f

UNIVERSITY of
/ WASHINGTON

iversi\ﬁ/ of Washington)
EP Software Workshop
ersity of Hyderabad
A6 January 2025

About me

Natural from Paredes de Coura, Portugal

2015: Joined the ATLAS Experiment working on
top FCNC

2016: Finished Master in Experimental Physics
with the Universidade do Minho (Portugal)

2021: Finished PhD on the search for new
interactions in the top quark sector in UM
(Portugal) - Won one of the ATLAS PhD Grant
2021-2023: Postdoc in the Laboratoire de
Physique Subatomique et de Cosmologie (France)
2023-Present: Postdoc with the University of Email:

Washington (Unlted States of America) ana.peixoto@cern.ch

Linkedln:ana-peixoto-hep

2

https://atlas.cern/updates/news/meet-talented-recipients-atlas-phd-grant
mailto:ana.peixoto@cern.ch
https://www.linkedin.com/in/ana-peixoto-hep/

About me

Joined ATLAS
Collaboration as a
master student on
FCNC t—=Zqg search

t—Zc

(q t—>Zu

Most stringent
limits on t-Zq

_ with ATLAS
Phenomenological study Run-2 data

on FCNC interferences

10 10 10 107 10 10" \§§\ /

Started postdoc at
LPSC on jets
calibration and dark
matter searches

Started PhD in new

interactions with the top quark

Theory and phenomenological

paper on t—Sq search prospects shower Snowmass project

Pythia validation with dark

2015 2016

2019 2020

2021 2023

Besides Physics, | also love listening to Jazz, dancing, practicing Matrtial

arts and reading

Machine Learning

Without Machine Learning With Machine Learning

=7 [|
| (=] (=]

_* VERY SPECIFIC
INSTRUCTIONS

4
Image from MICHELLE KUCHERA

Machine Learning

Without Machine Learning

* VERY SPECIFIC
INSTRUCTIONS

E—

With Machine Learning

108

107 4

106 -

()

L

Training and validation loss

\ — loss
i —— val loss

0 20 40 60 80 100

40

30

20

10

Machine Learning

Without Machine Learning

xr) [
[[=eT

With Machine Learning

/6/%@

/f_%—_e—_z

e With 10's of billions of data points

good match to the data

Machine Learning is just a function fit, in the extreme!

e With complex functions with millions of parameters
e With a figure of merit that tells you when the function is making a

106 .

20 40 60 80 100

Inference

Fit of a function
y.=1f(x)
/ /
Where

y.= A prediction for the ith row (0 — Background and 1- Signal),
x. = The ithe row of our feature data
f (x;0@)= Our NN (that can be fairly complicated)

Some function with parameters
Straight line: ax + b
Much more complex with millions of parameters!

[
[
[
e All the parameters are usually denoted ©

Parameters definition

How do we fit a straight line?

1. Define a mathematical criteria for a

=

good fit:

(the Loss function)

2. Minimize r (find © such that):

Loss function choice

What do you want to optimize?
e Signal and background separation
e Measured mass
e Decorrelation of two outputs that separate signal and background
e And morel!

What must the loss function do?
e Return a value - “figure of merit”
e Some “distance” between perfect fit and the current function

Training and validation loss

Loss function choice

107 4

Mean squared loss
e Works very well for regression problems

105 4

0 20 40 60 80 100

Training and validation loss (FL)

Cross entropy loss —
e \Works better for classification! -

— 1 -3
r== Oilogpy) + (1 - y) log(1 - p)) S

1074 4

0 20 40 60 80 100 10

Problem types

Regression:
e (Continuous output
e Jet Energy Calibration
e Mass of the Higgs

Classification:
e 1 or 0 type output: cat vs dog, etc
e |Is it signal or background?

1

Problem types

g

Regression:

Continuous output
Jet Energy Calibration
Mass of the Higgs

Classification:

1 or 0 type output

Is it signal or background?

Is it signal, QCD background,

or Beam Induced Background (as an example!)

