
 Basics of Machine Learning

Ana Peixoto (University of Washington)
HSF-India HEP Software Workshop

University of Hyderabad
16th January 2025

About me

2

Natural from Paredes de Coura, Portugal
2015: Joined the ATLAS Experiment working on
top FCNC
2016: Finished Master in Experimental Physics
with the Universidade do Minho (Portugal)
2021: Finished PhD on the search for new
interactions in the top quark sector in UM
(Portugal) - Won one of the ATLAS PhD Grant
2021-2023: Postdoc in the Laboratoire de
Physique Subatomique et de Cosmologie (France)
2023-Present: Postdoc with the University of
Washington (United States of America)

Email:
ana.peixoto@cern.ch
LinkedIn:ana-peixoto-hep

https://atlas.cern/updates/news/meet-talented-recipients-atlas-phd-grant
mailto:ana.peixoto@cern.ch
https://www.linkedin.com/in/ana-peixoto-hep/

About me

3

Besides Physics, I also love listening to Jazz, dancing, practicing Martial
arts and reading

Machine Learning

4
Image from MICHELLE KUCHERA

Machine Learning

5

Machine Learning

6

Machine Learning is just a function fit, in the extreme!

● With 10's of billions of data points
● With complex functions with millions of parameters
● With a figure of merit that tells you when the function is making a

good match to the data

Inference

7

Fit of a function

yi = f(xi)
Where
yi = A prediction for the 𝑖th row (0 – Background and 1- Signal),
xi = The 𝑖the row of our feature data
f (xi;Θ)= Our NN (that can be fairly complicated)

● Some function with parameters
● Straight line: 𝑎𝑥 + 𝑏
● Much more complex with millions of parameters!
● All the parameters are usually denoted Θ

Parameters definition

8

How do we fit a straight line?

1. Define a mathematical criteria for a
good fit:

2. Minimize 𝑟 (find Θ such that):

Loss function choice

9

What do you want to optimize?
● Signal and background separation
● Measured mass
● Decorrelation of two outputs that separate signal and background
● And more!

What must the loss function do?
● Return a value – “figure of merit”
● Some “distance” between perfect fit and the current function

Loss function choice

10

Mean squared loss
● Works very well for regression problems

Cross entropy loss
● Works better for classification!

Problem types

11

Regression:
● Continuous output
● Jet Energy Calibration
● Mass of the Higgs

Classification:
● 1 or 0 type output: cat vs dog, etc
● Is it signal or background?

Problem types

12

Regression:
● Continuous output
● Jet Energy Calibration
● Mass of the Higgs

Classification:
● 1 or 0 type output
● Is it signal or background?
● Is it signal, QCD background,

or Beam Induced Background (as an example!)

H→WW Signal

Background

Neural Network

13

 A Neural Network is a single neuron!

ŷ = 𝜎 (𝑊 ∙ x + 𝑏)

𝜎 = activation function
W = weights
x = inputs
b = offsets

Activation functions

14

Activation Functions

15

Neural Network

16

Neural Network is not always the answer!

17

Non-Neural Network forms of Machine
Learning:
● Great for limited number of inputs (features)
● Great for high level features (angles

between jets)
● Great for small number of features (> 100)

Neural Network forms of Machine Learning:
● Great for large numbers of inputs
● Great for patterns in detector data
● Great for low-level data
● Great at Geometrical or Variable length

inputs

Neural Network software

18

All the scientific frameworks for Deep Learning Machine Learning are written in Python:

TensorFlow
● Developed by Google, managed as open source.
● Not used as much internally but has one of the most active user communities.
● API is most friendly to new users.

PyTorch
● Developed by Facebook, actively used.
● Faster than TF
● Is also a framework, but not quite as easy to use for a beginner.

JAX
● Developed in Google’s DeepMind, used for most (all?) of their research
● Great when you want to do something unique or break open the box.

https://www.tensorflow.org/
https://pytorch.org/
https://jax.readthedocs.io/en/latest/

Let’s play with NNs!

