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What do we want?
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Hurray, We found it! 

Scientific 

discoveries

Journal 

Publications



Scientific Process @ Colliders
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Scientific Process @ Colliders
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Large Hadron Collider
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CMSpp collisions @ √s = 13.6 TeV



Large Hadron Collider
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The LHC accelerates bunches of billions of protons 
(or ions) from 450 GeV injection energy from SPS to 

6.8 TeV and collides them at 13.6 TeV centre-of-mass 

energy

LHC circumference is 27km and the minimal distance 

between bunches is 25ns*c
o Revolution frequency of LHC is 11.24 kHz

o Bunch crossing rate (ZeroBias rate) depends on 

number of bunches in the machine

o e.g. For 2380 colliding bunches (2023) 

• ZeroBias rate = 26.8 MHz

CMS

ATLAS

ALICE LHCb



LHC Parameters
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Run-1

2010-2012

Run-2

2015-2018

Run-3*

2022-2026

Beam Energy 3.5-4.0 TeV 6.5 TeV 6.8 TeV

Bunches/Beam 1380 2556 2556

Protons/bunch 1.15 x 1011 1.2 x 1011 1.3 x 1011

Peak 
Luminosity

7.7 x 1033 

cm-2 s-1

2.1 x 1034 
cm-2 s-1

2.1 x 1034 
cm-2 s-1

Crossing rate: ~40MHz (every 25ns)



Proton-Proton collision @ LHC
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Production cross-sections for different 
physics processes span over many orders 
of magnitude 

• Collision rate is dominated by non 
interesting physics 

• Background discrimination is crucial 

Total non-diffractive p-p cross section at 
LHC (√s = 14 TeV) is ~80mb



Proton-Proton collision @ LHC
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At Instantaneous Luminosity of:

                                       ~2 x1034cm-2s-1

• 50 pp events/25 ns crossing

•About 1 GHz input collision rate

• EWK rate: 1 kHz W/Z events

• Top rate: 10 Hz top events

• Higgs rate: < 104 detectable 
Higgs/year
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Particle Physics Detectors
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Example: CMS Detectors
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The CMS Detector
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Goal
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Reminder: DAQ
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DAQ

The Data Acquisition (DAQ) system collects the data from all the 
sub-detectors, converts the data in a suitable format and saves it to 
permanent storage 

Question: Is that all?



Reminder: DAQ
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DAQ

The Data Acquisition (DAQ) system collects the data from all the 
sub-detectors, converts the data in a suitable format and saves it to 
permanent storage 

Question: Do we need a trigger? If yes, why & where?



There is a problem…

• At an input rate of 40MHz 

• Each raw event being 1-2MB
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It is impossible to record data at 80 PB/s



There is a problem…

• At an input rate of 40MHz 

• Each raw event being 1-2MB
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It is impossible to record data at 80 PB/s

Solution ⇒ Be Selective ⇒ Add a trigger 

DAQ

Trigger



Trigger concept

• What is ‘Interesting’?:

• Define what is signal and what is background 

• What is the final affordable rate of the DAQ system?

• Define the maximum allowed rate 

• How fast the selection must be?

• Define the maximum allowed processing time 
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Start the data 

acquisition

Identify the 

interesting 

process

Only when

DAQ Trigger

The role of the trigger is to make the online selection of particle collisions 
potentially containing interesting physics 



A Simple Trigger System

• Data Input: signals from front-end electronics
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Discriminator
From Front-End Pre-amplifier Amplifier

Accept

Reject

The simplest trigger: apply a threshold

• Look at the signal

• Put a threshold as low as possible



CMS Trigger System

Two level triggering

• Level – 1 Trigger (L1T)
• Custom hardware using 

FPGAs

• 40 MHz ➛ 100 kHz

• High Level Trigger (HLT)
• Computing farm

• 100 kHz ➛ 1kHz
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Experiment # of levels

ALICE 4

ATLAS 3

LHCb 3

CMS 2

Question: Why different levels?



