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I Large Hadron Collider

pp collisions @ Vs = 13.6 TeV




Large Hadron Collider

The LHC accelerates bunches of billions of protons
(orions) from 450 GeV injection energy from SPS to
6.8 TeV and collides them at 13.6 TeV centre-of-mass

energy

LHC circumference is 27km and the minimal distance

between bunches is 25ns*c
o Revolution frequency of LHC is 11.24 kHz

o Bunch crossing rate (ZeroBias rate) depends on
number of bunches in the machine

o e.g. For2380 colliding bunches (2023)
« ZeroBiasrate = 26.8 MHz




LHC Parameters

Run-1 Run-2 Run-3*
ra— ’ 2010-2012 | 2015-2018 | 2022-2026

Beam Energy 3.5-4.0TeV 6.5TeV 6.8 TeV
X o'-. Io.
Bunch g Bunches/Beam 1380 2556 2556
— o ° Protons/bunch  1.15x 10'" 1.2x 10" 1.3x 10"
Peak 7.7x103%3 2.1x1034 2.1 x 1034
Luminosity cm=2 s cm?Zs! cm2s!

Parton e‘
(quark, gluon) \)

Particle ;OL Crossing rate: ~40MHz (every 25ns)



Proton-Proton collision @ LHC

. o LHC  Vs=14TeV L=10%cm2s"! rate f‘:’:":’;

Production cross-sections for different e vt ———S 10

physics processes span over many orders _ L

of magnitude v Wz 10

« Collision rate is dominated by non | o Vo ———

interesting physics F o S

« Background discrimination is crucial P e
nb it = 10

| Hz — 107

Total non-diffractive p-p cross section at N

LHC (Ns = 14 TeV) is ~80mb

1 mHz —;104

b | 5 <102
g Hgy—~ZZ" -4l 3
I Z I

uHz < 10

_ ® Zyy—dy scalar LQ 3
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particle mass (GeV)



Proton-Proton collision @ LHC

o LHC vs=14TeV L=10*cm2s™ rate ev/year

At Instantaneous Luminosity of: P e
~2 x10%4cm-2s-1 ""“— .

50 pp events/25 ns crossing ., Ric oo N .
« About 1 GHz input callision rate — iz <10

- EWK rate: 1 kHz W/Z events . i B
- Top rate: 10 Hz top events "

Higgs rate: < 10* detectable p.,

- mHz ~ 10°

Higgs/year Ban 3
10
fb ﬂ\ 102
f Hgy—~ZZ" -4l :
f ® Zg,—=dy scalar LQ\ Z,~I'T nHz ; 10
50 100 200 500 1000 2000 5000 1

particle mass (GeV)



Detectors
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CMS DETECTOR STEEL RETURN YOKE
Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERi _l

Overall diameter :15.0m Pixel (100x150 pm) ~1m? [F66M channels
Overall length :28.7m Microstrips (80x180 ym) ~200m? |:9.6M channels |
Magnetic field :3.8T
SUPERCONDUCTING SOLENOID
,/‘r
\7 _ 1=

Niobium titanium coil carrying ~18,000A
=

7

IMUON CHAMBERS |
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

PRESHOWER

Silicon strips ~16m? [~137,000 channels

FORWARD CALORIMETER

" Steel + Quartz fibres 12,000 Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)

|~76,000 scintillating PbWO, crystalsl \ 2

/

HADRON CALORIMETER (HCA
Brass + Plastic scintillator



Goal
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Reminder: DAQ

The Data Acquisition (DAQ) system collects the data from all the
sub-detectors, converts the data in a suitable format and saves it o
permanent storage

Question: Is that all?



Reminder: DAQ

The Data Acquisition (DAQ) system collects the data from all the
sub-detectors, converts the data in a suitable format and saves it o
permanent storage

Question: Do we need a trigger? If yes, why & where?



|I There is a problem... ).

« At an input rate of 40MHz
« Each raw event being 1-2MB

It is impossible to record data at 80 PB/s



There is a problem...

« At an input rate of 40MHz

. It is impossible to record data at 80 PB/s
« Each raw event being 1-2MB

Solution = Be Selective = Add a trigger




Trigger concept

DAQ Trigger

Start the data Sl e

interesting

acquisition
9 Process

The role of the trigger is to make the online selection of particle collisions
potentially containing interesting physics

 What is ‘Interesting’?:
» Define what is signal and what is background

 What is the final affordable rate of the DAQ system?
» Define the maximum allowed rate

* How fast the selection must be?
» Define the maximum allowed processing time



A Simple Trigger System

« Data Input: signals from front-end electronics

J \ 4 Thr, — N\
Signal % J\\

Charge YVoltoge Bigger, Yoltage P

F’{se l Fulse F'ldse
From Front-End Pre-amplifier Amplifier \ DlscrlmanTor /

The simplest trigger: apply a threshold
« Look at the signal
« Put a threshold as low as possible




CMS Trigger System

Two level triggering
« Level -1 Trigger (LIT)

« Custom hardware using
FPGAS

* 40 MHz > 100 kHz
« High Level Trigger (HLT)

« Computing farm
* 100 kHz - 1kHz

(@ @'&%@ N

Apparatus E vent Physics channel

Experiment | # of levels __
ALICE 4
ATLAS 3
LHCb 3
CMS 2
Level-1 _ Level-2 Level-3

Question: Why different levels?



I CMS Trigger Architecture

~40 MHz

Lv1

us

~100 kHz

HLT

~1 kHz

Detectors

Digitizers
Front end pipelines
40 MHz synchrounous

Readout buffers
100 kHz asynchrounous

Readout networks
1 Terabit's bandwidth

Event filter

TeraFlops processor farms

Mass storage

Data path split here:
Coarse (L1), raw (DAQ)

Data sitting in buffers,
waiting for decision from L1

L1 latency sets the depth of
buffers (and $$)




Data Processing to Trigger

Rate (Hz) LEVEL-1 Trigger 40 MHz
QED y Hardwired processors (ASIC, FPGA)
; —— MASSIVE PARALLEL
| Pipelined Logic Systems
108
10° — ||l&——=0.01-1sec — p|

104 ‘é\“é\“é’\“é\ D
wz A
Top 10° “Jé\“jé‘\ ‘é\“ﬁ\“}é\
. Ao o
Higgs FA A A

104
HIGH LEVEL TRIGGERS 100 kHz
Standard processor FARMs

10 25ns = s ms sec

10 10 10 102 10° .
Available processing time




I “Interesting” Physics Signatures

Electroweak Symmetry Breaking Scale
* Higgs (125 GeV) studies and higgs sector characterization
* Quark, lepton Yukawa couplings to higgs

New physics at TeV scale to stabilize higgs sector
» Spectroscopy of new EWK produced resonances (SUSY or otherwise)
* Find dark matter candidate

Mulii-TeV scale physics (loop effects)
* Indirect effects on flavor physics (mixing, FCNC, etc.)
* Lepton flavor violation

Planck scale physics
* Large exira dimensions to bring it closer to experiment
* New heavy bosons
e Blackhole production



How to Identify these “interesting” events?