19

http://playground.tensorflow.org

http://playground.tensorflow.org

Hyper-parameters optimization

20

Hyper-parameters for dense neural networks:

● Width (Number of neurons in a layer)
● Depth (Number of layers)
● Epochs (Number of cycles)
● Batch Size (Number of training instances in the batch)
● Activation (Decides whether a neuron should be activated or not)
● Early Stopping
● Optimiser (Change on weights and learning rate in order to reduce the losses)
● Learning Rate (Regulates the weights of our neural network concerning the loss

gradient)
● Dropout (Practice of disregarding certain nodes randomly during training)
● Batch Normalization

Width

21

● Number of neurons in a layer

Depth

22

● Number of layers

Epochs

23

● Track “validation loss” to decide this but often the significance
might improve even though the loss does not

Batch size

24

● Number of training instances in the batch
● batch_size=128 means that there are 128 training instances in each batch

Activation

25

● Start with Relu/LeakyRelu/Sigmoid

Regularization and its rate

26

● Start with L1 as an example
● L1/L2 typically requires a smaller rate: start at 0.001, then

increase/decrease as you see fit

The ROC curve

27

● The ROC curve (Receiver Operating Characteristic) is a way to
summarize how well you are doing with your estimated y(x) in the
classification problem

● How to quantify? Look at rejection at fixed efficiency, compute Area
Under Curve (AUC) and many other metrics available

The AUC metric

28

● In some cases it is not trivial to rank classifiers by their performance.
● In particular, if one does not (yet) have an estimate of the proportion of

signal and background (class probabilities), one cannot decide!

A simple criterion is to compute the area under the ROC curve (AUC):

● The AUC has a clean statistical interpretation: taken two events at
random, one from each of the two classes, AUC is the probability that
the signal event has higher score than the background event.

● AUC is a coherent measure of predictive power of y(x) if we have no
information on the relative misclassification cost of the two classes – i.e.
if we do not know the operating point. The more we know of that, the
less useful AUC is.

The AUC metric

29

Classifier confusion matrix

30

Let’s consider binary classification:
● Two classes 0 and 1
● Confusion matrix is a 2x2 table

Actual Values: True/False
Predicted values: Positive/Negative

● Sensitivity: TP/(TP+FN)
think of it as "signal efficiency"
● Specificity: TN/(TN+FP)

"background rejected by selection"
● Purity: TP / (TP+FP) (a relative measure)

Validation set

31

● Split the original dataset into a training and validation set:

▸ Train model on the training set

▸ Evaluate on the validation set to estimate the test error

▸ Select the model class that gives the lowest estimated error

▸ Optionally, re-train the selected model class on the whole dataset
(training + validation)

● Issue: we would like both training and validation sets to be as large as
possible (so that the estimate is better), but they must not overlap!

k-Fold Cross Validation

32

▸ Split the original dataset into k equal parts (e.g, k = 5)
▸ Train on the k − 1 parts and validate on the remaining one

▸ Repeat for every choice of the k − 1 parts and average the validation errors

▸ Advantage: use all data as validation to improve the estimate of the test
error, at the cost of more computation (k trainings)

Training and testing

33

Training and testing

34

Training and testing

35

Training and testing

36

Training and testing

37

Training, Validating, Testing

38

In order to construct and study a classifier built with a supervised algorithm
and given a sample of signal events and background events, one usually
separates these sets in three parts:
● Training set: events used to build the classifier. The algorithm employs

them to estimate the prior densities of S and B, or directly the likelihood
ratio or a monotonous function of it

● Validation set: this is used to understand whether the training was too
aggressive (overfitting), and to tune the algorithm parameters for best
results

● Test set: this sample is totally independent from the former two, and it
is used to obtain a unbiased estimate of the final performance of the
model, previously learned, validated and optimized.

Underfitting and overfitting

39

A model fits training data so well that it leaves little or no room for
generalization over new data
We say that the model has “high variance” ➡ Overfitting

Why overfitting?

40

A model fits training data so well that it leaves little or no room for
generalization over new data
We say that the model has “high variance” ➡ Overfitting

● Small training data: Does not contain enough data samples to
accurately represent all possible input data values

● Noisy data: The training data contains large amounts of irrelevant
information

● Long training: The model trains for too long on a single sample set of
data

● High model complexity: It learns the noise within the training data

How to Prevent Overfitting?

41

These are some popular techniques:

● Early Stopping: Pauses the training phase before the machine learning
model learns the noise in the data

● Reduce the network’s capacity: By removing layers or reducing the
number of elements in the hidden layers

● Regularization: Collection of training/optimization techniques that try to
eliminate factors that do not impact the prediction outcomes

● Data Augmentation: Large dataset will reduce overfitting. Data
augmentation helps to increase the size of the dataset

Regularization: L1/L2

42

Regularizer on the NN weights (absolute values of weights / squared
weights)

L2 regularization is perhaps the most common form of regularization
For every weight, w, in the network we add ½ λw2 to the objective where λ is
the regularization strength

L1 regularization is another relatively common form of regularization, where
for each weight we add the term λ |w|

It is possible to combine the L1 regularization with the L2 regularization:
 ½ λw2+ λ |w|