H—-WW Sign%l/p

Background
g t

12

Neural Network

A Neural Network is a single neuron!

y=0(W:-:Xx+Db)

o = activation function ’

W = weights Xn

X = inputs NEURON AF‘LT,\'J‘g}TK')c,’\IN OUTPUT
b = offsets

13

Activation functions

L L I =

= 1 Softmax Differentiable, finite range Vanishing derivative at +oo
=Ress
0(z) = max(0,z) Rectified Linear Computationally Efficient, does not Dead Neuron, unbounded on
Unit (ReLU) saturate on one side positive side

o0(z) =In(1+ e?) Softplus Vanishing derivative is better handled Computationally expensive

14

Activation Functions

Sigmoid

o(z) = —

1+e—*

tanh
tanh(z)

RelLU
max (0, z)

])
- o
> © ©
S * = E-3 =
L~ - .-
° o o

Leaky ReLU i
max(0.1z, x)

Maxout
max(wi « + by, w3 = + by)

ELU i
T z>0
afe*—=1) <0 - 3 o

15

Neural Network

W
) 34/

W
htd
%I

Output

Hidden Layer

Features

16

Neural Network is not always the answer!

Non-Neural Network forms of Machine
Learning:
e Great for limited number of inputs (features)
e Great for high level features (angles
between jets)
e Great for small number of features (> 100)

scikit-learn

algorithm cheat-sheet

Nor
pecna] orane

YES C
o you A
S abele L <
Clustering - NO al Ko
S - S
[uant
YES = i
clustering A = y
<10K
‘samples. Ll
" o [
Yes o] YES
No NO
MiniBatch =
KMeans
o1 4 ing
ucl structure

Neural Network forms of Machine Learning:
e Great for large numbers of inputs

e Great for patterns in detector data = iy
e Great for low-level data ok
e Great at Geometrical or Variable length O learn

inputs

17

Neural Network software
All the scientific frameworks for Deep Learning Machine Learning are written in Python:

TensorFlow
e Developed by Google, managed as open source.
e Not used as much internally but has one of the most active user communities.
e APl is most friendly to new users.
PyTorch
e Developed by Facebook, actively used.
e Fasterthan TF
e |[s also a framework, but not quite as easy to use for a beginner.
JAX

e Developed in Google’s DeepMind, used for most (all?) of their research
e Great when you want to do something unique or break open the box.
o 4l
“' b\ “
A e

\

18

TensorFlo

https://www.tensorflow.org/
https://pytorch.org/
https://jax.readthedocs.io/en/latest/

Let’s play with NNs! http://playground.tensorflow.org

:) Epoch Learning rate Activation Regularization Regularization rate Problem type
>l
000,000 003 - Tanh

v None v (o] v Classification -
DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties do Test loss 0.517
you want to use? you want to feed in? o =) (= Training loss 0.518

4 neurons 2 neurons
S O
NN oy 01 .
N (N e >
\\ \\\ o ML 4 -
\ o : -H £ e,
- @<\ 0 N
Ratio of training to N\ Z 53 b o, o;. =i
)) N N ® e "“‘ oo o

test data: 50% NN \ e i * -0

- < X12 ~ »fiB * The outputs are @ R:ﬂ? .0 QR

mixed with varying ., .: \! ... ? %
) weights, shown by A X '.f'n' I
Noise: 0 X2 the thickness of ". A 2 3 p o
® the lines : 4 o e
7 5 ‘-_ Sy e e e® o

Batch size: 10 X1X2) This is the output

from one neuron. |
Hover to see it

larger.
REGENERATE SIS

Colors shows
(X2 data, neuron and - !
Sin(A=) 1

0 1
weight values.

