

Faulty core columns in CROC quad assemblies

B. Raciti, IT ASIC & Electronics System – 8th June 2023

Injection pattern and faulty core columns

Issue:

- All quad assemblies tested so far presented an odd injection pattern independent of the sensor design and HDI (LF HPK, TEPX TBPX) \rightarrow chip related issue
- This is due to the presence of faulty pixels in some of the core columns sending corrupted data ٠

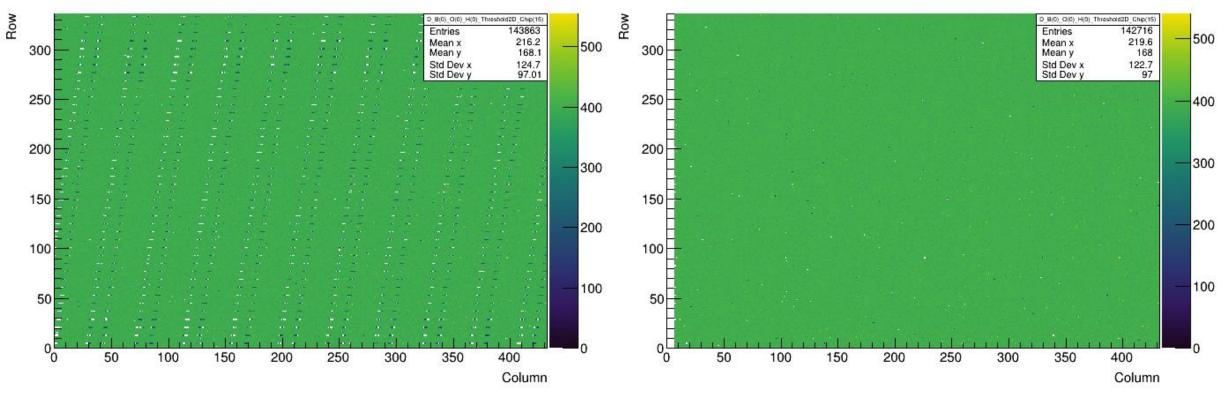
A quick test can be done by running a **pixelalive** scan activating the **flag for the data integrity**.

D_B(0)_O(0)_H(0)_Threshold Map_Chip(15)

-	:	10 M	2 2 5	1.5.5		D_B(0)_O(0)_H(0)_	Threshold2D_Chip(15)	
					++++	- Entries	143863	
300		. T 2 🙀	2 7 2		2010-010	Mean x	216.2 168.1	
300 - ···			• • •		• •	Mean y	168.1	1.0
- 2 2	La Participa de	11 1			2.2. 2.2	Std Dev x Std Dev y	124.7 97.01	
10 A				-		otabory	57.01	
250 -		1 2 2 2		1		2 2 2		
250		.R						-40
			20					
				San -		4 - A		
	- <u>2</u> - 2			10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -				
200 -				14 (4) (4) (4)	+			
				* * *	* * *		5 2 3	- 30
100				2.2		1. 3 21.		30
the second			-		T T T	1.00		
150	2 . A . A					100		
						Sec.		
H . 7								
-		유가 아프 프 프		· · · · ·				20
100				· · · ·				
100	e z svese		12 mil 12	2 2 -				
					-01-5	1 H H		
			2	4	1.1			
-								10
50	2 2 2	1.25		:		12 2 2 2	5 5 2	1.00
							-	
T • • •							11 A	
E .					- 2 525			
0		1 12 12 1 1	1 1 1 1 1	11111	I I I I		1 1 1 1 1	0
0	50 1	00 150	200	250	300	350	400	0
							Column	

Each digit corresponds to a core column (8 cols)

00:03:55 E No data	collected> retry	
00:03:55 E No data	collected> retry	
00:03:55 E No data	collected> retry	
	collected> retry	
00:03:55 E No data	collected> retry	
00:03:55 E No data	collected> retry	
00:03:55 E No data	collected> retry	
	Reached maximum number of attempts (10) without succ	ess
	for [board/opticalGroup/hybrid/chip 🕇 0/0/0/15]	
	<pre>EN_CORE_COL_0 value = 111111111111110 (0 = disabled</pre>	
	<pre>EN_CORE_COL_1 value = 111111111111111 (0 = disabled</pre>	
	<pre>EN_CORE_COL_2 value = 111111111111111 (0 = disabled</pre>	
	<pre>EN_CORE_COL_3 value = 111111 (0 = disabled)</pre>	
00:03:55 I >	Done	