Electroweak Symmetry Breaking Scale
* Higgs (125 GeV) studies and higgs sector characterization

* Quark, lepton Yukawa couplings to higgs (s-

New physics at TeV scale to stabilize higgs sector
» Spectroscopy of new EWK produced resonances (SUSY or otherwise)

 Find dark matter candidate <-—

Mulii-TeV scale physics (loop effects)

« Indirect effects on flavor physics (mixing, FCNC, etc.) - De‘ifg;fgggﬁgf{;(ggs) or

* Lepton flavor violation Low P; leptons

LowPr1: & ¥

Multiple low
P objects

Planck scale physics
* Large exira dimensions to bring it closer to experiment High Py leptons and photons
e New hequ bosons Multi particle and jet events
e Blackhole production



I Input to CMS level-1 Trigger

Use prompt data (calorimetry - MUON SYSTEM
and muons) to identify: Segment and track finding
High p, electron, muon, jets, '

missing E.

CALORIMETERS

Cluster finding and energy
deposition evaluation

New data every 25 ns
NO TRACKER Decision latency ~ ys

Question:
Why not Tracker?

What is a latencye

Why us<e



|I Input to CMS level-1 Trigger =),

Use prompt data (calorimetry
and muons) to identify:

High p, electron, muon, jets,
missing E.

CALORIMETERS

Cluster finding and energy
deposition evaluation

NO TRACKER

MUON SYSTEM

Segment and track finding

New data every 25 ns
Decision latency ~ ys

Pattern
recognifion
much
faster/easier




Input to CMS level-1 Trigger

Level-1 frigger receives data with

coarse granularity from
« Calorimeters (ECAL, HCAL, HF)
«  Muon systems (CSC, DT, RPC, GEM)

Collision data are buffered locally for < 4us

| 1 | |
1@\ ]
1o NS il |
o\ Il
R _,;—% uﬁ]
i 1T = ﬁﬂﬂl
Silicon ~~4--7% h ‘ i
Tracker ol NI R by [l i i
S A
Electromagnetic  / ¥ i
Calorimetdr {7 i
| Hadren </ 1 v ) i [
Callorimeter SUP: n’@@mdlw@@ﬂng v & Yl
| f@ﬂ@n@ﬁd] | Irom return yoke interspersed 47 ||| |
with muon chambers -
i i i 1
Calorimeters Muon Systems

Uses field programmable gate arrays (FPGAs)
Operates synchronously to the LHC clock (40 MHz)

|
csc RPC DT 1 HO HBHE HF ECAL
TPs Hits TPs 1 TPs TPs TPs TPs
I
Muon - |
Port Card Link 1
. - Board
: Trigger
I Primitives (e
CPPF TwinMux h Calorimeter
| or Hits L
1
Regional +—‘ 1! l 1 1
Endcap Overlap Barrel Layer 2
TrO € k Track Track Track I Calorimeter
F N d ers Finder Finder Finder | Trigger
[ ] I
I
|
Global
I -
1 j_'

L1 Accept ~100 kHz



Trigger Final Decisions

From uGMT:
muon
candidates

l

From CaloL2:
jet,
e/gamma,
taus,

energy sums
candidates

l

External
Conditions

l

uGT
Pre-DT Pre-DT Post-DT
Rate | Rate Rate Rate
counters | Before After
Prescale Prescale m

A

| L1_SingleMuCosmics |—>| Prescale

Algorithm 0

| Algorithm 1

| Algorithm 2

Algorithm 511

40 |eul]

Physics
Genera
ted FDL

To FEDs
Rate
counters TCDS L1A

L1A EE“E'§ k Random and
Calibration

L1A physics

Trigger
generators

Physics
Generat
ed TCDS

[

Dead
Time
Counters

Trigger suppression:
TTS

Trigger Rules

Bunch Mask

ReTri

APVE

DAQ Backpressure
etc.

TTS

From FEDs




What all we keep?

Jets + Energy sums |:| 1%
Energy sums I:l 2.6%
@ + Jets or Energy sums |:| 3.2%
pte/y [ ]3.3%
e/v + Jets or Energy sums I:I 4.6%
T+ p or e/ or Jets or Energy sums I:I 5.3%

Multie/y [ |6.4%

Single p 1 9.8%
Single or Multi Jets | 11.5%

|
|
Single or Multi 7 | 112.7%
|
|

| 24.8%




High Level Trigger

« Implemented using generic processors (CPUs/GPUs)

* Muon Systems, Calorimeters and Tracker

» Increase in number of Trigger, algorithms, selections
and complexity

« Event Filtering, Selections are made sequentially:
When an event fails a given selection criteria then the
processing stops in order to allow the node to be
used by a new event

« Data accepted by the HLT are recorded for offline ———
physics analysis

« HLT contains hundred of paths, each of which is
seeded by one or more trigger at L1. Example: HLT

HLT_Mu17_TkMu8

\ ~1 kHz

Non isolated muon with pT > 17 GeV Muon with pT > 8 GeV from tracker

Readout buffers

100 kHz asynchrounous

Flreadout networks
: <

dth

Event filter

TeraFlops processor larms

Mass storage
Petaflops archive




GPU Acceleration @ CMS HLT

21% processing time reduction

351.1ms

The pie-chart shows the distribution of CPU time in different instances
of CMSSW modules (outermost ring), their corresponding C++ class
(one level inner), grouped by physics object or detector (innermost
ring). The empty slice indicates the time spent outside of the
individual algorithms.

The time spent in the conversion of GPU-friendly Structure of Arrays
data formats to legacy data formats is indicated by “Conversion” in
the extra internal ring.

The timing is measured on pileup 50 events from Run2018D on a full
HLT node (2x Intel Skylake Gold 6130) with HT enabled, running 16
jobs in parallel, with 4 threads each - equipped with an NVIDIA T4
GPU.

Using the GPU to accelerate:

e pixel local reconstruction, track and vertex reconstruction
e HCAL local reco (MAHI)
e  ECAL unpacking and local reconstruction (muiltifit)

reduces the CPU usage by 21%, increasing the throughput by 26%.




All set to do physics analyses

Detect 3 High-L l
i ik Lirdggsr l‘?riglgee\;a Flr?aall:zls
Months/Years
410,000,000 1,00
events/sec eventsysec
< > CMS Preliminary
ns MS ms S 23F ', b Dec 05, 2012 -
Must oaf | SRrmey  EIRELINE
ust use Qosp || Dzrz ° E
12} r
FPGAs, CPUs, GPUs or § 20
enforced by combinations st
latency of two :
requirements 1o
A:
0

80 100 200 300 400 600 800
m,, [GeV]



Lets discuss about FPGASs

FPGA: Field Programmable Gate Array



Gates [edi]
+ 1987: 9,000 gates, Xilinx'®!
+ 1992: 600,000, Naval Surface Warfare Department!?!
« Early 2000s: millions(®]

Xilinx: All Programmable « 2013: 50 million, Xiinx{'?

Software Defined, Hardware Optimized Market size {edt]

+ 1985: First commercial FPGA : Xilinx XC2064/51°]
You may know Xilinx because we invented the FPGA. Or maybe you know « 1987: $14 million(®!
us because we turned the semiconductor world upside down and created
the fabless model. With over 3500 patents and more than 60 industry = N L g
firsts, we continue to pioneer new programmable technology putting our * 2005 §1.9 bilion'
customers first. Today Xilinx's portfolio combines All Programmable » 2010 estimates: $2.75 billion'"?
devices in the categories of FPGAs, SoCs, and 3DICs, as well as All + 2013: $5.4 billion(*]
Programming models, including software-defined development « 2020 estimate: $9.8 billion('*!
environments. Our products are enabling smart, connected, and
differentiated applications driven by 5G Wireless, Embedded Vision,
Industrial loT, and Cloud Computing. Design starts [edit]

+ 2030 estimate: $23.34 billion!'°]

A design startis a new custom design for implementation on an FPGA.