[sShowtestdata [Discretize output

http://playground.tensorflow.org

Hyper-parameters optimization

Hyper-parameters for dense neural networks:

Width (Number of neurons in a layer)

Depth (Number of layers)

Epochs (Number of cycles)

Batch Size (Number of training instances in the batch)

Activation (Decides whether a neuron should be activated or not)

Early Stopping

Optimiser (Change on weights and learning rate in order to reduce the losses)

Learning Rate (Regulates the weights of our neural network concerning the loss
gradient)

Dropout (Practice of disregarding certain nodes randomly during training)
Batch Normalization

20

Width

e Number of neurons in a layer

O Epoch Learning rate Activation Regularizati Regularization rate Problem type
>l
000,200 003 - RelU - None - o0 ~ Classification

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties do Test loss 0.495
you want to use? you want to feed in?

aecll = + = Training loss 0.496

/4'19\"0“5 2 neurons\
* i}

O

Ratio of trainir

test data: 50%

Batch size: 15

—e

REGENERATE

Colors shows E —
; data, neuronand ' !

weight values.

[Showtestdata [] Discretize output

Depth

e Number of layers

O Epoch Learning rate Activation Regularization Regularization rate Problem type
4l
000,200 0.03 © RelU ~ None - o .

Classification -

DATA FEATURES + — 1 HIDDEN LAYER OUTPUT
Which dataset do Which properties do Test loss 0.483
you want to use? you want to feed in?) 2 Training loss 0.465
4 neurons
Xt ———

o U0 o, o
-,
“, .

3
d

Ratio of training to

ey
s' .,

test data: 50% -.' =0
— e .
e
Noise: 0 X22 5
i S 2
v

Batch size: 15 X1X2 This is the output
e - from one neuron.

Hover to see it

larger.

REGENERATE sy y

Colors shows

2(X2) data, neuron and F !
sin(X2) 1

weight values.

[Showtestdata [Discretize output 22

Epochs

e Track “validation loss” to decide this but often the significance
might improve even though the loss does not

Epoct Learning rate Activat Regularizatio Regqularizat te Problem type
o) >l
° 000,400 0.03 v RelU v None v (o} v Classification

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT

Which properties do Test loss 0.482
! + - So Y = Training loss 0.453
S

X2

3
®
B

|

REGENERATE

Batch size

Number of training instances in the batch
batch_size=128 means that there are 128 training instances in each batch

Epoch Learning rate Activatio Regularization Regularization rate Problem type
)] >l)
° 000,202 0.03 v RelLU v None v (o] Classification

+ — 2 HIDDEN LAYERS OUTPUT

Test loss 0.488

qu

DATA FEATURES

-+
|
i

|

~
N

mfaf

X2

g |
®
& 8

|
000

REGENERATE

24

Activation

e Start with Relu/LeakyRelu/Sigmoid

Epoch
O ° " 000,200

Prot

blem type

Activation Reg ation Regular

v Sigmoid v (o} v Classification v

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Test loss 0.480
you want to use? i, g S - Training loss 0.482
4 neurons 2 neurons
0 —
o0 0
X2 -
B 3 = S
NN & N
s . \ 3
Y \ ~—)) e TS
\ . % i
\\ . pIw—)
-
Noise: 0 NS -". ...
> -
7 tunn » %
Batch size: 15
—e 0
0
REGENERATE

Colors shows
[B
t I 1

on

we

[J Showtestdata [Discretize output

Regularization and its rate

e Start with L1 as an example

e L1/L2 typically requires a smaller rate: start at 0.001, then
increase/decrease as you see fit

Q-

DATA

REGENERATE

000,200

FEATURES

Xt

X2

|
=

0.03

3+
I

a=l=lal=f

+ — 2 HIDDEN LAYERS

~
5
3
<
I:'Dg
@

0.001

Classification

OUTPUT
Test loss 0.483 i
Tr) loss 0.465

g

g‘.

N,

- —
O sh [ois

26

The ROC curve

e The ROC curve (Receiver Operating Characteristic) is a way to
summarize how well you are doing with your estimated y(x) in the

classification problem
e How to quantify? Look at rejection at fixed efficiency, compute Area

Under Curve (AUC) and many other metrics available

Higher purity
which one of those

two blue ones is the better??