Injection pattern and faulty core columns

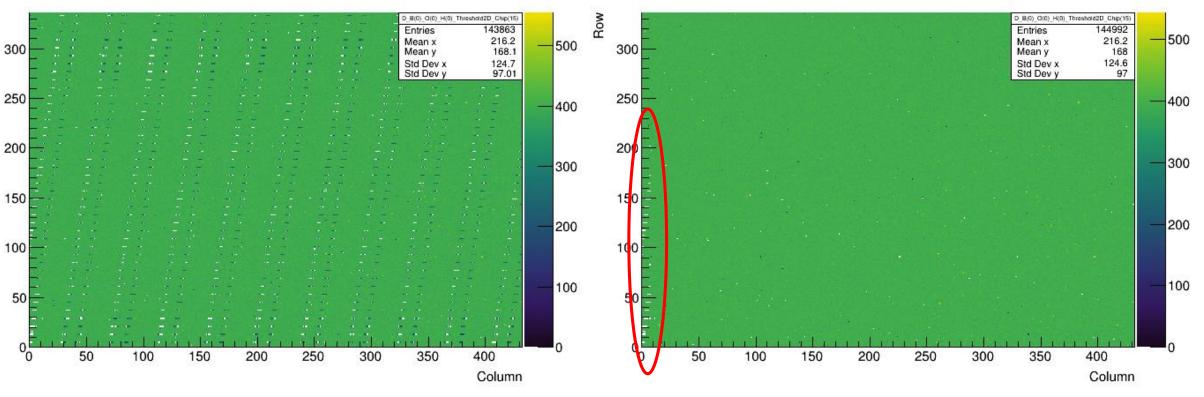
Just a handful of pixels are faulty (otherwise none of the pixels in these core columns would be tunable).

• These pixels are neither noisy nor stuck

 \rightarrow they send corrupted data that cannot be decoded

- Since multiple pixels are injected simultaneously, the entire batch of data has to be discarded
 - → origin of the injection pattern and complete failure of the noise scan (simultaneous readout of the entire matrix)

D_B(0)_O(0)_H(0)_Threshold Map_Chip(15)

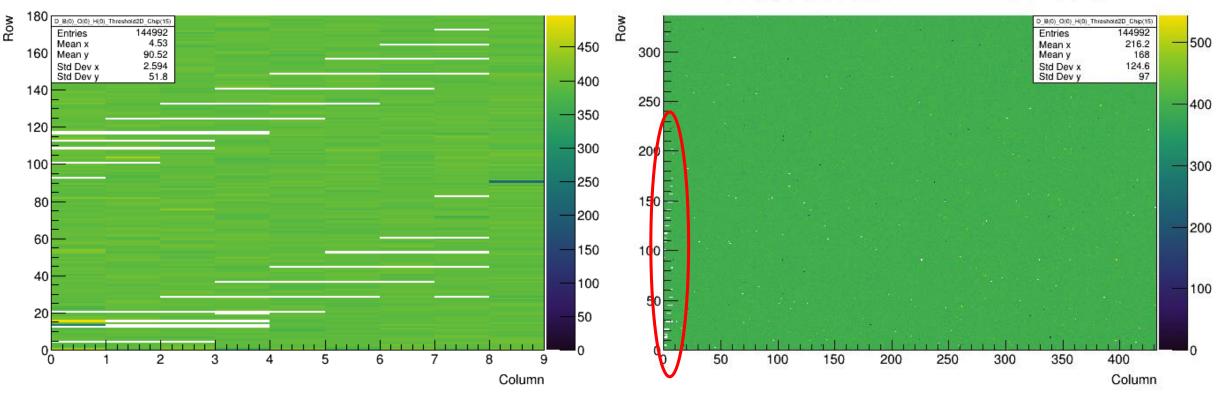

Row

Injection pattern and faulty core columns

The faulty can be identified by looking at the intersection between the injection pattern and the faulty core column:

- By disabling them by hand, most pixels of the faulty core columns can be "saved"
- Just a fraction of the pixels belonging to columns [0,..,7] and the injection pattern must be disabled
 → most pixels can be recovered (useful e.g. to study big pixels)

D_B(0)_O(0)_H(0)_Threshold Map_Chip(15)