Regularization: L1/L2

43

Regularization: Dropout

44

Dropout is an extremely effective, simple and recently introduced
regularization technique by Srivastava et al. in:

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”
that complements the other methods

During Training:
Dropout is implemented
by only keeping a neuron
active with some probability
 p (a hyperparameter), or
setting it to zero otherwise

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Dropout

45

● Probability of training a given node in a layer, where 1.0 means no
dropout, and 0.0 means no outputs from the layer

● A good value for dropout in a hidden layer is between 0.5 and 0.8
● Input layers use a larger dropout rate, such as of 0.8

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Batch normalization

46

● Normalization technique done between the layers of a Neural
Network instead of in the raw data

● Done along mini-batches instead of the full data set
● Serves to speed up training and use higher learning rates, making

learning easier

Loss minimization - Gradient descent

47

To minimize –log L and find optimal value of model parameters, in the
absence of an analytical description, we "descend" toward the minimum by
approximating the shortest route with local information:

● find gradient of L w.r.t. parameters w:
● update parameters:

and iterate.
● The success depends on how fast you descend,

moduled by "learning rate" η.

Loss minimization - Stochastic Gradient Descent

48

Computing the gradient over the whole training set at each step is
sub-optimal:

● CPU-intensive (must pass all dataset)
● large memory use, intractable if too large datasets
● does not allow updates on-the-fly (adding data online)
● Also, it can become ineffective, as risk of getting stuck in local minima is

large in multi-dimensions

Most modern deep ML methods employ "stochastic" techniques to find the
optimal working point / parameter values

Loss minimization - Stochastic Gradient Descent

49

● This relies on the possibility to
decompose the loss function into
the sum of per-example losses

● Stochastic Gradient Descent
updates parameters on a per-event
basis objective function becomes
noisy, but this has merits (can jump
out of local minima)

Hyper-parameters tuning

50

Choose the model architecture
Summary: When starting a new project, try to reuse a model that already works.
• Choose a well established, commonly used model architecture to get working first
• Try to find a paper that tackles something as close as possible to the problem at
hand

Choosing the optimizer
Summary: Start with the most popular optimizer for the type of problem at hand.
● Stick with well-established, popular optimizers, especially when starting a new

project

Well-established optimizers that we like include (but are not limited to):
• SGD with momentum
• Adam and NAdam, which are more general than SGD with momentum.
• Note that Adam has 4 tunable hyperparameters and they can all matter!

Hyper-parameter playbook

https://github.com/google-research/tuning_playbook#what-are-the-update-rules-for-all-the-popular-optimization-algorithms
https://github.com/google-research/tuning_playbook#what-are-the-update-rules-for-all-the-popular-optimization-algorithms
https://arxiv.org/abs/1910.05446
https://github.com/google-research/tuning_playbook#why-shouldnt-the-batch-size-be-tuned-to-directly-improve-validation-set-performance

Hyper-parameters tuning

51

Choose the batch size
Summary: The batch size governs the training speed and shouldn't be used to directly tune
the validation set performance. Often, the ideal batch size will be the largest batch size
supported by the available hardware

● The batch size is a key factor in determining the training time and computing
resource consumption

● Increasing the batch size will often reduce the training time
→ Allows hyperparameters to be tuned more thoroughly within a fixed time interval

● The batch size should not be treated as a tunable hyperparameter for validation set
performance

● For an optimized network, the same final performance should be attainable using any
batch size (see Shallue et al. 2018)

https://arxiv.org/abs/1811.03600

Hyper-parameters tuning

52

Choose the initial configuration
Summary: quickly determine the starting points with manual exploration then do a more
through check
● Before beginning hyperparameter tuning we must determine the starting point like

1. The model configuration (e.g. number of layers)
2. The optimizer hyperparameters (e.g. learning rate)
3. The number of training steps
Determining this initial configuration will require some manually configured training runs
and trial-and-error.

Choosing the number of training steps involves balancing the following tension:
● Training for more steps can improve performance and makes hyperparameter tuning

easier (see Shallue et al. 2018)
● Training for fewer steps means that each training run is faster, allowing more

experiments to be run in parallel.

https://arxiv.org/abs/1811.03600

Hyper-parameters tuning

53

Several tools allow you to do hyper parameter scans and hyperparameter
optimization:

● Ray-tune
● Weights & Bias Sweep
● TensorBoard HParams
● Keras Tuner
● Scikit-Optimize
● Optuna

All of these tools have grid search,random search and Bayesian
Optimization implemented
● Pick the one you like!