CMS Trigger Architecture
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Data path split here: 

Coarse (L1), raw (DAQ)

Data sitting in buffers, 

waiting for decision from L1

L1 latency sets the depth of 

buffers (and $$)



Data Processing to Trigger
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“Interesting” Physics Signatures
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Electroweak Symmetry Breaking Scale

• Higgs (125 GeV) studies and higgs sector characterization

• Quark, lepton Yukawa couplings to higgs

New physics at TeV scale to stabilize higgs sector

• Spectroscopy of new EWK produced resonances (SUSY or otherwise)

• Find dark matter candidate

Multi-TeV scale physics (loop effects)

• Indirect effects on flavor physics (mixing, FCNC, etc.)

• Lepton flavor violation

Planck scale physics

• Large extra dimensions to bring it closer to experiment

• New heavy bosons

• Blackhole production 



How to Identify these “interesting” events?
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Electroweak Symmetry Breaking Scale

• Higgs (125 GeV) studies and higgs sector characterization

• Quark, lepton Yukawa couplings to higgs

New physics at TeV scale to stabilize higgs sector

• Spectroscopy of new EWK produced resonances (SUSY or otherwise)

• Find dark matter candidate

Multi-TeV scale physics (loop effects)

• Indirect effects on flavor physics (mixing, FCNC, etc.)

• Lepton flavor violation

Planck scale physics

• Large extra dimensions to bring it closer to experiment

• New heavy bosons

• Blackhole production 

Multiple low 

PT objects

Low PT leptons

High PT leptons and photons

Multi particle and jet events

~ Dedicated triggers (CMS) or 
experiment (LHCB)



Input to CMS level-1 Trigger
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Question:
Why not Tracker?

What is a latency?

Why 𝜇s?

NO TRACKER

CALORIMETERS

MUON SYSTEM



Input to CMS level-1 Trigger
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NO TRACKER

CALORIMETERS

MUON SYSTEM

Pattern 

recognition 

much 

faster/easier



Input to CMS level-1 Trigger
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Regional

Track 

Finders

Trigger 

Primitives 

or Hits

Level-1 trigger receives data with 

coarse granularity from
• Calorimeters (ECAL, HCAL, HF)

• Muon systems (CSC, DT, RPC, GEM)

Collision data are buffered locally for < 4𝜇s

Muon SystemsCalorimeters

L1 Trigger is implemented in hardware

Uses field programmable gate arrays (FPGAs)

Operates synchronously to the LHC clock (40 MHz)

L1 Accept              ~100 kHz



Trigger Final Decisions
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What all we keep?
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High Level Trigger
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HLT_Mu17_TkMu8

Non isolated muon with pT > 17 GeV Muon with pT > 8 GeV from tracker

• Implemented using generic processors (CPUs/GPUs)

• Muon Systems, Calorimeters and Tracker

• Increase in number of Trigger, algorithms, selections 
and complexity

• Event Filtering, Selections are made sequentially: 
When an event fails a given selection criteria then the 
processing stops in order to allow the node to be 
used by a new event

• Data accepted by the HLT are recorded for offline 
physics analysis

• HLT contains hundred of paths, each of which is 
seeded by one or more trigger at L1. Example:



GPU Acceleration @ CMS HLT
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CPU CPU + GPU



All set to do physics analyses
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ns µs ms s

Must use 

FPGAs, 
enforced by 

latency 
requirements

Months/Years

CPUs, GPUs or 

combinations 
of two
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Lets discuss about FPGAs

FPGA: Field Programmable Gate  Array



Xilinx Field Programmable Gate Array
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Source: https://en.wikipedia.org/wiki/Field-

programmable_gate_array

First FPGA invented by Xilinx Inc. in 1985



FPGAs:

• Programmable hardware whose sub-component 
configuration can be changed even after fabrication: 
“field-programmable”

• Has 2D array of logic gates in its architecture: “Gate 
Array”

• A silicon ‘breadboard’ of configurable logic gates, 
memories, transceivers, Digital Signal Processors (DSPs), 
registers (flip flops) 

• FPGA industry sprouted from programmable readonly 
memory (PROM) and programmable logic devices (PLDs)
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FPGA Architecture
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Configurable 

logic blocks 

(CLB)

Programmable 

interconnects

Input/output blocks

Routing 

channels



FPGA Architecture
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Configurable 

logic blocks 

(CLB)

Programmable 

interconnects

Input/output blocks

Routing 

channels

• Contains thousands of fundamental elements called configurable logic 

blocks (CLBs) surrounded by a system of programmable interconnects, 

called a fabric, that routes signals between CLBs. 

