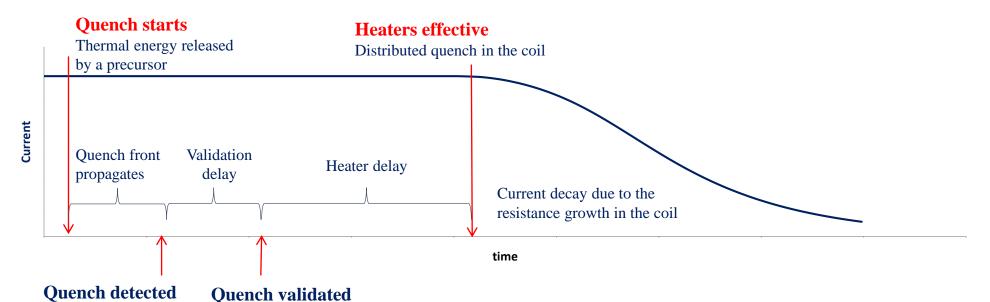
thermal energy (redistribute the energy in the whole coil volume, <u>joule heating</u>)

$$E_m = \partial_V \frac{B^2}{2m_0} dv = \frac{1}{2}LI^2 \qquad \longrightarrow \qquad J^2 \eta$$

Why is it a problem?

- Quench is the result of the resistive transition, leading to appearance of voltage, temperature increase, thermal and electro-magnetic forces, and cryogen expulsion
- If the process does not happen uniformly: as little as 1 % of the magnet mass may absorb the total energy large damage potential!

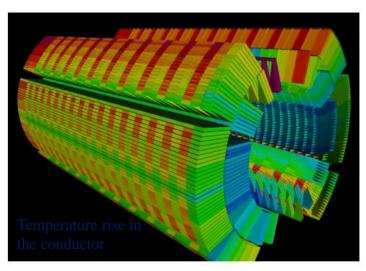
Result of the chain of events triggered by a quench in an LHC bus-bar



Result of degradation due to local heating in a NbTi coil

Result of electrical short circuit quench heater to coil in a Nb₃Sn coil

The quench event: summary

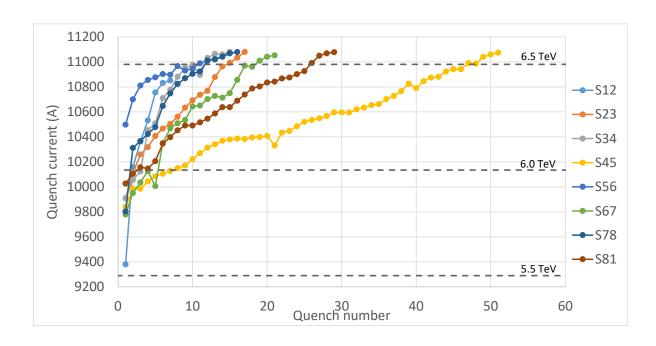

Typical time scale:

From quench start to quench detected ~ 5 ms

(power supply off, protection system fired)

- Validation delay ~ 10 ms
- Heater delay ~ 20 ms
- Current decay ~ 100-200 ms

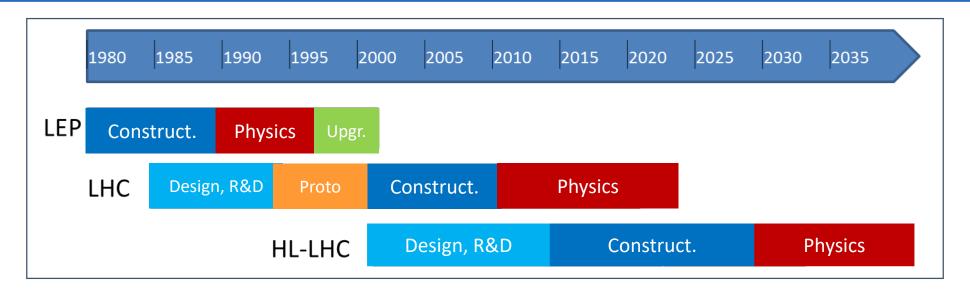
Maximum acceptable temperature: 350K


Training

- Training is characherized by two phenomena:
 - The occurrence of premature quenches (below short sample limit)
 - The progressive increase of quench current, ramp after ramp
- The magnet «improves» ramp after ramp to reach the nominal performance = operating point with margin

• Main identified causes:

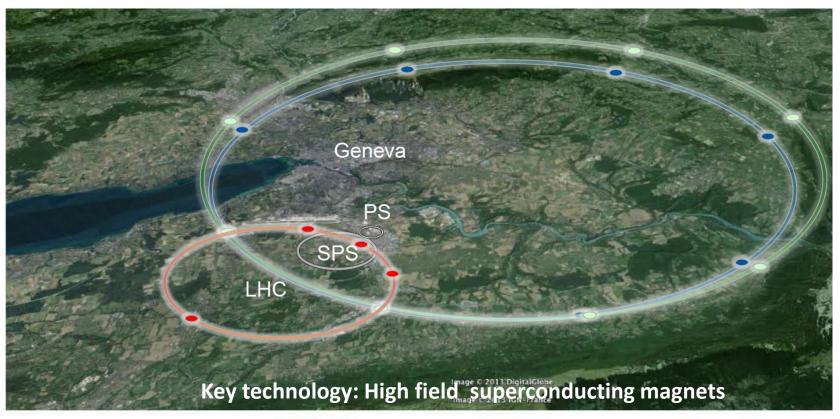
- Frictional motion
 - E.m. forces \rightarrow motion \rightarrow quench
 - Coil progressively locked by friction in a secure state
- Epoxy failure
 - E.m. forces → epoxy cracking → quench
 - Once epoxy locally fractured, further cracking appears only when the e.m. stress is increased.


Training of LHC sectors to 6.5 TeV

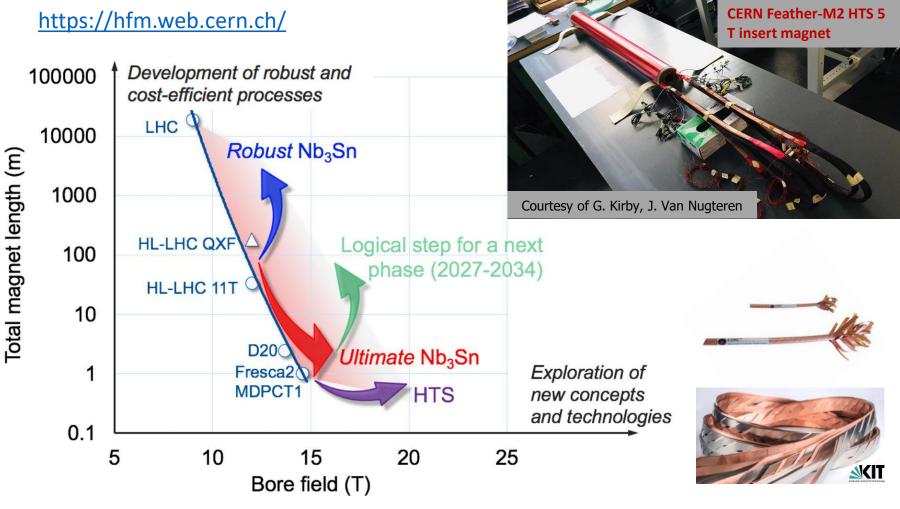
Outline

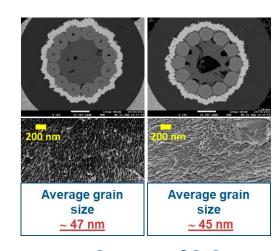
- Particle accelerators, magnets and the need of superconductors
- Superconducting magnets
 - Conductor
 - Magnetic design and coil fabrication
 - Mechanical design and assembly
 - Quench, training and protection
- Future outlook

Hi-Lumi LHC



- From LHC to HiLumi LHC
 - Integrated *L*: $\sim 300 \rightarrow 3000 \text{fb}^{-1}$
- Reduce beam size in Interaction regions (IR) by **factor 2**
- Triplet quadrupole **aperture doubled** (70 mm → 150 mm)




Post LHC: The FCC playground

LHC 27 km, 8.33 T 14 TeV (c.o.m.) 1300 tons NbTi HE-LHC 27 km, **20 T** 33 TeV (c.o.m.) 3000 tons LTS 700 tons HTS FCC-hh 80 km, **20 T** 100 TeV (c.o.m.) 9000 tons LTS 2000 tons HTS FCC-hh 100 km, **16 T** 100 TeV (c.o.m.) 6000 tons Nb3Sn 3000 tons NbTi 44

The High Field Magnet program

Courtesy of C. Senatore

Thank you

For questions, don't hesitate! susana.izquierdo.bermudez@cern.ch carmen.abad.cabrera@cern.ch