https://docs.ray.io/en/latest/tune/index.html
https://docs.wandb.ai/guides/sweeps
https://www.tensorflow.org/tensorboard/hyperparameter_tuning_with_hparams
https://keras.io/guides/keras_tuner/getting_started/
https://github.com/scikit-optimize/scikit-optimize
https://optuna.org/

Tools for ML experiments visualization

54

You need to do some or a lot of experimenting with model improvement
ideas
● Visualizing differences between various ML experiments becomes crucial

There are several popular tools tools: Weights & Biases, TensorBoard,
Comet, MLflow, etc
● Tracking and visualizing metrics such as loss and accuracy
● Monitor learning curves
● Visualize CPU/GPU utilization

https://wandb.ai/site
https://www.tensorflow.org/tensorboard
https://www.comet.com/site/
https://mlflow.org/

Negative Event Weight

55

● Only certain BDT packages can handle negative weighted events

● For NNs, negative weights make logical sense, loss is multiplied by a
negative weight and everything works as you would expect. So use
your negative sample weights!

● The more challenging problem: very
large variance of weights (by orders
of magnitude)

● Often, you can even re-weight them
with ML to get rid of negative weights!
Neural Resampler, Unweighting with
generative models

https://arxiv.org/abs/2007.11586
https://arxiv.org/abs/2012.07873

You can also play with Boosted Decision Trees!

56

BDT playground

http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html

Machine Learning in HEP

57

● ML has been in HEP for ages: Signal to background separation and
flavor tagging

● What’s new:
○ Significant increase in compute

power (GPUs) available for ML
○ Dramatic increase in ML architectures

for different applications: transformers,
large-language models (LLMs), graph
neural networks (GNNs), convolutional
neural networks (CNNs), etc

● ML advancements have already affected
HEP, e.g., drastic improvement in flavor
tagging (GN1).

Machine Learning in HEP

58

● Increasing complexity, decreasing interpretability

● Compatibility with calibration techniques
○ Can you derive scale factors, systematics, etc?

● Systematics do not kill your gains
○ Study them early on!
○ Even a flat uncertainty can give you a rough idea

● ML enables portability (ability to run on different types of hardware, e.g.,
CPUs, GPUs, FPGAs)

ML4Pions

59

● Pixelated calorimeter images: Convolutional NN (CNN)
● The ML techniques all do an excellent job of distinguishing π0 from π±

showers

ATL-PHYS-PUB-2020-018

http://cdsweb.cern.ch/record/2724632/files/ATL-PHYS-PUB-2020-018.pdf

Why use Machine Learning?

60

● ML to exploit high-dimensional correlations
○ Our multidimensional distributions are rarely rectangular
○ Rectangular cuts won’t maximize signal efficiency and background

rejection
○ Maximizing our performance is essential in luminosity era

● ML as a surrogate model: fast and/or can run many types of hardware:
e.g., ML-based track reconstruction, AtlFastSim3

● ML for non-standard data: data that is less confined than our physics
objects (e.g., operational data), variable length input, etc

High Luminosity - LHC

61

Trigger & data acquisition challenge
● Luminosity: 2 ↦ 7.5 ⋅ 1034 cm-2 s-1

● Pileup: 60 ↦ 200
○ more time consuming

ATLAS detector upgrade
● New Tracker, new Timing Detector, additional muon chambers, new Tile

electronics, ...

Why use Machine Learning?

62

●

Why use Machine Learning?

63

●

Real-time triggers

64

● Machine Learning based muon trigger algorithms for the Phase-2
upgrade of the CMS detector

At high values of pT, the performances of the model predictions begin to decrease
probably due to a low resolution for small bending muons.

https://indico.cern.ch/event/681549/contributions/2956826/attachments/1661815/2662724/Poster_LHCP_Diotalevi.pdf

Some ideas for the future

65

● Can we also improve our reconstruction for new sub-detectors as HGTD
or New Small Wheel?

● Can we use reinforcement learning for automatic data quality monitoring
in HEP experiments?

● Can we also have an electron/photon identification with a convolutional
neural network similarly to the jets?

● Can we try to tag dark matter particles with ML? Or search for them?
● Can we study the systematic effects in Jet Tagging Performance?
● Can we use transformers for Particle Track Reconstruction and Hit

Clustering?
● Can we improve the knowledge on heavy ions collisions by studying

topological separation of dielectron signals?

https://indico.cern.ch/event/1297159/contributions/5729218/
https://indico.cern.ch/event/1297159/contributions/5729240/
https://indico.cern.ch/event/1297159/contributions/5729215/
https://indico.cern.ch/event/1297159/contributions/5729236/
https://indico.cern.ch/event/1297159/contributions/5729191/

Thanks for the attention!