• The interconnects can readily be reprogrammed, allowing an FPGA to 
accommodate changes to a design or even support a new application 

during the lifetime of the part.

• Input/output (I/O) blocks interface between the FPGA and external 

devices.

• Stores its configuration information in a re-programmable medium such as 

static RAM (SRAM) or flash memory



FPGA Components

The basic structure of an FPGA is composed of:

• Look-up table (LUT)

• Flip-Flop (FF)

• Slices and CLBs

• Block Memory (BRAM)

• DSP Blocks

• Interconnect and routing resources: Wires & Input/Output (I/O) 
pads
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DSP

RAM

RAM

DSP

FPGA Components: LUT
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LUTs or logic cells:

• Basic building block of FPGA used for implementing 

combinational logic

• Capable of performing any arbitrary functions on 

small bitwidth inputs (N), generally N ≤ 6

• Memory location accessed by LUTs: 2N 

• Example: a 4-input LUT can implement any Boolean 

function with 4 variables by storing 16 (2^4) output 

values

• It can be used as both a function compute engine 

and a data storage element Functional Representation of a LUT 

as Collection of Memory Cells 



FPGA Components: Flip Flops
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Flip-flop

Flip-Flops:

• Basic storage unit within the FPGA fabric
• Circuit that can store and recall a single bit of 

information. Used for sequential logic.

• Always paired with a LUT to assist in logic 
pipelining and data storage 

• Operation: value at the data input port is 

latched and passed to the output on every 
pulse of the clock 

• Data is passed only when clock and clock 
enable = 1

DSP

RAM

RAM

DSP



FPGA Components: DSP
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DSP

RAM

RAM

DSP

Digital Signal Processor Block:

• Most complex computational block available in 
a FPGA 

• Arithmetic Logic unit: specialized unit for 
multiplication and arithmetic
• Eg: p = a x (b + d) + c

• Faster and more efficient than using LUTs for 

these types of operations

• Often most scarce in available resources



FPGA Components: Storage elements
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BRAMs (Block RAM)

• Embedded memory elements that can be used 
as Random-access-memory

• BRAM is a dual-port RAM module instantiated to 
provide on-chip storage for a relatively large set 
of data
• can hold either 18 k or 36 k bits

• Useful for low latency & high bandwidth access (data buffering, complex algos)

• BRAMs can implement either a RAM or a ROM. The only difference is when the data 
is written to the storage element.

DSP

RAM

RAM

DSP



FPGA Components: Storage elements
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LUTs as storage element:

• They can be used as 64-b memories due to its 
structural flexibility

• Commonly referred to as distributed memories

• Fastest kind of memory available on the FPGA device, because it can be 
instantiated in any part of the fabric that improves the performance of the 
implemented circuit

• Memories using BRAMs more efficient than using LUTs

DSP

RAM

RAM

DSP



FPGA Components: Routing
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• Between rows and columns of logic blocks are wiring channels
• These are programmable – a logic block pin can be connected 

to one of many wiring tracks through programmable switch
• Xilinx FPGA have dedicated switch block circuits for routing 

(flexible)

• Each wiring segment can be connected in one of many ways

The main advantage and attraction of FPGA comes from the programmable interconnect –
more so than the programmable logic. 

Logic block Switch 
block

Wires

Wire 
segment

Programmable 
switch

x
x
x

Logic Block Pin

Routing Wire

Potential 
connection

Fig. 18

x



FPGA Components: I/O
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There are specialised blocks for I/O
• Making FPGAs popular in embedded systems and HEP 

triggers

High speed transceivers

• with Tb/s total bandwidth PCIe

• (Multi) Gigabit Ethernet

• Infiniband

Support highly parallel algorithm implementations

Low power per Operation (relative to CPU/GPU)
Input/output blocks



Programming FPGA

• Programming an FPGA requires Firmware to be written and 
synthesized into a "bit file” to load into the chip

• Languages used to write the logic implementation:
• Hardware Description Languages (HDLs)

• Verilog

• VHDL (VHSIC Hardware Description Language)

