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Context

* | have a quad module with a severe case of bad columns

* |t can't even pass the initial communication check without disabling 16 central
ccol

* Once disabled the FE is fine and the module works correctly
* Tested with standard ITk QC up to PARYLENE_MASKING stage

e Advafab-Micron module 20UPGM22110457

* Assembled here in LPNHE so | know the whole history. A rather good
assembly except for glue seepage on the HV hole repaired taking HV on the
border of the sensor



Clues

* In order to debug the CB issue + another pending issue in YARR about
register read | have a modified YARR fw with these two extra features:

* Ability to count CB and CC frames in the received stream
e Separate data and service in two different FIFOs

e With or without the bad ccol enabled CC and CB counts are stable

* |t is unlikely that the ccol issue has an effect on the stability of the Aurora link
itself

* FYl with standard YARR config
 With the bad ccol enabled | see a lot of data that should not be there



ILA Status: Idle

A closer look at the data

* This is a snapshot of a continous stream of
data

* NS =0 and ChipID = 0 consistenly for all
packets
* The problematic FE is indeed ChiplID O

e Data is super hard to decode but has some
patterns
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Summary

* At least for this chip the bad core column issue seems to be related to
an unexpected behaviour of the internal hit data flow
* Itis NOT a case of link instability
* The bad columnsinduce the chip to send out a never ending flow of hit data
* Everything else in the chip seems functional

* This is NOT the expected behaviour
* No trigger were issued
* no trigger command were sent and this is confirmed by a reading of TrigCnt = 0
* This is just one quad, | have others with less severe behaviour | will
look into very soon
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