Debugging a module with
bad columns

Francesco Crescioli

Context

* | have a quad module with a severe case of bad columns

* |t can't even pass the initial communication check without disabling 16 central
ccol

* Once disabled the FE is fine and the module works correctly
* Tested with standard ITk QC up to PARYLENE_MASKING stage

e Advafab-Micron module 20UPGM22110457

* Assembled here in LPNHE so | know the whole history. A rather good
assembly except for glue seepage on the HV hole repaired taking HV on the
border of the sensor

Clues

* In order to debug the CB issue + another pending issue in YARR about
register read | have a modified YARR fw with these two extra features:

* Ability to count CB and CC frames in the received stream
e Separate data and service in two different FIFOs

e With or without the bad ccol enabled CC and CB counts are stable

* |t is unlikely that the ccol issue has an effect on the stability of the Aurora link
itself

* FYl with standard YARR config
 With the bad ccol enabled | see a lot of data that should not be there

ILA Status: Idle

A closer look at the data

* This is a snapshot of a continous stream of
data

* NS =0 and ChipID = 0 consistenly for all
packets
* The problematic FE is indeed ChiplID O

e Data is super hard to decode but has some
patterns

O O O O O OO OO OO O OO OO IO OO IODIODIO OO IODIOIOIOOLOLOLOOO O

ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID
ChipID

e el eoleoleolNeololololholololholhoholhoholholohoholholholhoholholholhololholhololNoRNo]

Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full

block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block

03660e9bba73dcd9
107bfcdbc3bc3£d7
1c40a4d43fafc00a4?2
1£5£801487f7ffe0
00a6c44ac2£9£8814
11lbe7e025277cfc4
0148df3£f00293be7
1c40a47£9£881587
1e7e005217cfc00a
08df3£f10290be7e0
00ad46f9f88148ff3
1e00561fdf££8014
100290bebf00291b
1d7e205217d7e005
066fafc00a570c97
1c10003a5£820006
097e08001d2£fc100
0064b£f04002e97e0
10003a5f£8200174b
1e08001d2£fc1000b
14bf04000e97e080
00bab5£f8200074b£f0
08005d2fc10003a5
1£f04002e97e08001
1a5f8200064bf040
001d2£fc1000325£8
04000e97e0801192
1£8200341e5£fdd£f5
17eb76bbeb70f£277
laddaefadc3cbfbf
ld6fd76ed7fd76el
1lcO9ff5dbb7f7fd6f
laedc3cbfffebb’7e
176e7e5fddf5bf5b

Summary

* At least for this chip the bad core column issue seems to be related to
an unexpected behaviour of the internal hit data flow
* Itis NOT a case of link instability
* The bad columnsinduce the chip to send out a never ending flow of hit data
* Everything else in the chip seems functional

* This is NOT the expected behaviour
* No trigger were issued
* no trigger command were sent and this is confirmed by a reading of TrigCnt = 0
* This is just one quad, | have others with less severe behaviour | will
look into very soon

	Slide 1: Debugging a module with bad columns
	Slide 2: Context
	Slide 3: Clues
	Slide 4: A closer look at the data
	Slide 5: Summary