• System Verilog

• High-Level Synthesis (HLS) Languages
• Code written in C/C++ is converted to RTL (Verilog/VHDL)

• OpenCL 
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FPGA Parallelism



Program execution on a Processor

A processor executes a program as a sequence of instructions 

• Translated into useful computation for a software application

• Compiler transforms the C/C++ into assemble language

• The assemble code defines the addition operation to compute the value of z in 
terms of the internal registers of a processor 

• The complete assembly program to compute the value of z is as follows:

• Even a simple operation, such as the addition of two values, results in multiple 
assembly instructions  
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Program execution on a Processor

• Depending on the location of a and b, the LD operations take a different 
number of clock cycles to complete:

• Processor cache : few 10 clock cycles

• DDR memory: ~100/~1000 clock cycles

• Hard drives: even longer

• Software engineers spend a lot of time restructuring their algorithms 

• Increase the spatial locality of data in memory to increase the cache 
hit rate and decrease the processor time spent per instruction 
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Program execution on FPGA

FPGA is an inherently parallel processing fabric capable of implementing any logical 
and arithmetic function that can run on a processor 

• Main difference: Vivado HLS compiler

• Transforms software descriptions into RTL, is not hindered by the restrictions of a 
cache and a unified memory space

• Computation of z is compiled by Vivado HLS into several LUTs required to achieve 
the size of the output operand

• E.g.:  In C code, variable a, b, and z are defined with the short data type (16-bit 
data container)

• Variables gets implemented as 16 LUTs by Vivado HLS 

General rule: 1 LUT is equivalent to 1 bit of computation 
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Execution steps on FPGA

• Vivado HLS compiler exercises the capabilities of the FPGA fabric 
using following processes:

o Scheduling

oPipelining

oDataflow

Transparent to the user, these processes are integral stages of the 
software compilation process that extract the best possible circuit-
level implementation of the software application. 
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Scheduling

Process of identifying the data and control dependencies between different operations 

• To Determine which operation occur during each clock cycle based on: 

• Length of the clock cycle or clock frequency 

• Time it takes for the operation to complete, as defined by the target device 

• User-specified optimization directives 
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Pipelining

Technique to avoid data dependencies and increase the level of parallelism

• Preserving the original functionality,  required circuit is divided into a chain of 
independent stages

• All stages in the chain run in parallel on the same clock cycle 

• The only difference is the source of data for each stage

• Each stage in the computation receives its data values from the result computed 
by the preceding stage during the previous clock cycle
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Pipelining

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 55

C implementation

Pipelined 
implementation



Pipelining
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• Boxes: registers implemented by FF blocks

• Each box column counted as single clock 

cycle

• Result in 3 clock cycles.

• Addition of registers, leads to separated 

compute sections for each block
• Multiplier & two adders can run in parallel 

and reduce latency



Pipelining
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• Both sections of the datapath run in parallel
• Essentially computing the y and y’ in 

parallel

• y’ result of the next execution

• First computation of y: pipeline fill time = 3 
CLK

• After this initial computation, a new value 
of y is available at the output on every 

clock cycle, because the computation 
pipeline contains overlapped data sets for 
the current and subsequent y 

computations



Pipelining

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 58

• Raw data: dark gray, 
• Semi-computed data: white
• Final data: light gray

All exist simultaneously & each 

stage result is captured in its own 
set of registers

Although the latency for such 
computation is in multiple cycles, 

there is new result with every 
cycle



Dataflow

Similar to pipelining but parallelism at coarse-grain level

• Parallel execution of functions within a single program

• By evaluating the interactions between different functions of a program 
based on their inputs and outputs 

• Case-1: Independent (simplest)

• Separate resources for different functions and run the blocks independently

• Case-2: Dependent (complex)

• One function provides result for another function (consumer-producer 
scenario)
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Why in HEP we need to know so 
much about FPGAs?



Workflow during FPGA development
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Experiment

Firmware

PCB layput

PCB production

PCB commissioning

Idea

Simulation (FW tests)

Final FW

FW evaluation

Physicists
Engineers



Save $$$!!!