E] Signdl
E o Background
g E

large purity
small efficiency

Cutting harder on y(x)
large efficiency

small purity

8signal 1

27
Smaller selection efficiency

The AUC metric

e In some cases it is not trivial to rank classifiers by their performance.
e In particular, if one does not (yet) have an estimate of the proportion of
signal and background (class probabilities), one cannot decide!

A simple criterion is to compute the area under the ROC curve (AUC):

e The AUC has a clean statistical interpretation: taken two events at
random, one from each of the two classes, AUC is the probability that
the signal event has higher score than the background event.

e AUC is a coherent measure of predictive power of y(x) if we have no
information on the relative misclassification cost of the two classes - i.e.

if we do not know the operating point. The more we know of that, the
less useful AUC is.

28

0.8

e
o

True positive rate
e
=

0.2

The AUC metric

> —— NetChop C-term 3.0
S — TAP + ProteaSMM-i
/ ~— ProteaSMM-i
> 7/
| L | f | !
0 0.2 0.4 0.6 0.8 1

False positive rate

FPR

29

Classifier confusion matrix Is signal Is background

Let’s consider binary classification: paSS.C.Ut True positives | False positives
e Two classes 0 and 1 (positive) TP FP
e (Confusion matrix is a 2x2 table

False negatives | True negatives

Actual Values: True/False Ia”cutti) EN ™
Predicted values: Positive/Negative '"<5#"'¢

e Sensitivity: TP/(TP+FN)
think of it as "signal efficiency"

e Specificity: TN/(TN+FP) -
"background rejected by selection”

e Purity: TP / (TP+FP) (a relative measure)

FPR

Original dataset
e Split the original dataset into a training and validation set:

Validation set

» Train model on the training set
» Evaluate on the validation set to estimate the test error
» Select the model class that gives the lowest estimated error

» Optionally, re-train the selected model class on the whole dataset
(training + validation)

e |ssue: we would like both training and validation sets to be as large as
possible (so that the estimate is better), but they must not overlap!

31

k-Fold Cross Validation

» Split the original dataset into k equal parts (e.g, k=5)
» Train on the k — 1 parts and validate on the remaining one

Original dataset
» Repeat for every choice of the k — 1 parts and average the validation errors

» Advantage: use all data as validation to improve the estimate of the test
error, at the cost of more computation (k trainings)

32

Training and testing

& b |
3 3
;|
- 4
. |
oN _ 4 . |
2 <7
B
= : -
: :
{ S5
e}
-t
L
© [
: 3
o
b |
z > 4

Predictor variable 1

33

Training and testing

Training error:
7/42 = 16.7%

34

Training and testing

Testing
(validation)
error:

2/15 = 13.3%

35

Training and testing

Predictor variable 2

Predictor variable 1

Training error:
0/42 = 0%

36

Training and testing

Predictor variable 2

Predictor variable 1

Testing
(validation)
error:
4/15 = 26.7%

37

Training, Validating, Testing

In order to construct and study a classifier built with a supervised algorithm
and given a sample of signal events and background events, one usually
separates these sets in three parts:

e Training set: events used to build the classifier. The algorithm employs
them to estimate the prior densities of S and B, or directly the likelihood
ratio or a monotonous function of it

e Validation set: this is used to understand whether the training was too
aggressive (overfitting), and to tune the algorithm parameters for best
results

e Test set: this sample is totally independent from the former two, and it
is used to obtain a unbiased estimate of the final performance of the
model, previously learned, validated and optimized.

38

Underfitting and overfitting

A model fits training data so well that it leaves little or no room for
generalization over new data

We say that the model has “high variance” = Qverfitting

Underfit

Optimal

Overfit

—
Overfitting

-
Underfitting

Optimum

@ . @ [-
Q .,' Q L 5 Q ') " '
- o © . . - ® b 4 = Q. @7
© @ o .. 0 ® © ® -~ 9 °? © .y @
.: . . " . -: ., . \. -: ‘l ’ ‘l : '.] .
S " o* ® o % o o 5 e . Generalization loss
g @ ..“ ® g ,". ® @ '-‘ = -_Q". [
" .
jo R @ o2 Q. o, Q. -~ o'
= ° g1 %e S| ¥e- e
. .
@) 3 Ol » Ol » raining loss
’
" ’ "'

Predictor variable

Predictor variable

Predictor variable

Model complexity

39

Why overfitting?