« 2005: 80,0000'6!
+ 2008: 90,000!'7]

First FPGA invented by Xilinx Inc. in 1985

Source: https://en.wikipedia.org/wiki/Field-
programmable_gate_array



FPGAsS:

Programmable hardware whose sub-component
configuration can be changed even after fabrication:
“field-programmable”

Has 2D array of logic gates in its architecture: “Gate
Array”

A silicon ‘breadboard’ of configurable logic gates,
memories, tfransceivers, Digital Signal Processors (DSPs),
registers (flip flops)

FPGA industry sprouted from programmable readonly
memory (PROM) and programmable logic devices (PLDs)

EN  Em Em =
8 |88 8
8 |88 08
0 |8 |88
0 |8 |88
mn mm mm Em




|I FPGA Architecture

Configurable
logic blocks
(CLB)

s | B @3 | &
(RN 1EEN == EEER ]

I=R==
T H | e

Input/output blocks

Programmable
interconnects

Routing
channels



| FPGA Architecture

Contains thousands of fundamental elements called configurable logic
blocks (CLBs) surrounded by a system of programmable interconnects,
called a fabric, that routes signals between CLBs.

The interconnects can readily be reprogrammed, allowing an FPGA to
accommodate changes to a design or even support a new application
during the lifetime of the part.

Input/output (I/O) blocks interface between the FPGA and external
devices.

Stores its configuration information in a re-programmable medium such as
static RAM (SRAM) or flash memory



|I FPGA Components =i

The basic structure of an FPGA is composed of:
» Look-up table (LUT)

* Flip-Flop (FF)

» Slices and CLBs

* Block Memory (BRAM)

» DSP Blocks

* Inferconnect and routing resources. Wires & Input/Output (I/O)
pads




FPGA Components: LUT

LUTs or logic cells:

[]
« Basic building block of FPGA used for implementing

combinational logic

« Capable of performing any arbitrary functions on
small bitwidth inputs (N), generally N < 6

« Memory location accessed by LUTs: 2N

« Example: a 4-input LUT can implement any Boolean
function with 4 variables by storing 16 (2A4) output
values

* It can be used as both a function compute engine " 0

and a data s’roroge element Functional Representation of a LUT
as Collection of Memory Cells



Flip-Flops:

» Basic storage unit within the FPGA falbric
» Circuit that can store and recall a single bit of
information. Used for sequential logic.

« Always paired with a LUT to assist in logic
pipelining and data storage

FPGA Components: Flip Flops

* Operation: value at the data input port is

latched and passed to the output on every —|*

pulse of the clock

« Datais passed only when clock and clock 4.

enable =1

Flip-flop
(registers)



FPGA Components: DSP

Digital Signal Processor Block:

Most complex computational block available in
a FPGA

Arithmetic Logic unit: specialized unit for
multiplication and arithmetic
« Eg:p=ax(b+d)+c

Faster and more efficient than using LUTs for
these types of operations

Often most scarce in available resources




BRAMs (Block RAM)

« Embedded memory elements that can be used
as Random-access-memory

« BRAM is a dual-port RAM module instantiated to
provide on-chip storage for a relatively large set

of data
« can hold either 18 k or 36 k bits

» Useful for low latency & high bandwidth access (data buffering, complex algos)

« BRAMs can implement either a RAM or a ROM. The only difference is when the data
is written to the storage element.



LUTs as storage element:

* They can be used as 64-b memories due to its
structural flexibility

« Commonly referred to as distributed memories

« Fastest kind of memory available on the FPGA device, because it can be
instantiated in any part of the fabric that improves the performance of the

implemented circuit

« Memories using BRAMs more efficient than using LUTs



FPGA Components: Routing

Between rows and columns of logic blocks are wiring channels
These are programmable — a logic block pin can be connected
to one of many wiring tfracks through programmable switch
Xilinx FPGA have dedicated switch block circuits for routing
(flexible)

Each wiring segment can be connected in one of many ways

P B Programmable
_ -/ N switch
_- / . | \ \
S \ ) ’ )
_T ~ \ \I /
Se N /
SN 4 .
~ —>< Wire
T segment

‘ Fig. 18
Logic block  switch Wires
\ block /

. A

e
7

| — Logic Block Pin

Potential

connection

N

Routing Wire

The main advantage and attraction of FPGA comes from the programmable interconnect -

more so than the programmable logic.



FPGA Components: 1/O

There are specialised blocks for I/O
« Making FPGAs popular in embedded systems and HEP

triggers

High speed fransceivers

« with Tb/s total bandwidth PCle

« (Multi) Gigabit Ethernet

* Infiniband

Support highly parallel algorithm implementations
Low power per Operation (relative to CPU/GPU)

Input/output blocks



I Programming FPGA

* Programming an FPGA requires Firmware to be written and
synthesized into a "bit file” to load into the chip

« Languages used to write the logic implementation:
« Hardware Description Languages (HDLs)
* Verilog
» VHDL (VHSIC Hardware Description Language)
» System Verilog

» High-Level Synthesis (HLS) Languages
» Code written in C/C++ is converted to RTL (Verilog/VHDL)
» OpenCL



FPGA Parallelism




Program execution on a Processor

A processor executes a program as a sequence of instructions
* Translated intfo useful computation for a software application
Compiler fransforms the C/C++ into assemble language

Z=a+b; ‘ ADD S$SR1,S$R2, $R3

The assemble code defines the addition operation to compute the value of zin
terms of the internal registers of a processor

The complete assembly program to compute the value of zis as follows:

LD a, $R1
LD b, $R2
ADD SR1, SR2, SR3
ST SR3, c

Even a simple operation, such as the addition of two values, results in multiple
assembly instructions



I Program execution on a Processor

 Depending on the location of a and b, the LD operations take a different
number of clock cycles to complete:

* Processor cache : few 10 clock cycles
« DDR memory: ~100/~1000 clock cycles
« Hard drives: even longer

- Software engineers spend a lot of time restructuring their algorithms

* Increase the spatial locality of data in memory to increase the cache
hit rate and decrease the processor fime spent per instruction



Program execution on FPGA

and arithmetic function that can run on a processor

* Main difference: Vivado HLS compiler

» Transforms software descriptions into RTL, is not hindered by the restrictions of a
cache and a unified memory space

« Computation of zis compiled by Vivado HLS into several LUTs required to achieve
the size of the output operand

« E.g.: InC code, variable a, b, and z are defined with the short data type (16-bit
data container)

« Variables gets implemented as 16 LUTs by Vivado HLS

General rule: 1 LUT is equivalent to 1 bit of computation



I Execution steps on FPGA

* Vivado HLS compiler exercises the capabilities of the FPGA fabric
using following processes:

o Scheduling
o Pipelining
o Dataflow

Transparent to the user, these processes are integral stages of the
software compilation process that extract the best possible circuit-
level implementation of the software application.