• Like our resources, each FPGA has limited resources

• FPGAs are expensive

• Need to design most optimal logic to have efficient functionality 
to meet the requirements
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Back to Trigger!
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To make decision in 𝜇s

- We have parallel/Pipelined 

system

- Feed Forward Algorithms (no 

backward loops)

- Highly distributed

- Parallelism in FPGA

- Parallelism in Logic



Xilinx FPGAs – Phase-1 choice: V7 690T 
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Currently 

Deployed HL-LHC 
Prototypes

Speed grade: 

maximum 
propagation 
delay for critical 

paths in the FPGA 
fabric or I/O 

operations

Decide wisely which FPGA to use as per your needs



Key Element: Multi-Gigabit Opto-electronics
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CMS Level-1 Trigger Hardware
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Calo Layer-1 
CTP7: 18 boards Calo Layer-2 

CTP7: 10 boards 

Time-

Multiplexed 

Trigger • Virtex7 FPGA used a main processor

• uTCA Form factor & infrastructure

• DAQ, slow control & monitoring

Muon Trigger



Trigger Processor Boards
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Calorimeter Trigger Processor(CTP7 – left), and Master Processor (MP7 - right)

• CTP7 (Layer-1) – mTCA  Single Virtex 7 FPGA, 67 optical inputs, 48 outputs, 12 RX/TX backplane

• Virtex 7 allows 10 Gb/s link speed on 3 CXP(36 TX & 36 RX) and 4 MiniPODs (31 RX & 12 TX) 

• ZYNQ processor running Xilinx PetaLinux for service tasks, including virtual JTAG cable

• MP7 (Layer-2) – mTCA Single Virtex 7 FPGA, up to 72 input & output links

• Virtex 7 has 72 input and output links at 10 Gb/s

• Dual 72 or 144MB QDR RAM clocked at 500 MHz

MMC

Power 

Supplies
ZYNQ

FPGA

JTAG

USB

Interface

Rx

Tx

Rx

Tx

FPGA

1V0

2xQDR
(Bottom)

2V5

3V3

1V5

1V8

SD

USB

C
(Bottom)

3 CXP 

modules 

MiniPod 

modules 

CTP7 MP7



CTP7 FW Infrastructure
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Xilinx FPGAs – Phase-2 choice: VU13P 
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HL-LHC



Multi-gigabit-per-second serial links
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LHC

10 Gbps

HL-LHC

25 Gbps

HL-LHC



Advanced Processor Prototype for HL-LHC
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• Wisconsin APxF Board

• Xilinx VU13P or VU9P FPGA 

• ZYNQ-IPMC 
(ATCA IPMI controller)

• ELM (ZYNQ-based 
embedded Linux endpoint)

• ESM (GbE switch)

• High efficiency heatsinks

• Front-panel inputs

• 25G Samtec Firefly positions 
loaded – 10x12 + 1x4 
(124 25 Gbps links)

Latenct budget for HL-LHC: 12.5 𝜇s



APx – Firmware/Software
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• A new paradigm for 
firmware development
• Core firmware written in VHDL 

by engineers

• Gigabit link support

• Data exchange between SLRs 
within chip

• Test buffers

• Clock and control

• Physics
• Algorithmic firmware in high-

level languages like C++ written 
by physicists

ELM:
Control endpoint, 
providing complete
board overhead 
functionality

Processing FPGA:
- I/O
- data processor
- DAQ



Trigger Upgrade FW testing
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Firmware prepared and tests 
conducted by former UoH PhD 

student Piyush Kumar 

(Now Research Engineer @ 
University of Notre Dame, USA
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Comparison of CPU/GPU/FPGA/ASICS



CPU/FPGA Advantages
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CPU advantages FPGA Advantages

• Better with floating point numbers

• Programming a CPU is normally easier 
than programming an FPGA (does not 
require to understand digital electronics) 

• Faster compilation
• Easier code portability

• Lower unit cost 

• More versatile & adaptable 

• More flexible input/output
• Parallel processing
• Better with multi-clock systems

• Better with time-critical operations 
• Power Efficient

• Faster than processors

More and more often, FPGAs and CPUs (or GPUs) are complementary:
 They co-exist in the same system and perform different tasks 



ASICS

ASIC: Application Specific Integrated Circuit

FPGAs were originally popular for prototyping ASICs, 
but now also for high performance computing
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FPGA/ASIC Advantages
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FPGA Advantages ASIC Advantages 

Faster time-to-market - no layout, masks or other 

manufacturing steps are needed 
Lower constant/initial cost 
Simpler design cycle - due to software that 

handles much of the routing, placement, and 
timing 

More predictable project cycle due to 
elimination of potential re-spins, wafer 
capacities, etc. 