A model fits training data so well that it leaves little or no room for
generalization over new data
We say that the model has “high variance” = Qverfitting

e Small training data: Does not contain enough data samples to
accurately represent all possible input data values

e Noisy data: The training data contains large amounts of irrelevant
information

e Long training: The model trains for too long on a single sample set of
data

e High model complexity: It learns the noise within the training data

40

How to Prevent Overfitting?

These are some popular techniques:

Early Stopping: Pauses the training phase before the machine learning
model learns the noise in the data

Reduce the network’s capacity: By removing layers or reducing the
number of elements in the hidden layers

Regularization: Collection of training/optimization techniques that try to
eliminate factors that do not impact the prediction outcomes

Data Augmentation: Large dataset will reduce overfitting. Data
augmentation helps to increase the size of the dataset

41

Regularization: L1/L2

Regularizer on the NN weights (absolute values of weights / squared
weights)

L2 regularization is perhaps the most common form of regularization
For every weight, w, in the network we add %2 Aw? to the objective where A is

the regularization strength

L1 regularization is another relatively common form of regularization, where
for each weight we add the term A |w|

It is possible to combine the L1 regularization with the L2 regularization:
Vo Aw?+ A |w|

42

Regularization: L1/L2

W2 Contours of Loss

\/_1 Contours

W2

(

P
"

L2 Contours

Contours of L., regularizer) |w;|”

43

Regularization: Dropout

Dropout is an extremely effective, simple and recently introduced
regularization technique by Srivastava et al. in:

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”
that complements the other methods

During Training:

Dropout is implemented

by only keeping a neuron
active with some probability
p (a hyperparameter), or
setting it to zero otherwise

(b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

44

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Dropout

e Probability of training a given node in a layer, where 1.0 means no
dropout, and 0.0 means no outputs from the layer

e A good value for dropout in a hidden layer is between 0.5 and 0.8

e Input layers use a larger dropout rate, such as of 0.8

Method Test Classification error %
L2 1.62
L2 + L1 applied towards the end of training 1.60
L2 + KL-sparsity 1.55
Max-norm 1.35
Dropout + L2 1.25
Dropout 4+ Max-norm 1.05

“Dropout: A Simple Way to Prevent Neural Networks from Ovetfitting”

45

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Batch normalization

e Normalization technique done between the layers of a Neural
Network instead of in the raw data

e Done along mini-batches instead of the full data set

e Serves to speed up training and use higher learning rates, making
learning easier

46

Loss minimization - Gradient descent

To minimize —log L and find optimal value of model parameters, in the
absence of an analytical description, we "descend" toward the minimum by
approximating the shortest route with local information:

e find gradient of L w.r.t. parameters w: OL(w) w;
e update parameters: ow
e R e n dL(w)
ow

and iterate.
e The success depends on how fast you descend,
moduled by "learning rate" n.

47

Loss minimization - Stochastic Gradient Descent

Computing the gradient over the whole training set at each step is
sub-optimal:

CPU-intensive (must pass all dataset)

large memory use, intractable if too large datasets

does not allow updates on-the-fly (adding data online)

Also, it can become ineffective, as risk of getting stuck in local minima is
large in multi-dimensions

Most modern deep ML methods employ "stochastic” technigques to find the
optimal working point / parameter values

48

Loss minimization - Stochastic Gradient Descent

e This relies on the possibility to W\\S——
decompose the loss function into NN~
the sum of per-example losses — 4
e Stochastic Gradient Descent \~—"% 7. _F
updates parameters on a per-event , A
basis objective function becomes
noisy, but this has merits (can jump ‘ T
out of local minima)

Hyper-parameters tuning Hyper-parameter playbook

Choose the model architecture
Summary: When starting a new project, try to reuse a model that already works.
e Choose a well established, commonly used model architecture to get working first

¢ Try to find a paper that tackles something as close as possible to the problem at
hand