Scheduling

Process of identifying the data and control dependencies between different operations
» To Determine which operation occur during each clock cycle based on:
« Length of the clock cycle or clock frequency
« Time it takes for the operation to complete, as defined by the target device
« User-specified optimization directives
Clock Cycle ,—1’ | 2 | ‘ } b

-
Scheduling
Phase

int foo(char x, char a, char b, char c¢) {

char vy;

y = x*a+b+c;

return vy; \ J

} (Initial Binding Ml Addsub )
Phase

AddSub
A J

Target Binding

Phase DSP48 AddSub
\




Pipelining

Technique to avoid data dependencies and increase the level of parallelism

» Preserving the original functionality, required circuit is divided into a chain of
independent stages

« All stages in the chain run in parallel on the same clock cycle
« The only difference is the source of data for each stage

- Each stage in the computation receives its data values from the result computed
by the preceding stage during the previous clock cycle

y=(a@xx)+b+c



Pipelining

C implementation

y = (G XX)+b+C @:’ipel}ne ;

Pipelined
implementation




Pipelining

* Boxes: registers implemented by FF blocks

* Each box column counted as single clock
cycle

(o]

o fox fo
L1 E
L |

* Result in 3 clock cycles.

« Addition of registers, leads to separated
compute sections for each block
« Mulliplier & two adders can run in parallel
and reduce latency



I Pipelining

« Both sections of the datapath run in parallel

Essentially computing the y and y’ in
parallel
y’ result of the next execution

First computation of y: pipeline fill time =3
CLK

After this initial computation, a new value
of y is available at the output on every
clock cycle, because the computation
pipeline contains overlapped data sets for
the current and subsequent y
computations

o fox o

o




Pipelining

« Raw data: dark gray,
« Semi-computed data: white
« Final data: light gray

All exist simultaneously & each
stage result is captured in its own
set of registers

Although the latency for such
computation is in multiple cycles,
there is new result with every
cycle

-0}

b

=

C

a(i-1)*x(i-1)
b(i-1)
c(i-1)

a(i-2)*x(i-2)+b(i-2)
+c(i-2)




I Dataflow

Similar to pipelining but parallelism at coarse-grain level

» Parallel execution of functions within a single program

* By evaluating the interactions between different functions of a program
based on their inputs and outputs

« Case-1: Independent (simplest)
» Separate resources for different functions and run the blocks independently

« Case-2: Dependent (complex)

« One function provides result for another function (consumer-producer
scenario)




Why in HEP we need to know so
much about FPGAs?




I Workflow during FPGA development

T
X Idea Y; —
a j t\—”\/*)/ .
Physicists Engineers
v , 4
[ Simulation (FW tests) ]< > PCB layput
U PCB production
[ Final FW }1 Firmware ) U .
ﬂ PCB commissioning
[ FW evaluation ]<
: @ : _




| Save $$S!!!

e Like ourresources, each FPGA has limited resources

 FPGASs are expensive

* Need to design most optimal logic to have efficient functionality
to meet the requirements



IBacktoTﬁggeﬂ

Muon Trigger

e ~
Layer 1
Calorimeter
Trigger

Layer 2
Calorimeter
Trigger

DeMux

{

Global Trigger

To make decision in us

We have parallel/Pipelined
system

Feed Forward Algorithms (no
backward loops)

Highly distributed

Parallelism in FPGA

Parallelism in Logic



Xilinx FPGAs - Phase-1 choice: V7 690T

Xilinx Multi-Node Product Portfolio Offering

45nm 28nm 20nm 16nm SPeed grqd e:
SPARTANW VIRTEX” VIRTEX® VIRTEX maximum
KINTEX " - - propagahop‘
KINTEX. KINTEX, delay for critical

Currently

Deployed HL-LHC paths in the FPGA

fabric or I/O

Product Tables and Product Selection Gi

| m m operations
Cost-Optimized Portfolio 7 Series UltraScale UltraScale+
Spartan-7 Spartan-6 Spartan-7 Artix-7 Kintex UltraScale ~ Virtex UltraScale Kintex UltraScale+ = Virtex UltraScale+
Artix-7 Zyng-7000 Kintex-7
° ° (]
Decide wisely whic A to use as per your needs
hl% e =

Max Logic Cells (K) 102 215 478 1,955
Max Memory (Mb) 4.2 13 34 68
Max DSP Slices 160 740 1,920 3,600

Max Transceiver Speed (Gb/s) - 6.6 125 28.05

Max I/0 Pins 400 500 500 1,200



Figure 1. MiniPOD™ Transmitter and Receiver Modules with a) Round Cable and b) Flat Cable: Figure 2. MiniPOD™ Transmitter and Receiver
shown with and without dust covers (White = Tx, Black = Rx). flat ribbon cable modules in a tiled arrangement

example.

Key Product Parameters

The Avago Technologies MiniPOD™ modules operate at 850 nm and are compliant to the Multi-mode Fiber optical specs
in clause 86 and relevant electrical specs in annex 86A of the IEEE 802.3ba specifications.

Parameter Value Units Notes
Data rate per lane 103125 Gbps As per 802.3ba: 100GBASE-5R10 and nPP| specifications
Mumber of operational lanes 12 100GbE operation utilizes the middle ten lanes (Rx and Tx)

of the 12 physically defined lanes

OM3, 2000 MHzMHz-krn 50 pm MMF
OM4, 4700 MHz-km 50 wm MMF

Link Length 100
150

3 3



CMS Level-1 Trigger Hardware

Calo Layer-1 Muon Trigger

CTP7: 18 boards  Calo Layer-2
CTP7: 10 boards

- "'Y\'V \l\

[~ :

B |
: A4
’5\5: b = \‘?:'.\\'

h # \"
2

Time-
Multiplexed

Trigger * Virtex/ FPGA used a main processor

« UTCA Form factor & infrastructure
« DAQ, slow control & monitoring




b . ".’:l;'-_ aa ) g |
Calorimeter Trigger Processor(CTP7 - left), and Master Processor (MP7 - right)

« CTP7 (Layer-1) - mTCA Single Virtex 7 FPGA, 67 optical inputs, 48 outputs, 12 RX/TX backplane
» Virtex 7 dllows 10 Gb/s link speed on 3 CXP(36 TX & 36 RX) and 4 MiniPODs (31 RX & 12 TX)
« ZYNQ processor running Xilinx PetaLinux for service tasks, including virtual JTAG cable

* MP7 (Layer-2) - mTCA Single Virtex 7 FPGA, up to 72 input & output links

« Virtex 7 has 72 input and output links at 10 Gb/s
» Dual 72 or 144MB QDR RAM clocked at 500 MHz



CTP7 FW Infrastructure

RX Link

Link Clock Domain (250 MHz)
—

Dynamic Reconfig,
Eye Scan, PRBS,
link tuning

DRP AX14

MGT RX

TX Link
<

A 4

Hard Core

[

\
53’&\\'? o

A 'a“{\a“\ \o]

W got®

AQC

MGT TX

Hard Core

MGT
FW Instantiation

Algorithm Clock Domain (120 MHz)

CDC RX FIFO

(clock domain crossing)

RX link clk

Link Align. AMC13 AMC13
Controller interface
Input
Capture/
Playback
RAM
Algorithm
AXl-Stream Block
64b (48x in/48x out)
Algo clk

32b

TX link clk

CDC TX FIFO

(clock domain crossing)

4

Qutput
Capture/
Playback

RAM

il

AXI-Stream

AXl-Stream
L
64b KI

64b




Cost-Optimized Portfolio 7 Series UltraScale UltraScale+

Spartan-7 Spartan-6 Spartan-7 Artix-7 Kintex UltraScale  Virtex UltraScale Kintex UltraScale+
Artix-7 Zynqg-7000 Kintex-7 Virtex-7
Max System Logic Cells (K) 1,143 3,780
Max Memory (Mb) 70.5 65,913
Max DSP Slices 3,528 12,288
Max Transceiver Speed (Gb/s) 32.75 32.75

