
LHC Level – 1 Trigger Software
and Architecture

Varun Sharma
University of Wisconsin – Madison, USA

HSF – India, Hyderabad India
13 – 17th January 2025

Acknowledgements

Some of these slides are compiled with material from several

people: Sridhara Dasu, Wesley Smith, Sergio Cittolin, Tom
Gorski, Ales Svetek, Sascha Savin, Piyush Kumar,
Isobel Ojalvo, Kevin Stenson, …

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 2

What do we want?

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 3

Hurray, We found it!

Scientific

discoveries

Journal

Publications

Scientific Process @ Colliders

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 4

Petabytes

per year

Accelerators

+

Detectors

Petabyte per

second

Trigger

Electronics

&

Data

Acquisition

Software

&

Computing

S
C

IE
N

C
E

J
o

u
rn

a
l
P

u
b

li
c
a
ti

o
n

s

Scientific Process @ Colliders

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 5

Accelerators

+

Detectors

Petabyte per

second

Trigger

Electronics

&

Data

Acquisition

Software

&

Computing

S
C

IE
N

C
E

J
o

u
rn

a
l
P

u
b

li
c
a
ti

o
n

s

Petabytes get reduced to a social media post!

Petabytes

per year

Large Hadron Collider

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 6

CMSpp collisions @ √s = 13.6 TeV

Large Hadron Collider

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 7

The LHC accelerates bunches of billions of protons
(or ions) from 450 GeV injection energy from SPS to

6.8 TeV and collides them at 13.6 TeV centre-of-mass

energy

LHC circumference is 27km and the minimal distance

between bunches is 25ns*c
o Revolution frequency of LHC is 11.24 kHz

o Bunch crossing rate (ZeroBias rate) depends on

number of bunches in the machine

o e.g. For 2380 colliding bunches (2023)

• ZeroBias rate = 26.8 MHz

CMS

ATLAS

ALICE LHCb

LHC Parameters

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 8

Run-1

2010-2012

Run-2

2015-2018

Run-3*

2022-2026

Beam Energy 3.5-4.0 TeV 6.5 TeV 6.8 TeV

Bunches/Beam 1380 2556 2556

Protons/bunch 1.15 x 1011 1.2 x 1011 1.3 x 1011

Peak
Luminosity

7.7 x 1033

cm-2 s-1

2.1 x 1034
cm-2 s-1

2.1 x 1034
cm-2 s-1

Crossing rate: ~40MHz (every 25ns)

Proton-Proton collision @ LHC

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 9

Production cross-sections for different
physics processes span over many orders
of magnitude

• Collision rate is dominated by non
interesting physics

• Background discrimination is crucial

Total non-diffractive p-p cross section at
LHC (√s = 14 TeV) is ~80mb

Proton-Proton collision @ LHC

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 10

At Instantaneous Luminosity of:

 ~2 x1034cm-2s-1

• 50 pp events/25 ns crossing

•About 1 GHz input collision rate

• EWK rate: 1 kHz W/Z events

• Top rate: 10 Hz top events

• Higgs rate: < 104 detectable
Higgs/year

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 11

Particle Physics Detectors

E
le

c
tr

o
m

a
g

n
e

ti
c

C
a

lo

H
a

d
ro

n

C
a

lo

m
a

g
n

e
t

Muon

DetectorsTr
a

c
ki

n
g

sy
st

e
mInteraction

point

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 12

Example: CMS Detectors

E
le

c
tr

o
m

a
g

n
e

ti
c

C
a

lo

H
a

d
ro

n

C
a

lo

m
a

g
n

e
t

Muon

DetectorsTr
a

c
ki

n
g

sy
st

e
mInteraction

point

The CMS Detector

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 13

Goal

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 14

Reminder: DAQ

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 15

DAQ

The Data Acquisition (DAQ) system collects the data from all the
sub-detectors, converts the data in a suitable format and saves it to
permanent storage

Question: Is that all?