Choosing the optimizer
Summary: Start with the most popular optimizer for the type of problem at hand.
e Stick with well-established, popular optimizers, especially when starting a new
project

Well-established optimizers that we like include (but are not limited to):

e SGD with momentum

e Adam and NAdam, which are more general than SGD with momentum.
e Note that Adam has 4 tunable hyperparameters and they can all matter!

https://github.com/google-research/tuning_playbook#what-are-the-update-rules-for-all-the-popular-optimization-algorithms
https://github.com/google-research/tuning_playbook#what-are-the-update-rules-for-all-the-popular-optimization-algorithms
https://arxiv.org/abs/1910.05446
https://github.com/google-research/tuning_playbook#why-shouldnt-the-batch-size-be-tuned-to-directly-improve-validation-set-performance

Hyper-parameters tuning

Choose the batch size

Summary: The batch size governs the training speed and shouldn't be used to directly tune
the validation set performance. Often, the ideal batch size will be the largest batch size
supported by the available hardware

e The batch size is a key factor in determining the training time and computing
resource consumption
e Increasing the batch size will often reduce the training time
— Allows hyperparameters to be tuned more thoroughly within a fixed time interval

e The batch size should not be treated as a tunable hyperparameter for validation set
performance

e For an optimized network, the same final performance should be attainable using any
batch size (see Shallue et al. 2018)

51

https://arxiv.org/abs/1811.03600

Hyper-parameters tuning

Choose the initial configuration
Summary: quickly determine the starting points with manual exploration then do a more
through check

e Before beginning hyperparameter tuning we must determine the starting point like
1. The model configuration (e.g. number of layers)
2. The optimizer hyperparameters (e.g. learning rate)
3. The number of training steps
Determining this initial configuration will require some manually configured training runs
and trial-and-error.

Choosing the number of training steps involves balancing the following tension:
e Training for more steps can improve performance and makes hyperparameter tuning
easier (see Shallue et al. 2018)
e Training for fewer steps means that each training run is faster, allowing more
experiments to be run in parallel.

52

https://arxiv.org/abs/1811.03600

Hyper-parameters tuning

Several tools allow you to do hyper parameter scans and hyperparameter
optimization:
0S» RAY
Ray-tune
Weights & Bias Sweep
TensorBoard HParams

Keras Tuner [-‘j_]

Scikit-Optimize
Optuna

All of these tools have grid search,random search and Bayesian

Optimization implemented

e Pick the one you like!

Weights & Biases

53

https://docs.ray.io/en/latest/tune/index.html
https://docs.wandb.ai/guides/sweeps
https://www.tensorflow.org/tensorboard/hyperparameter_tuning_with_hparams
https://keras.io/guides/keras_tuner/getting_started/
https://github.com/scikit-optimize/scikit-optimize
https://optuna.org/

Tools for ML experiments visualization

You need to do some or a lot of experimenting with model improvement
ideas

e \Visualizing differences between various ML experiments becomes crucial
There are several popular tools tools: Weights & Biases. TensorBoard,
Comet, MLflow, etc

e Tracking and visualizing metrics such as loss and accuracy
e Monitor learning curves

e Visualize CPU/GPU utilization

Weights & Biases Comet

TensorBoard mlj/c

: - for managing the end-to-end
e == s : \ machine learning lifecycle

54

https://wandb.ai/site
https://www.tensorflow.org/tensorboard
https://www.comet.com/site/
https://mlflow.org/

Negative Event Weight

e Only certain BDT packages can handle negative weighted events

e For NNs, negative weights make logical sense, loss is multiplied by a
negative weight and everything works as you would expect. So use
your negative sample weights!

60000 :Iiﬂ::nlml;eeig;:pler, K=1

e The more challenging problem: very T Mol Hesampler, Optmet€
large variance of weights (by orders £ F o
of magnitude) o] SN

e Often, you can even re-weight them . E
with ML to get rid of negative weights! _ °~ S
Neural Resampler, Unweighting with £,
generative models % e

k-3 -2 -1 0 1 2 3

X 55

https://arxiv.org/abs/2007.11586
https://arxiv.org/abs/2012.07873

You can also play with Boosted Decision Trees!