Max I/0 Pins 572 832




Multi-gigabit-per-second serial links

LHC

10 Gbps

Virtex
UltraScale+

Kintex
UltraScale+

Virtex
UltraScale

Kintex
UltraScale

Virtex-7
Kintex-7
Artix-7

Zynq
UltraScale+

Zynqg-7000

Spartan-6

Type

GTY

GTH/GTY

GTH/GTY

GTH

GTX/GTH/GTZ
GTX

GTP

GTR/GTH/GTY

GTX

GTP

Max
Performance’

32.75

16.3/32.75

16.3/30.5

16.3

12.5/13.1/28.05

125

6.6

6.0/16.3/32.75

12.5

32

Max
Transceivers

128

44/32

60/60

64

56/96/163

32

16

4/44/28

16

Peak
Bandwidth

8,384 Gh/s

3,268 Gb/s

5,616 Gb/s

2,086 Gb/s

2,784 Gb/s

800 Gb/s

211 Gb/s

3,268 Gb/s

400 Gb/s

51 Gb/s

HL-LHC

<€

25 Gbps
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* Wisconsin APxF Board
» Xilinx VU13P or VU9P FPGA

' " '\\\. -

WA e + ZYNQ-IPMC
= | IXCVU9P: ' (ATCA IPMI Con’rroller)
e ' « ELM (ZYNQ-bgased
'ﬁi‘;hag‘:) embedded Linux endpoint)
IHeat Sink « ESM (GbE switch)
ﬂ—  High efficiency heatsinks
A 4"“”“( é:% L » Front-panel inputs

i } ;,.
P
« 25G Samtec Firefly positions

loaded — 10x12 + x4
(124 25 Gbps links)

Latenct budget for HL-LHC: 12.5 us



APXx - Firmware/Software

10GbE —_
£ XILINX.ZYNG™
* A new paradigm for e e e ELM: ‘
firmware development - “’i @/ ;gg f - Con’[(rjc?l endpoml’r,T
+ Core firmware written in VHDL : ' C[=asc=H | i ~ growdlng Cﬁm%e e
by engineers X [ f OOFT_ OV?; ea
. G|ggb|1’ link SUpporT 1GbE { - 1bﬂ::er i uncrionalty
+ Data exchange between SLRs i °Fo o _

within chip

» Test buffers \LEZ
TCDS
» Clock and confrol —
> DA
R [SEE |
: Processing FPGA.:
« Physics 0 | A
S o Optical Input = Optical Qutput ' - data processor
 Algorithmic firmware in high- Links 1o MGT |l o LS| aigoritm Blocks {3 gurers |- MGT pe - DAQ
level languages like C++ written RX ™
by physicists
> AXI-Stream APx Firmware Shell




Trigger Upgrade FW testing

o= SN TTUINN  S—

Test vectors >y
(MC based) RCT1 I Test stand at |
e ' Wisconsin |
RCT 2 [l T
; : e 4|

Firmware prepared and tests
conducted by former UoH PhD

I EEEES student Piyush Kumar

' o (Now Research Engineer @

compared to expected University of Notre Dame, USA

1

RcT3 FRESE

First time capturing real

data in multiple card test!
B02-TDAQ-Stenson CD2/3c Review 15







CPU advantages FPGA Advantages

Better with floating point numlbers * More versatile & adaptable

Programming a CPU is normally easier
than programming an FPGA (does not
require to understand digital electronics)

More flexible input/output
Parallel processing
Better with multi-clock systems

Faster compilation » Better with time-critical operations
Easier code portability * Power Efficient
Lower unit cost * Faster than processors

More and more often, FPGAs and CPUs (or GPUs) are complementary:
They co-exist in the same system and perform different tasks



ASICS
& ™
Lany)
____________________________________________________________________________________________________________________________________________________________________________________________| L/
A

ASIC: Application Specific Infegrated Circuit

FPGAs were originally popular for prototyping ASICs,
but now also for high performance computing

T
<P

Flexibility

Efficiency




| FPGA/ASIC Advantages

FPGA Advantages ASIC Advantages
Faster time-to-market - no layout, masks or other Full custom capability (including analog)
manufacturing steps are needed - since device is manufactured fo design
Lower constant/initial cost Specs
Simpler design cycle - due to sofftware that Lower unit costs — For mass production
handles much of the routing, placement, and Smaller form factor - since device is
timing manufactured to design specs
More predictable project cycle due to Higher clock speeds

elimination of potential re-spins, wafer
capacities, efc.

Re-programmability: a new configuration can
be uploaded



Telecommunication
Automotive

Aerospace and Defense
Medical Electronics

ASIC Prototyping

Audio

Broadcast

Consumer Electronics

Data Center

Distributed Monetary Systems
High Performance Computing

Industrial

Scientific Instruments
Security systems
Video & Image
Processing

Digital signal processing
Bioinformatics
Controllers
Computer hardware
emulation

Voice recognition

Cryptography



I More Advanced Architectures

« Embedded FPGA System on Chip (SoC)

» High Bandwidth Memory (HBM) on Xilinx FPGA
» A theoretical bandwidth up to 460 GB/s

« ACAP: Adaptive Compute Acceleration Platform

» A fully software-programmable, heterogeneous compute platform that combines
Scalar Engines, Adaptable Engines, and Infelligent Engines fo achieve dramatic
performance improvements of up to 20X over today'’s fastest FPGA
implementations and over 100X over today's fastest CPU implementations—for
Data Center, wired network, 5G wireless, and automotive driver assist applications.




ACAP Application

3 —
@9 -€-8_
S .
(:" — —% T — —%
UV
1x HD Camera Sensor Fusion
~10W 4x HD Cameras
Radar
Ultrasound
LIDAR
Machine Learning

~10W

WP505_13_092818

Xilinx ACAP Devices enable sensor fusion in small power envelopes



Path to firmware

C/C++ Constraints/
algo directives
% Q High Level Synthesis (HLS)
« Compile from C/C++ to VHDL/Verilog
Vivado™ HLS » Pre-processor directives and constraints used

£ XILINX ' to optimize the design

Hardware Description Languages
{} « VHDL/Verilog

* Programming languages which describe

[ VHDL/Verilog J electronic circuits

I\/I Drastic decrease in firmware development time!

Firmware
block



https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf

| —
Vivado™ HLS

High Level Synthesis £XUNK | g

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Getting-Started-with-Vitis-HLS



https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Getting-Started-with-Vitis-HLS

| What is HLS?

HLS is an automated design process that @

transforms a high-level functional @ [High_Leveﬁsynthesis]
specification to an optimized register-transfer — Sofware [

level (RTL) descriptions for efficient program | s e

hardware implementation i

+ [ Physical Synthesis ]

| Circuit (ASIC, FPGA) Design

REG
g
'+

for (i=1; i<=c;) HLS Tools h

a=a+t++

b =x*2-3; X . 1

In =

a=y+b/3;
C/C++, Chisel, ... Verilog, VHDL, ...




What is HLS?

44 req o |
45 rep (32 P:P I
posedg
. (zgsezf 33 req 1° /7| 1 “include “xxx.v"
for(int h = 8; h < H; h++ ) 47 end 34 req 16 alw 2 module top ();
for(int w = @; w < W; w++) 1 S Tool 48 35 rep”;;k’ i L
for(int m = @; m < K; m++) >Tools 49 // (ggsﬁ:§ 18 ini| s reg rst;
for(int n = @; n < K; n++) \ 22 i;i 37 req 19 $du 6 reg req3;
\ 38 rep|( arbitl 7 reg req2;
con 52 rst P
20 $du .
(posedg 8 reg reql;
. 39 req 21 clkl 9 reg reqe;
Behavioral-level: ... | 22 7St 10 wire gnt3;
. . 11 wire gnt2;
Expressive and Concise 12 wire gntl;
13 wire gnto;




| Why use HLS?