Re-programmability: a new configuration can 
be uploaded 

Full custom capability (including analog) 

- since device is manufactured to design 
specs 
Lower unit costs – For mass production

Smaller form factor - since device is 
manufactured to design specs 

Higher clock speeds 



Uses of FPGAs outside HEP
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• Telecommunication 
• Automotive 
• Aerospace and Defense 
• Medical Electronics 
• ASIC Prototyping 

• Audio 
• Broadcast 
• Consumer Electronics 
• Data Center 
• Distributed Monetary Systems 

• High Performance Computing 

• Industrial 
• Scientific Instruments 
• Security systems 
• Video & Image 

Processing 

• Digital signal processing 
• Bioinformatics 
• Controllers 
• Computer hardware 

emulation 

• Voice recognition 
• Cryptography 



More Advanced Architectures

• Embedded FPGA System on Chip (SoC)

• High Bandwidth Memory (HBM) on Xilinx FPGA
• A theoretical bandwidth up to 460 GB/s

• ACAP: Adaptive Compute Acceleration Platform
• A fully software-programmable, heterogeneous compute platform that combines 

Scalar Engines, Adaptable Engines, and Intelligent Engines to achieve dramatic 
performance improvements of up to 20X over today’s fastest FPGA 
implementations and over 100X over today's fastest CPU implementations—for 
Data Center, wired network, 5G wireless, and automotive driver assist applications.
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ACAP Application
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Xilinx ACAP Devices enable sensor fusion in small power envelopes



Path to firmware

January 13-17, 2025

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
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C/C++
algo

Constraints/
directives

Firmware 
block

VHDL/Verilog

High Level Synthesis (HLS)
• Compile from C/C++ to VHDL/Verilog
• Pre-processor directives and constraints used 

to optimize the design

Hardware Description Languages
• VHDL/Verilog
• Programming languages which describe 

electronic circuits

Drastic decrease in firmware development time!

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
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High Level Synthesis 

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Getting-Started-with-Vitis-HLS 

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Getting-Started-with-Vitis-HLS


What is HLS?

HLS is an automated design process that 
transforms a high-level functional 
specification to an optimized register-transfer 
level (RTL) descriptions for efficient 
hardware implementation
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What is HLS?
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Why use HLS?

• Productivity
• Lower design complexity and faster simulation speed
• Ease of use

• Portability
• Single source -> multiple implementations (different target devices)

• Permutability
• Much more optimization opportunities at higher level

• Rapid design space exploration
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HLS Design Flow

• Compile, execute (simulate), and debug the C 
algorithm 

• Synthesize the C algorithm into an RTL 
implementation, optionally using user 
optimization directives

• Generate comprehensive reports and analyze 
the design 

• Verify the RTL implementation using a 
pushbutton flow

• Package the RTL implementation into a 
selection of IP formats 
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Simulation and Synthesis

The two major purposes of HDLs are logic simulation 
and synthesis:

• During simulation, inputs are applied to a module, 
and the outputs are checked to verify that the 
module operates correctly

• During synthesis, the textual description of a module 
is transformed into logic gates
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HDL code is divided into synthesizable modules and a 

test bench:
• The synthesizable modules describe the hardware

• The test bench checks whether the output results are 
correct (only for simulation and cannot be synthesized)



HLS Pragmas

“Pragmas”: Instructions to tell your compiler how to build the hardware

• HLS tool provides different set of pragmas that can be used to optimize the design, 
reduce latency, improve performance etc. These pragmas can be directly added to 
the source code for the kernel.
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https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas 

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas


Pragma HLS array_partition

• Partitions an array into smaller arrays or individual elements and provides 
the following:

• Results in RTL with multiple small memories or multiple registers instead of 
one large memory