Dataset to classify:

Decislon functions of first 30 trees

(4]
[+)

T
predictions of GB (all 50 trees)

train loss: 0.351 test loss: 0.604

©
©
o o
ol =l o BDT playground
+Y | ©
© o

.+ © IO

tree depth: 8 learning rate: 0.2 rotate dataset:
® =0 o [rotate trees
e e = = show gradients on hover
subsample: 100% ~ O # trees: 50 D3 use Newton-Raphson update

56

http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html

Machine Learning in HEP

e ML has been in HEP for ages: Signal to background separation and

flavor tagging
e What’s new:
o Significant increase in compute
power (GPUs) available for ML
o Dramatic increase in ML architectures
for different applications: transformers,
large-language models (LLMs), graph
neural networks (GNNs), convolutional
neural networks (CNNs), etc
e ML advancements have already affected
HEP, e.g., drastic improvement in flavor
tagging (GN1).

Light-jet rejection

Ratio to DL1r

b
o
o

oy
o
FS

b
o
w

= ATLAS Simulation Preliminary — DLir
F VS =13TeV 1
| 7,20 < pr <250 GeV

F —

T

GN1]
—— GN1 Lep]
-

| I
0.8

—0s o
b-jet tagging efficiency

MVAs used since Run 1 (MV1)

57

Machine Learning in HEP

e Increasing complexity, decreasing interpretability

e Compatibility with calibration techniques
o (Can you derive scale factors, systematics, etc?

e Systematics do not kill your gains
o Study them early on!
o Even a flat uncertainty can give you a rough idea

e ML enables portability (ability to run on different types of hardware, e.g.,
CPUs, GPUs, FPGAS)

58

ML4Pions ATL-PHYS-PUB-2020-018

e Pixelated calorimeter images: Convolutional NN (CNN)
e The ML techniques all do an excellent job of distinguishing 1° from 1*

showers
g T e
T L T D S 100 8 10 ATLAS Simulation Preliminary .
I : : S] e ificati 9 e
- ATLAS Simulation Preliminary & Classification of " vs N
- :] -1 (S
015F Average n° - n* event in EMB2 : LS
- 5 < Cluster Energy / GeV < 20] 3 2|
0.10F 9y] 02 & 10
L ~<
[] 5
0.05f . S
i 1 10° 3
0.00F T] 0 8; 10'¢
-0.05F] (o]
: | ®
-0.10F 1 -102 = Q60 065 070 075 080 085 060 095 100
L 3 n* Efficiency
[3 15 ; ,
-0.15F 1 J-10 23 i
i 'g\ 10 ’/,./' \.\ 1
i] 4 o o \
-0.20L—— 1 S -10 = R N\
-0.2 -0.1 0.0 0.1 0.2 = 5 \]
Ao Y e e $

http://cdsweb.cern.ch/record/2724632/files/ATL-PHYS-PUB-2020-018.pdf

Why use Machine Learning?

e ML to exploit high-dimensional correlations
o Our multidimensional distributions are rarely rectangular
o Rectangular cuts won’t maximize signal efficiency and background

rejection
o Maximizing our performance is essential in luminosity era

e ML as a surrogate model: fast and/or can run many types of hardware:
e.g., ML-based track reconstruction, AtlIFastSim3

e ML for non-standard data: data that is less confined than our physics
objects (e.g., operational data), variable length input, etc

60

High Luminosity - LHC

Trigger & data acquisition challenge
e Luminosity: 2+~ 7.5 - 103 cm?s™
e Pileup: 60~ 200

© more time consuming HL
ATLAS detector upgrade
e New Tracker, new Timing Detector, additional muon chambers, new Tile
electronics, ...
2025

Fb:iAMFJ AlS JF[M |

Shutdown/Technical stop
Protons physics

Ions

Commissioning with beam
Hardware commissioning

Long Shutdown 3 (LS3)

61

Why use Machine Learning?
Barrel Endcap Rings

Active area: 12.7 m2

Pixel size: 50x50 (or 25x100) pm?2
of modules: 10276
of FE chips: 33184

of channels: ~5x10°

62

GNN per-edge efficiency

Why use Machine Learning?