* Productivity

» Lower design complexity and faster simulation speed
» Ease of use

« Portability
« Single source -> multiple implementations (different target devices)

« Permutability
« Much more optimization opportunities at higher level
« Rapid design space exploration



I HLS Design Flow

« Compile, execute (simulate), and debug the C

algorithm
 Synthesize the C algorithm into an RTL ﬁ s

Implementation, optionally using user
optimization directives

« Generate comprehensive reports and analyze

C Simulation | | C Synthesis.

the design e Vivado HLS g
* Verify the RTL implementation using @ | it ‘ | — |

pushbutton flow ——
« Package the RTL implementation into a e |22 |

selection of IP formats



I Simulation and Synthesis

The two major purposes of HDLs are logic simulation
and synthesis:

« During simulation, inputs are applied to a module,
and the outputs are checked to verify that the
module operates correctly

» During synthesis, the textual description of a module
is transformed into logic gates

HDL code is divided into synthesizable modules and a
test bench:

* The synthesizable modules describe the hardware

* The test bench checks whether the output results are
correct (only for simulation and cannot be synthesized)

Test bench
(verifies the circuit)

Synthesizable HDL
(describes the circuit)




HLS Pragmas

“Pragmas”: Instructions to tell your compiler how to build the hardware

« HLS tool provides different set of pragmas that can be used to optimize the design,
reduce latency, improve performance etc. These pragmas can be directly added to
the source code for the kernel.

Kernel Optimization

Function Inlining

Interface Synthesis

Task-level Pipeline

Attributes

4

pragma HLS aggregate

« pragma HLS alias
« pragma HLS disaggregate

pragma HLS expression_balance
pragma HLS latency

» pragma HLS performance
« pragma HLS protocol

pragma HLS reset

» pragma HLS top
« pragma HLS stable

« pragma HLS inline

pragma HLS interface

» pragma HLS stream

« pragma HLS dataflow
« pragma HLS stream

Pipeline

Loop Unrolling

Loop Optimization

Array Optimization

Structure Packing

Resource Utilization

« pragma HLS pipeline
« pragma HLS occurrence

« pragma HLS unroll
« pragma HLS dependence

« pragma HLS loop_flatten
« pragma HLS loop_merge

pragma HLS loop_tripcount

pragma HLS array_partition
pragma HLS array_reshape
pragma HLS aggregate
pragma HLS dataflow
pragma HLS allocation
pragma HLS bind_op

« pragma HLS bind_storage
« pragma HLS function_instantiate


https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas

I Pragma HLS array_partition

« Partitions an array into smaller arrays or individual elements and provides
the following:

» Results in RTL with multiple small memories or multiple registers instead of
one large memory

» Effectively increases the amount of read and write ports for the storage
« Potentially improves the throughput of the design
* Requires more memory instances or reqisters

Syntax:
Place the pragma in the C source within the boundaries of the function where the array
variable is defined

#pragma HLS array_partition variable=<name> <type> factor=<int> dim=<int>



I Ex: Pragma HLS array_partition

#POragma HLS array_partition variable=AB block factor=4

» This example partitions the 13 element array, AB[13], into four arrays using block
partitioning:
» Because four is not an integer factor of 13:
» Three of the new arrays have three elements each,
* One array has four elements (AB[?9:12])

#pragma HLS array_partition variable=AB block factor=2 dim=2

» This example partitions dimension two of the two-dimensional array, AB[6][4] into
two new arrays of dimension [6][2]:



Pragma HLS unroli

Unroll loops to create multiple independent operations rather than a single collection of
operations

UNROLL pragma transforms loops by creating multiples copies of the loop body in the
RTL design, which allows some or all loop iterations to occur in parallel

Loops in the C/C++ functions are kepft rolled by default

 When loops are rolled, synthesis creates the logic for one iteration of the loop, and
the RTL design executes this logic for each iteration of the loop in sequence

UNROLL pragma allows the loop to be fully or partially unrolled

» Fully unrolling the loop creates a copy of the loop body in the RTL for each loop
iteration, so the entire loop can be run concurrently

 Partially unrolling a loop lets you specify a factor N



Ex: Pragma HLS unroll

#pragma HLS unroll factor=<N>region skip_exit_check

loop_1: for(int i = @; 1 < N; i++) {
#pragma HLS unroll

Place the pragma in the body of loop_1 as shown: ali] = blil + clil;

}

The following example fully unrolls loop_1 in function fogo

void foo (...) {
int8 arrayl[M];
int12 array2[N];

. . loop_2: for(i=@;i<M;i++) {
This example specifies an unroll factor of 4 to #pragma HLS unroll skip_exit_check factor=4

partially unroll loop_2 of function foo, and removes array1[il
the exit check: array2[i]

.
[

.
[



C RTL
Constructs Components
Functions | — Modules
Arguments | — /O Ports
Operators | — Functional units
(+, *) (adder, multiplier)
Scalars — | Wires or registers
Arrays — Memory
Control flows | — Control logics
(Finite State Machine)




C Source Code RTL Hierarchy

void Foo_C() {...} top
void Foo_A() {...}

Void Foo_B() {
Foo. C() Foo_A| |Foo_B
}

void main() { Foo_C
Foo_A();
Foo_B();

Foo_B();
}

C RTL
Constructs Components
Functions | — Modules
Arguments | — /O Ports
Operators | — Functional units
(+, *) (adder, multiplier)
Scalars — | Wires or registers
Arrays — Memory
Control flows | — Control logics

(Finite State Machine)

\
Resource Sharing: Only
one instance of Foo_B
written to the hardware



C Source Code

void top(int* inl, int* in2, int* out) {
*out = *inl + *in2;
}

C RTL
Constructs Components
Functions | — Modules
Arguments | — /O Ports
Operators | — Functional units
(+, *) (adder, multiplier)
Scalars — | Wires or registers
Arrays — Memory
Control flows | — Control logics

(Finite State Machine)

top

in1

Datapath out

in2

in1_vid
- FSM — out_vid
in2_vld ( >_ vy




I Basic Mapping Rule C/C++ > RTL

C Source Code

for (i =9; i < N; i++)
Ali+x] = A[i] + i;

C RTL
Constructs Components
Functions | — Modules
Arguments | — /O Ports
Operators | — Functional units
(+, *) (adder, multiplier)
Scalars — | Wires or registers
Arrays — Memory
Control flows | — Control logics

(Finite State Machine)

l

top
A[N-1]
A[N-2] RAM
Ala]
Alo]




Deterministic at Compile time

On an FPGA, memory maps to a physical address space

Everything must be decided at compile fime — your hardware cannot
be changed while running!

« Adding one more piece of memory after the circuit is built?

int mem[var]; int mem* = malloc(var * sizeof(int));
reg [@:7] mem [var:Q]; 8-bit element
8-bit element HOW
many??