Reminder: DAQ

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 16

DAQ

The Data Acquisition (DAQ) system collects the data from all the
sub-detectors, converts the data in a suitable format and saves it to
permanent storage

Question: Do we need a trigger? If yes, why & where?

There is a problem…

• At an input rate of 40MHz

• Each raw event being 1-2MB

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 17

It is impossible to record data at 80 PB/s

There is a problem…

• At an input rate of 40MHz

• Each raw event being 1-2MB

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 18

It is impossible to record data at 80 PB/s

Solution ⇒ Be Selective ⇒ Add a trigger

DAQ

Trigger

Trigger concept

• What is ‘Interesting’?:

• Define what is signal and what is background

• What is the final affordable rate of the DAQ system?

• Define the maximum allowed rate

• How fast the selection must be?

• Define the maximum allowed processing time

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 19

Start the data

acquisition

Identify the

interesting

process

Only when

DAQ Trigger

The role of the trigger is to make the online selection of particle collisions
potentially containing interesting physics

A Simple Trigger System

• Data Input: signals from front-end electronics

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 20

Discriminator
From Front-End Pre-amplifier Amplifier

Accept

Reject

The simplest trigger: apply a threshold

• Look at the signal

• Put a threshold as low as possible

CMS Trigger System

Two level triggering

• Level – 1 Trigger (L1T)
• Custom hardware using

FPGAs

• 40 MHz ➛ 100 kHz

• High Level Trigger (HLT)
• Computing farm

• 100 kHz ➛ 1kHz

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 21

Experiment # of levels

ALICE 4

ATLAS 3

LHCb 3

CMS 2

Question: Why different levels?

CMS Trigger Architecture

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 22

Data path split here:

Coarse (L1), raw (DAQ)

Data sitting in buffers,

waiting for decision from L1

L1 latency sets the depth of

buffers (and $$)

Data Processing to Trigger

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 23

“Interesting” Physics Signatures

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 24

Electroweak Symmetry Breaking Scale

• Higgs (125 GeV) studies and higgs sector characterization

• Quark, lepton Yukawa couplings to higgs

New physics at TeV scale to stabilize higgs sector

• Spectroscopy of new EWK produced resonances (SUSY or otherwise)

• Find dark matter candidate

Multi-TeV scale physics (loop effects)

• Indirect effects on flavor physics (mixing, FCNC, etc.)

• Lepton flavor violation

Planck scale physics

• Large extra dimensions to bring it closer to experiment

• New heavy bosons

• Blackhole production

How to Identify these “interesting” events?

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 25

Electroweak Symmetry Breaking Scale

• Higgs (125 GeV) studies and higgs sector characterization

• Quark, lepton Yukawa couplings to higgs

New physics at TeV scale to stabilize higgs sector

• Spectroscopy of new EWK produced resonances (SUSY or otherwise)

• Find dark matter candidate

Multi-TeV scale physics (loop effects)

• Indirect effects on flavor physics (mixing, FCNC, etc.)

• Lepton flavor violation

Planck scale physics

• Large extra dimensions to bring it closer to experiment

• New heavy bosons

• Blackhole production

Multiple low

PT objects

Low PT leptons

High PT leptons and photons

Multi particle and jet events

~ Dedicated triggers (CMS) or
experiment (LHCB)

Input to CMS level-1 Trigger

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 26

Question:
Why not Tracker?

What is a latency?

Why 𝜇s?

NO TRACKER

CALORIMETERS

MUON SYSTEM

Input to CMS level-1 Trigger

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 27

NO TRACKER

CALORIMETERS

MUON SYSTEM

Pattern

recognition

much

faster/easier

Input to CMS level-1 Trigger

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 28

Regional

Track

Finders

Trigger

Primitives

or Hits

Level-1 trigger receives data with

coarse granularity from
• Calorimeters (ECAL, HCAL, HF)

• Muon systems (CSC, DT, RPC, GEM)

Collision data are buffered locally for < 4𝜇s

Muon SystemsCalorimeters

L1 Trigger is implemented in hardware

Uses field programmable gate arrays (FPGAs)

Operates synchronously to the LHC clock (40 MHz)

L1 Accept ~100 kHz

Trigger Final Decisions

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 29

What all we keep?