1:2

1.1

1.05

—

0.95

o
©

0.85

Metric 2»

Learning f

Module \\p
Map

Hits Graph
Graph
Construction
= T T T T T T LA e s
- ATLAS Simulation Preliminary]
:_ Vs = 14 TeV, tf, (u) = 200, primaries (tf and soft interactions) P> 1GeV —:
- using Module Map =
= —e— full detector o
- - Inl>2 -
o i <2]
- —a— SE——
- =g % —— 1
E:s: —.—t+ -, .]
= + S
- —— N
- PR R R L L .:
1 10 10°
p, [GeV]

< Graph Neural - " Connected

Network ":\-' w pEe Components
+ g A s
e .. '?:K" m&“‘ Connected
@ > ’ Components
‘“ + Walkthrough
Edge Scores
Edge Graph
Labeling Segmentation
'E‘1400_""|""|""|""|""|""_
= - ATLAS Simulation Preliminary =
= 1200 [(5= 14 TeV, 1T, (u) = 200, primaries (tf and soft interactions) P> 1 GeV ol
[using Module Map 7
1000(— 2eat —]
8001 | N— - N e
E | | :
600__ L W R TR L e L F I o
400:— LS AWERSAITL - T3 3 TA UL 8 H —:
Cl IIIIIIIIHH#I-—-M MAMEILE 1D 0 b I
200| I 1M e——i1 0D DR |
jllllllIlllun_|u||.|lllllllllIE
L N R RN (LTI LA I R R R
) P i ——e gt Y
—(9000 —2000 -1000 0 1000 2000 3000

GNN per-edge purity

63

Real-time triggers

e Machine Learning based muon trigger algorithms for the Phase-2
upgrade of the CMS detector

Predicted and Level-1 Efficiency curves Predicted and Level-1 Efficiency curves
g F g
g>'~. 11— g; 1__
2 N 2 B
2 B Q0 -
3 e
£ 0.8 # g 08
w B Legend: w _
L ——— NEW: Machine Learning @22GeV/c =
0.6 — 4 CURRENT: Level-1 Trigger @22GeV/c 0.6
0.4 0.4
N # i ¥® | Legend:
0.2 * 0.2 ——— NEW: Machine Learning @100GeV/c
I I ——&—— CURRENT: Level-1 Trigger @100GeV/c
it R >
3 I ool P I [PV PR, IPRPR. PN RO (IR I oL PR I UV e A | SRR e
0 20 40 60 80 100 120 140 160 180 200 0 60 80 100 120 140 160 180 200
Muon P.. (GeV/c) Muon P (GeV/c)

At high values of pT, the performances of the model predictions begin to decrease
probably due to a low resolution for small bending muons. 64

https://indico.cern.ch/event/681549/contributions/2956826/attachments/1661815/2662724/Poster_LHCP_Diotalevi.pdf

Some ideas for the future

Can we also improve our reconstruction for new sub-detectors as HGTD
or New Small Wheel?

Can we use reinforcement learning for automatic data quality monitoring
in HEP experiments?

Can we also have an electron/photon identification with a convolutional
neural network similarly to the jets?

Can we try to tag dark matter particles with ML? Or search for them?
Can we study the systematic effects in Jet Tagging Performance?

Can we use transformers for Particle Track Reconstruction and Hit
Clustering?

Can we improve the knowledge on heavy ions collisions by studying
topological separation of dielectron signals?

65

https://indico.cern.ch/event/1297159/contributions/5729218/
https://indico.cern.ch/event/1297159/contributions/5729240/
https://indico.cern.ch/event/1297159/contributions/5729215/
https://indico.cern.ch/event/1297159/contributions/5729236/
https://indico.cern.ch/event/1297159/contributions/5729191/