• Effectively increases the amount of read and write ports for the storage

• Potentially improves the throughput of the design

• Requires more memory instances or registers
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#pragma HLS array_partition variable=<name>  <type> factor=<int> dim=<int>

Syntax:

Place the pragma in the C source within the boundaries of the function where the array 

variable is defined



Ex: Pragma HLS array_partition

• This example partitions the 13 element array, AB[13], into four arrays using block 
partitioning:

• Because four is not an integer factor of 13:

• Three of the new arrays have three elements each,

• One array has four elements (AB[9:12])

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 90

#pragma HLS array_partition variable=AB block factor=4

#pragma HLS array_partition variable=AB block factor=2 dim=2

• This example partitions dimension two of the two-dimensional array, AB[6][4] into 
two new arrays of dimension [6][2]:



Pragma HLS unroll

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 91

• Unroll loops to create multiple independent operations rather than a single collection of 
operations

• UNROLL pragma transforms loops by creating multiples copies of the loop body in the 
RTL design, which allows some or all loop iterations to occur in parallel

• Loops in the C/C++ functions are kept rolled by default

•  When loops are rolled, synthesis creates the logic for one iteration of the loop, and 
the RTL design executes this logic for each iteration of the loop in sequence

• UNROLL pragma allows the loop to be fully or partially unrolled

• Fully unrolling the loop creates a copy of the loop body in the RTL for each loop 
iteration, so the entire loop can be run concurrently

• Partially unrolling a loop lets you specify a factor N



Ex: Pragma HLS unroll
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#pragma HLS unroll factor=<N> region skip_exit_check

The following example fully unrolls loop_1 in function foo 

Place the pragma in the body of loop_1 as shown:

This example specifies an unroll factor of 4 to 
partially unroll loop_2 of function foo, and removes 

the exit check:



Basic Mapping Rule C/C++ ➛ RTL
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Basic Mapping Rule C/C++ ➛ RTL
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Basic Mapping Rule C/C++ ➛ RTL
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Basic Mapping Rule C/C++ ➛ RTL
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Deterministic at Compile time

On an FPGA, memory maps to a physical address space

Everything must be decided at compile time – your hardware cannot 
be changed while running!

• Adding one more piece of memory after the circuit is built?
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Lets run some examples (ex1)
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Is Machine Learning Possible on 
FPGAs?



hls4ml
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https://fastmachinelearning.org/hls4ml/ 

• hls4ml is a software package for automatically 
creating implementations of neural networks for 
FPGAs and ASICs

• Supports common layer architectures and model 

software (keras, tensorow, pytorch, ONNX)

• pip installable

• arXiv:1804.06913 

https://fastmachinelearning.org/hls4ml/


hls4ml Workflow
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Machine Learning at Level-1 Trigger
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ML decisions based on level-1 inputs themselves

o Minimize human bias, completely data-driven 

o ML can unearth unknown and complex correlation 

o New physics searches in model-independent way 
Model independence

R
a

te
 c

o
n

tr
o

l

Model-specific 

selection

Kinematic 

selection

Anomaly 

Detection

Traditional event selection at L1 based on 

object thresholds

➢ High-level and Data analysis selections 

limited to use those objects
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CIC    DA

Calorimeter Image Convolutional Anomaly Detection Algorithm

https://cicada.web.cern.ch/
CMS-DP-2023-086 

https://cicada.web.cern.ch/


CIC   DA: New Addition in Run-3
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Calorimeter Trigger 
Layer-2

Global 
Trigger

Calorimeter Trigger 
Layer-1

CICADA

ML-Based 
Improvements for 

Run-3

Currently 
taking Physics 

data @ CMS

Advantage 
of FPGA
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CIC   DA: Inputs

Anomaly Detection Algorithm to Select ~un-biased events for new physics searches

Calorimeter ET deposit 

from One ZeroBias event
Calo tower region map

One region = 4x4 trigger towers
CICADA Inputs from CALO Layer-1

• 18 𝜙 x 14 𝜂 regions,  252 regions in 

total
• Each region contains energy 

deposits from both ECAL and HCAL
• Summary of the energy distribution 

profile within the region 

• Low level information not 

dependent on object 
reconstructions



CaloL1 Setup 

• Calo-Layer 1 Trigger consists of 3-𝜇TCA crates each 
equipped with 6-CTP7 cards