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 30

High Level Trigger

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 31

HLT_Mu17_TkMu8

Non isolated muon with pT > 17 GeV Muon with pT > 8 GeV from tracker

• Implemented using generic processors (CPUs/GPUs)

• Muon Systems, Calorimeters and Tracker

• Increase in number of Trigger, algorithms, selections
and complexity

• Event Filtering, Selections are made sequentially:
When an event fails a given selection criteria then the
processing stops in order to allow the node to be
used by a new event

• Data accepted by the HLT are recorded for offline
physics analysis

• HLT contains hundred of paths, each of which is
seeded by one or more trigger at L1. Example:

GPU Acceleration @ CMS HLT

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 32

CPU CPU + GPU

All set to do physics analyses

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 33

ns µs ms s

Must use

FPGAs,
enforced by

latency
requirements

Months/Years

CPUs, GPUs or

combinations
of two

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 34

Lets discuss about FPGAs

FPGA: Field Programmable Gate Array

Xilinx Field Programmable Gate Array

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 35

Source: https://en.wikipedia.org/wiki/Field-

programmable_gate_array

First FPGA invented by Xilinx Inc. in 1985

FPGAs:

• Programmable hardware whose sub-component
configuration can be changed even after fabrication:
“field-programmable”

• Has 2D array of logic gates in its architecture: “Gate
Array”

• A silicon ‘breadboard’ of configurable logic gates,
memories, transceivers, Digital Signal Processors (DSPs),
registers (flip flops)

• FPGA industry sprouted from programmable readonly
memory (PROM) and programmable logic devices (PLDs)

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 36

FPGA Architecture

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 37

Configurable

logic blocks

(CLB)

Programmable

interconnects

Input/output blocks

Routing

channels

FPGA Architecture

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 38

Configurable

logic blocks

(CLB)

Programmable

interconnects

Input/output blocks

Routing

channels

• Contains thousands of fundamental elements called configurable logic

blocks (CLBs) surrounded by a system of programmable interconnects,

called a fabric, that routes signals between CLBs.

• The interconnects can readily be reprogrammed, allowing an FPGA to
accommodate changes to a design or even support a new application

during the lifetime of the part.

• Input/output (I/O) blocks interface between the FPGA and external

devices.

• Stores its configuration information in a re-programmable medium such as

static RAM (SRAM) or flash memory

FPGA Components

The basic structure of an FPGA is composed of:

• Look-up table (LUT)

• Flip-Flop (FF)

• Slices and CLBs

• Block Memory (BRAM)

• DSP Blocks

• Interconnect and routing resources: Wires & Input/Output (I/O)
pads

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 39

DSP

RAM

RAM

DSP

FPGA Components: LUT

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 40

LUTs or logic cells:

• Basic building block of FPGA used for implementing

combinational logic

• Capable of performing any arbitrary functions on

small bitwidth inputs (N), generally N ≤ 6

• Memory location accessed by LUTs: 2N

• Example: a 4-input LUT can implement any Boolean

function with 4 variables by storing 16 (2^4) output

values

• It can be used as both a function compute engine

and a data storage element Functional Representation of a LUT

as Collection of Memory Cells

FPGA Components: Flip Flops

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 41

Flip-flop

Flip-Flops:

• Basic storage unit within the FPGA fabric
• Circuit that can store and recall a single bit of

information. Used for sequential logic.

• Always paired with a LUT to assist in logic
pipelining and data storage

• Operation: value at the data input port is

latched and passed to the output on every
pulse of the clock

• Data is passed only when clock and clock
enable = 1

DSP

RAM

RAM

DSP

FPGA Components: DSP

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 42

DSP

RAM

RAM

DSP

Digital Signal Processor Block:

• Most complex computational block available in
a FPGA

• Arithmetic Logic unit: specialized unit for
multiplication and arithmetic
• Eg: p = a x (b + d) + c

• Faster and more efficient than using LUTs for

these types of operations

• Often most scarce in available resources

FPGA Components: Storage elements

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 43

BRAMs (Block RAM)

• Embedded memory elements that can be used
as Random-access-memory

• BRAM is a dual-port RAM module instantiated to
provide on-chip storage for a relatively large set
of data
• can hold either 18 k or 36 k bits

• Useful for low latency & high bandwidth access (data buffering, complex algos)

• BRAMs can implement either a RAM or a ROM. The only difference is when the data
is written to the storage element.