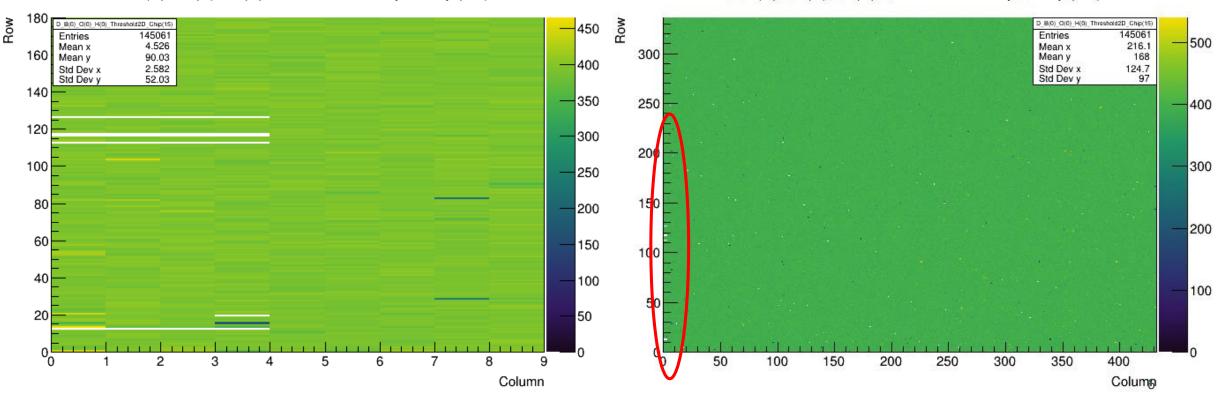


Injection pattern and faulty core columns

The faulty can be identified by looking at the intersection between the injection pattern and the faulty core column:

- By disabling them by hand, most pixels of the faulty core columns can be "saved"
- Just a fraction of the pixels belonging to columns [0,..,7] and the injection pattern must be disabled
 → most pixels can be recovered (useful e.g. to study big pixels)

D_B(0)_O(0)_H(0)_Threshold Map_Chip(15)

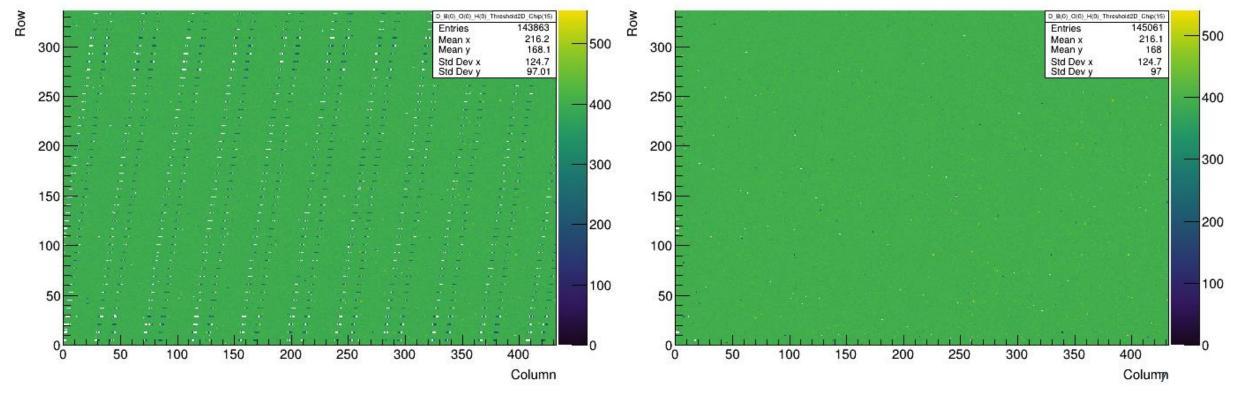

Conclusion

The faulty can be identified by looking at the intersection between the injection pattern and the faulty core column:

• By disabling them by hand, most pixels of the faulty core columns can be "saved"

D_B(0)_O(0)_H(0)_Threshold Map_Chip(15)

Just a fraction of the pixels belonging to columns [0,..,7] and the injection pattern must be disabled
 → most pixels can be recovered (useful e.g. to study big pixels)



Conclusion

Outlook:

- Testing a **digital module** to check if the issue could be associated to the **flip-chipping procedure**
- Implementing a pixel-by-pixel data integrity scan acting exclusively on the faulty core columns to automatically disable the faulty pixels

D_B(0)_O(0)_H(0)_Threshold Map_Chip(15)