• Each CTP7 cards receive information from the 
calorimeters (HCAL, ECAL, HF) and send calibrated 
E+H & E/H to next lyare
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CIC   DA: Layer-1 to uGT
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CIC   DA: Auto-encoder Model

Autoencoder-based anomaly detection

• Input is a 2D tensor from the Calo region energy information

• Encoder and decoder are Convolutional Neural Networks

• Unsupervised learning : train only on ZeroBias data to learn input reconstruction

Model architecture: calo input → encoder → latent space → decoder → reconstructed input 



CIC   DA: Event Reconstruction
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Input InputReconstruction Reconstruction

Zero Bias Data BSM Simulated Signal

Expectation:
• Good reconstruction on normal events (ZeroBias used for training)

• Bad reconstruction on anything else such as BSM signals (never seen during training)

Goal:
• Anomaly Score: Mean Squared Error, MSE(input, output)

(Loss: 0.8) (Loss: 14.2)



CIC   DA: Naive Auto-encoder Model
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324 K parameters model size 

can’t fit L1 constraints…

Encoder(compressor)

Latent space (compressed input)

Decoder  (decompressor)

Challenges!



Knowledge Distillation + Quantization
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Teacher

Anomaly score

Score regression

Compare 
with 

teacher’s 
score

Compute score
(e.g. MSE)

Knowledge Distillation
• Train a smaller model (student) under the 

guidance of a bigger model (teacher)

• The student learns to regress MSE from teacher 
outputs

Quantization-aware training (QKeras)
• Model weights quantized to fixed precision  (e.g., 2 bits for 

integer, 4 bits for fraction)

• Train a quantized model rather than quantize a trained model

→ x10 reduction
in resources/latency



CIC   DA: Teacher ➞ Student Model
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324K parameters go down 
to 3.8K parameters

Student



CIC   DA: Physics Performance
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Simulated signals

• Model trained on 2023 ZB, evaluated on 2023 Simulated signals
• Able to pick up a wide range of BSM signals



CIC   DA: Rate Stability
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A Flexible trigger: tunable threshold for different rates, stable over the run



HL-LHC: Can be more adventurous
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Wisconsin APxF Board

• Xilinx VU13P FPGA 

• 25G Samtec Firefly optics

    (124 25 Gbps links)

CMS Upgrade to Level-1 Trigger

More resources available to implement ML based triggers



Concluding Remarks

• We in HEP may not be the pioneers of modern electronics technologies, but we 
are among those who drive their advancement most aggressively

• Progress in telecommunications and field-programmable logic devices is 
constantly leveraged to manage the growing demands of data processing

• A collaborative team of engineers and physicists has mastered the challenge of 
handling the massive data output from the LHC, using advanced 
telecommunications and field-programmable logic devices to facilitate 
groundbreaking discoveries in fundamental physics

• With advances in ML and FPGAs, more complex models can be implemented in 
future
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Thank you

धन्यवाद
ధన్య వాదాలు
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Extra Slides



Jargons
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● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip

● PCB: Printed Circuit Board

● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm

● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput

● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA

● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements

● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer 

to one or more peripheral devices

● InfiniBand is a computer networking communications standard used in high-performance computing that features very 

high throughput and very low latency

● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores

● HDL - Hardware Description Language - low level language for describing circuits

● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates

● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds

● II - Initiation Interval - time from accepting first input to accepting next input



CMS Level-1 Trigger
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Calorimeter Trigger 
Layer-2

Global 
Trigger

Calorimeter Trigger 
Layer-1

Wisconsin CTP7 Board
Xilinx’s Virtex7 FPGA 



What is CICADA ☺
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A “CICADA” is an insect of the
family “Cicadoidea”

• Cicadas are known for their loud 

vocalizations (typically during 
summer)

• Much of a cicada’s life cycle is 

actually spent underground, with a 

few famous American species (the 
“periodical cicada”) only emerging 

every 13 (magicicada tredecim) or 
17 (magicicada septendecim) years

Source: https://kids.nationalgeographic.com/animals/invertebrates/facts/cicada 

https://kids.nationalgeographic.com/animals/invertebrates/facts/cicada
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