DSP

RAM

RAM

DSP

FPGA Components: Storage elements

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 44

LUTs as storage element:

• They can be used as 64-b memories due to its
structural flexibility

• Commonly referred to as distributed memories

• Fastest kind of memory available on the FPGA device, because it can be
instantiated in any part of the fabric that improves the performance of the
implemented circuit

• Memories using BRAMs more efficient than using LUTs

DSP

RAM

RAM

DSP

FPGA Components: Routing

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 45

• Between rows and columns of logic blocks are wiring channels
• These are programmable – a logic block pin can be connected

to one of many wiring tracks through programmable switch
• Xilinx FPGA have dedicated switch block circuits for routing

(flexible)

• Each wiring segment can be connected in one of many ways

The main advantage and attraction of FPGA comes from the programmable interconnect –
more so than the programmable logic.

Logic block Switch
block

Wires

Wire
segment

Programmable
switch

x
x
x

Logic Block Pin

Routing Wire

Potential
connection

Fig. 18

x

FPGA Components: I/O

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 46

There are specialised blocks for I/O
• Making FPGAs popular in embedded systems and HEP

triggers

High speed transceivers

• with Tb/s total bandwidth PCIe

• (Multi) Gigabit Ethernet

• Infiniband

Support highly parallel algorithm implementations

Low power per Operation (relative to CPU/GPU)
Input/output blocks

Programming FPGA

• Programming an FPGA requires Firmware to be written and
synthesized into a "bit file” to load into the chip

• Languages used to write the logic implementation:
• Hardware Description Languages (HDLs)

• Verilog

• VHDL (VHSIC Hardware Description Language)

• System Verilog

• High-Level Synthesis (HLS) Languages
• Code written in C/C++ is converted to RTL (Verilog/VHDL)

• OpenCL

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 47

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 48

FPGA Parallelism

Program execution on a Processor

A processor executes a program as a sequence of instructions

• Translated into useful computation for a software application

• Compiler transforms the C/C++ into assemble language

• The assemble code defines the addition operation to compute the value of z in
terms of the internal registers of a processor

• The complete assembly program to compute the value of z is as follows:

• Even a simple operation, such as the addition of two values, results in multiple
assembly instructions

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 49

Program execution on a Processor

• Depending on the location of a and b, the LD operations take a different
number of clock cycles to complete:

• Processor cache : few 10 clock cycles

• DDR memory: ~100/~1000 clock cycles

• Hard drives: even longer

• Software engineers spend a lot of time restructuring their algorithms

• Increase the spatial locality of data in memory to increase the cache
hit rate and decrease the processor time spent per instruction

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 50

Program execution on FPGA

FPGA is an inherently parallel processing fabric capable of implementing any logical
and arithmetic function that can run on a processor

• Main difference: Vivado HLS compiler

• Transforms software descriptions into RTL, is not hindered by the restrictions of a
cache and a unified memory space

• Computation of z is compiled by Vivado HLS into several LUTs required to achieve
the size of the output operand

• E.g.: In C code, variable a, b, and z are defined with the short data type (16-bit
data container)

• Variables gets implemented as 16 LUTs by Vivado HLS

General rule: 1 LUT is equivalent to 1 bit of computation
January 13-17, 2025HSF India, Hyderabad - Varun Sharma 51

Execution steps on FPGA

• Vivado HLS compiler exercises the capabilities of the FPGA fabric
using following processes:

o Scheduling

oPipelining

oDataflow

Transparent to the user, these processes are integral stages of the
software compilation process that extract the best possible circuit-
level implementation of the software application.