8-bit element



Lets run some examples (ex1)

= Timing
= Summary
Clock | Target EstimatedUncertain
ap-clk10.00ns 7.069ns  125ns
= Latency
= Summary
Latency (cycles)Latency (absolute)Interval (cycles)
min | max min max min | max Type
190 190 1.90Qwus 1.900us 190 190none
= Detail
= Instance
N7A
= Loop

Latency (cycles) Initiation Interval
Loop Name min | max [teration Latency achieved target Trip CountPipelined
- Loop_j 189 189 63 - - 3 no
+ Loop_i 60 60 2 - |- 30 no

= Summary

Name  |[BRAM_18KDSP48E FF  LUT |URAM
DSP - - - - -
Expression - 7 0 211 -
FIFO - - - - -
Instance - - - - -
Memory - i D A
Multiplexer - i B 66 -
Register - | = ] 162 - | -
Total 0 7 162 277 0
Available 4320 684023644801182240 960
Available SLR 1440 2280 788160 394080 320
Utilization (%) 0 ~0 ~0 ~0 0
Utilization SLR (%) 0 ~0 ~0 ~0 O



Is Machine Learning Possible on
FPGAs?

hls 4 ml



his4ml

Welcome to hls4dml's documentation!

hls 4 ml

hisaml is a Python package for machine learning inference in FPGAs. We create firmware

implementations of machine learning algorithms using high level synthesis language (HLS). We
translate traditional open-source machine learning package models into HLS that can be configured
for your use-case!

The project is currently in development, so please let us know if you are interested, your

experiences with the package, and if you would like new features to be added. You can reach us
through our GitHub page.

Project Status

For the latest status including current and planned features, see the Status and Features page.

Tutorials

Detailed tutorials on how to use his4ml 's various functionalities can be found here.

https://fastmachinelearning.org/hls4ml/

his4ml is a software package for automatically
creating implementations of neural networks for
FPGAs and ASICs

Supports common layer architectures and model
software (keras, tensorow, pytorch, ONNX)

pip installable

arXiv:1804.06913


https://fastmachinelearning.org/hls4ml/

his4dml Workflow

= Menbor
+ ? Vivado™ HLS Hl-s ) Catapult
TensorFlow K ‘ ' \ e

TensorFlow
Pl his 4 ml

PyTorch
compressed
conversion Custom firmware
Usual ML design

software workflow Jf

\fune configuration /
PYTHRCH e

& ONNX

Co-processing kernel

Y.




Use prompt data (csiorimetry soea 0N Systam Traditional event selection at L1 based on
B, T z object thresholds

% > High-level and Data analysis selections
e limited to use those objects

CALORIMETERs
Cluster finding and energy

deposition evaluation A ﬁ
g:;g:':,:::z:f:: E l Model-specific :
c selection Anomaly
o o o 8 @ Detection
ML decisions based on level-1 inputs themselves 4 _
= ._
m \ s

o Minimize human bias, completely data-driven
@l Kinematic

selection
[ —

o ML can unearth unknown and complex correlation

. . . Model independence
o New physics searches in model-independent way



CIC A DA

Calorimeter Image Convolutional Anomaly Detection Algorithm

_ [=] i [m]
https://cicada.web.cern.ch/
CMS-DP-2023-086 E


https://cicada.web.cern.ch/

CICADA: New Addition in Run-3

ML-Based Calorimeter Trigger Muon Trigger
Improvements for () ) (=) E

Run-3

& fan-out

—_—

& fan-out
A4

i i Track-Fi
. Calorimeter Trigger [ Muon Track-Finder Layer }

Currently
taking Physics
data @ CMS

-------------------------
Layer-1 E Endcap j:\ Overlap je Barrel i

\
Y. aEmEEm Calorimeter Trigger [ - ----Sorting/Merging Layer___ -]

CICADA * avers

i Endcap i: Overlap 11 Barrel
R \ J 1

Global

: Advantage
FEEEEEEEEEEEEEEEEEEENEER 'ﬁll;;:rl Of FPGA




| CICADA: Inputs

Anomaly Detection Algorithm to Select ~un-biased events for new physics searches
One region = 4x4 trigger towers

- <ijEta— +

CICADA Inputs from CALO Layer-1

1 Il il T PR

« 18 ¢ x 14 nregions, 252 regionsin o m.“ 1y : ' °’°°§
total Sl 13

- ) 8 P i RS T2

* Eachregion contains energy - g i -4 il
deposits from both ECAL and HCAL 68 =4 il s R

«  Summary of the energy distfribution . "t e
profile within the region B H 17— :

= ﬂ-.i:"ﬂ'iﬂi I

-3 5 |§ REA o ARH IRE - SE 1 RRRRERE N 3 3

 Low level information not e e i »oj:f
dependent on object = o ATESETEE TR,

reconstructions Calorimeter E; deposit
from One ZeroBias event

H‘. v :
‘Flap region

Calo tower region map



Calol1 Setup

« Calo-Layer 1 Trigger consists of 3-uTCA crates each
equipped with 6-CTP7 cards

 Each CTP7 cards receive information from the
calorimeters (HCAL, ECAL, HF) and send calibrated
E+H & E/H to next lyare

PM2  AMC1 AMC2 AMC3  AMC4 AMC5 AMCé MCH2 AMC7  AMCB AMC? AMCI0 AMC11 AMC12

PM1 L] MCH1

Backplane links




Al aci2

AMC AMGE  AMG  AMCIO  AMCI  AMCIZ

CICADA: Layer-1 to uGT

MTP Adapter (Aqua)
TXMTP12M to OM3 128
+

L 10 Gbps links (Using L1Trigger Protocol) 1

Y \

L1 Calo Side uGT Side

UGT use optical splitters 1:2 and they
We expected to have ~20m of fiber connections accept ~330UW optical power

All data is collected in one card
‘Summary Card’

LC fibres

Global Trigger




e 20 30

AvPool/Conv/ReLU o Conv/ReLU )
30 Dense/ReLU 20 1

Dense
Conv/ReLU i UpSampling/Conv/ReLU Conv

Autoencoder-based anomaly detection
« Inputis a 2D tensor from the Calo region energy information
» Encoder and decoder are Convolutional Neural Networks

» Unsupervised learning : train only on ZeroBias data to learn input reconstruction



I CICADA: Event Reconstruction

Input Reconstruction : Input Reconsiruction
CMS Preliminary 2023 (13.6 TeV) 2 CMS Preliminary 2023 (13.6 TeV) » CMS Preliminary 2023 (13.6 TeV) CMS Preliminary 2023 (13.6 TeV)
. = : :
. 10% . 10%; 50; 50;
© o 0 8 u $
n g | g g g
=3 6 z_ s 6 z_ s’ 3oz_ s’ 30::‘,_T
l- g l. g g g
.8 o g nE -
: I . "
., O o, QO . - L
5 2 : : . 10 10
2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 1011 12 13 - . .
in R in . ' n
- ° o
ZLero Bias Data (Loss: 0.8) : BSM Simulated Signal (Loss: 14.2)
H .
Expectation:

« Goodreconstruction on normal events (ZeroBias used for training)

« Bad reconstruction on anything else such as BSM signals (never seen during training)
Goal:

« Anomaly Score: Mean Squared Error, MSE(input, output)



CICADA: Naive Auto-encoder Model

Layer (type) Output Shape Par
“Tomac (Inpatlayer)  l(Neme, 18, 14, D1 o
conv2d_1 (Conv2D) (None, 18, 14, 20) 200
relu_l (Activation) (None, 18, 14, 20) 0
pool_1 (AveragePooling2D) (None, 9, 7, 20) 0
conv2d_2 (Conv2D) (None, 9, 7, 30) 5430
relu_2 (Activation) (None, 9, 7, 30) 0
flatten !Flattenz (None, 1890) 0
latent (Dense) (None, 80) 151280
dense (Dense) (None, 1890) 153090
reshape2 (Reshape) (None, 9, 7, 30) 0
relu_3 (Activation) (None, 9, 7, 30) 0
conv2d_3 (Conv2D) (None, 9, 7, 30) 8130
relu 4 (Activation) (None, 9, 7, 30) 0
upsampling (UpSampling2D) (None, 18, 14, 30) 0
conv2d_4 (Conv2D) (None, 18, 14, 20) 5420
relu_5 (Activation) (None, 18, 14, 20) 0
output (Conv2D) (None, 18, 14, 1) 181

— Encoder(compressor)

— Latent space (compressed input)

—

le

Total params: 323,731
Trainable params:
Non-trainable params: 0

Challenges!

Decoder (decompressor)

324 K parameters model size

can’t fit L1 constraints...



y —— ; » Anomaly score
§ — Compute score A
| 1 i ﬂ B (e.g. MSE)
j a— Vol ) Compare
. Pool/Conv Code ConvIranspose 4 - : with
In Cony TeCI C her Upsampling/ConvTranspose Conv/Out feq C he r’ S
- score
Knowledge Distillation |
. : | . <
Tro.m a smaller m.odel (student) under the i N ﬂ_,_f, Score regression
guidance of a bigger model (teacher) | I '
» The student learns to regress MSE from teacher i pemse
OUTpUTS 252 ——> hls 4 ml
In

Quantization-aware training (QKeras)

« Model weights quantized to fixed precision (e.g., 2 bits for — x10 reduction
integer, 4 bits for fraction) in resources/latency

« Train a quantized model rather than quantize a frained model




CICADA: Teacher = Student Model

Layer (type) Output Shape Param #
input (InputLayer) [ (None, 18, 14, 1)] 0
conv2d_1 (Conv2D) (None, 18, 14, 20) 200 StUdent
relu_1l (Activation) (None, 18, 14, 20) 0
pool_1 (AveragePooling2D) (None, 9, 7, 20) 0 Layer (type) Output Shape Param #

2d_2 (C 2D N r 9, 7, 30 5430
convzd_2 (ConvaD) (None ) In (InputLayer) [ (None, 252)] 0
relu 2 (Activation) (None, 9, 7, 30) 0

densel (QDense) (None, 15) 3780
flatten (Flatten) (None, 1890) 0
latent (Dense) (None, 80) 151280 OBN1 (QBatchNormalization) (None, 15) 60
d D N 1890 153090 . .
ense (Dense) (None, ) relul (QActivation) (None, 15) 0
reshape2 (Reshape) (None, 9, 7, 30) 0
output Dense None, 1 15
relu_3 (Activation) (None, 9, 7, 30) 0 P (Q ) ( ' )
conv2d_3 (Conv2D) (None, 9, 7, 30) 8130 = ==
) . |Total params: 3,85 |

relu_4 (Activation) (None, 9, 7, 30) 0

- Trainable params: 3,825
upsampling (UpSampling2D) (None, 18, 14, 30) 0 Non-trainable params: 30
conv2d 4 (Conv2D) (None, 18, 14, 20) 5420
e echiecion) | Gone 0 2200 324K parameters go down
output (Conv2D) (None, 18, 14, 1) 181

. to 3.8K parameters

Total params: 323,731
Trainable params: 323,731
Non-trainable params: 0




CICADA_v3_v1, signal(Run3) vs ZB(2023)

107 —
ZB23 ;
10-! - [ H Tolonglived =
- 1071 i
1 SUEP ; o R
C SUSYGGBBH Simulated signals
1077 1 T > 102 1
(&)
=
[ VBFHto2C @
&)
1073 o E 10
E —— H_TolongLived (AUC = 0.99687 + 0.00017)
. k= —— SUEP (AUC = 0.99815 + 0.00009)
107% 3 v o —— SUSYGGBBH (AUC = 0.99965 + 0.00003)
TT (AUC = 0.99973 + 0.00004)
—— VBFHto2C (AUC = 0.99909 + 0.00006)
10—5 o 10-° 4 ----- Trigger rate = 3 kHz
' ' ' ' o To° e
0 10 20 30 40 50 60

Trigger Rate (MHz)

* Model trained on 2023 ZB, evaluated on 2023 Simulated signals
« Able to pick up a wide range of BSM signails



| CICADA: Rate Stability

,CMS Preliminary 2023 (13.6 TeV) CMS Preliminary ' 2023 (13.6 TeV)
— 10° ¢
2:': | == CICADA 5 kHz (overall, nominal) === GICADA 3 kHz (pure, nominal) == L1 Single Mu 22 RunB, 5 kHz Threshold: 10.60
% - L1 Single Jet 180 ———— L1 Single Tau 120 RunC, 5 kHz Threshold: 10.89
& L
I~ RunD, 5 kHz Threshold: 11.57
10 =
il
it
o 1 [
J J
i 107" =
B 102
107°
10-1 11 I L1l J 111 ] I | L1 ‘ Lol ‘ L1110 | 111 J ) | ‘ 11 E
180 190 200 210 220 230 240 250 260 0 !

Lumisections
CICADA score

A Flexible trigger: tunable threshold for different rates, stable over the run



Calorimeter trigger Muon trigger Track trigger

Wisconsin APxF Board CMS Upgrade to Level-1 Trigger

Detector Backend systems

Global Calorimeter
Trigger

1

. Xilinx VU13P FPGA
« 25G Samtec Firefly optics

(]24 25 Gbps ||n kS) Phase-2 trigger project
More resources available to implement ML based triggers

Global Trigger

TP

Local

Global

PF

GT



Concluding Remarks

 We in HEP may not be the pioneers of modern electronics technologies, but we
are among those who drive their advancement most aggressively

* Progress in telecommunications and field-programmable logic devices is
constantly leveraged to manage the growing demands of data processing

« A collaborative team of engineers and physicists has mastered the challenge of
handling the massive data output from the LHC, using advanced
telecommunications and field-programmable logic devices to facilitate
groundbreaking discoveries in fundamental physics

« With advances in ML and FPGAs, more complex models can be implemented in
future
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Jargons

ICs - Integrated chip: assembly of hundreds of millions of fransistors on a minor chip
PCB: Printed Circuit Board
LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm
FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput
DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA
BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements
PCle or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer
to one or more peripheral devices
InfiniBand is a computer networking communications standard used in high-performance computing that features very
high throughput and very low latency
HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores
HDL - Hardware Description Language - low level language for describing circuits
RTL - Register Transfer Level - the very low level description of the function and connection of logic gates
Latency - time between starting processing and receiving the result
o Measured in clock cycles or seconds
Il - Initiation Interval - time from accepting first input to accepting next input



I CMS Level-1 Trigger

Calorimeter Trigger Muon Trigger

-
HCAL HCAL csc DT RPC
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A “CICADA"” is an insect of the
family “Cicadoidea”

What is CICADA ©

Cicadas are known for their loud
vocadalizations (typically during
summer)

Much of a cicada’s life cycle is
actually spent underground, with a
few famous American species (the
“periodical cicada”) only emerging
every 13 (magicicada tredecim) or
17 (magicicada septendecim) years

Sovurce: https://kids.nationalgeographic.com/animals/invertebrates/facts/cicada



https://kids.nationalgeographic.com/animals/invertebrates/facts/cicada
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