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 52

Scheduling

Process of identifying the data and control dependencies between different operations

• To Determine which operation occur during each clock cycle based on:

• Length of the clock cycle or clock frequency

• Time it takes for the operation to complete, as defined by the target device

• User-specified optimization directives

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 53

Pipelining

Technique to avoid data dependencies and increase the level of parallelism

• Preserving the original functionality, required circuit is divided into a chain of
independent stages

• All stages in the chain run in parallel on the same clock cycle

• The only difference is the source of data for each stage

• Each stage in the computation receives its data values from the result computed
by the preceding stage during the previous clock cycle

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 54

Pipelining

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 55

C implementation

Pipelined
implementation

Pipelining

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 56

• Boxes: registers implemented by FF blocks

• Each box column counted as single clock

cycle

• Result in 3 clock cycles.

• Addition of registers, leads to separated

compute sections for each block
• Multiplier & two adders can run in parallel

and reduce latency

Pipelining

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 57

• Both sections of the datapath run in parallel
• Essentially computing the y and y’ in

parallel

• y’ result of the next execution

• First computation of y: pipeline fill time = 3
CLK

• After this initial computation, a new value
of y is available at the output on every

clock cycle, because the computation
pipeline contains overlapped data sets for
the current and subsequent y

computations

Pipelining

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 58

• Raw data: dark gray,
• Semi-computed data: white
• Final data: light gray

All exist simultaneously & each

stage result is captured in its own
set of registers

Although the latency for such
computation is in multiple cycles,

there is new result with every
cycle

Dataflow

Similar to pipelining but parallelism at coarse-grain level

• Parallel execution of functions within a single program

• By evaluating the interactions between different functions of a program
based on their inputs and outputs

• Case-1: Independent (simplest)

• Separate resources for different functions and run the blocks independently

• Case-2: Dependent (complex)

• One function provides result for another function (consumer-producer
scenario)

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 59

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 60

Why in HEP we need to know so
much about FPGAs?

Workflow during FPGA development

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 61

Experiment

Firmware

PCB layput

PCB production

PCB commissioning

Idea

Simulation (FW tests)

Final FW

FW evaluation

Physicists
Engineers

Save $$$!!!

• Like our resources, each FPGA has limited resources

• FPGAs are expensive

• Need to design most optimal logic to have efficient functionality
to meet the requirements

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 62

Back to Trigger!

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 63

To make decision in 𝜇s

- We have parallel/Pipelined

system

- Feed Forward Algorithms (no

backward loops)

- Highly distributed

- Parallelism in FPGA

- Parallelism in Logic

Xilinx FPGAs – Phase-1 choice: V7 690T

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 64

Currently

Deployed HL-LHC
Prototypes

Speed grade:

maximum
propagation
delay for critical

paths in the FPGA
fabric or I/O

operations

Decide wisely which FPGA to use as per your needs

Key Element: Multi-Gigabit Opto-electronics

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 65

CMS Level-1 Trigger Hardware

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 66

Calo Layer-1
CTP7: 18 boards Calo Layer-2

CTP7: 10 boards

Time-

Multiplexed

Trigger • Virtex7 FPGA used a main processor

• uTCA Form factor & infrastructure

• DAQ, slow control & monitoring

Muon Trigger

Trigger Processor Boards

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 67

Calorimeter Trigger Processor(CTP7 – left), and Master Processor (MP7 - right)

• CTP7 (Layer-1) – mTCA Single Virtex 7 FPGA, 67 optical inputs, 48 outputs, 12 RX/TX backplane

• Virtex 7 allows 10 Gb/s link speed on 3 CXP(36 TX & 36 RX) and 4 MiniPODs (31 RX & 12 TX)

• ZYNQ processor running Xilinx PetaLinux for service tasks, including virtual JTAG cable

• MP7 (Layer-2) – mTCA Single Virtex 7 FPGA, up to 72 input & output links

• Virtex 7 has 72 input and output links at 10 Gb/s

• Dual 72 or 144MB QDR RAM clocked at 500 MHz

MMC

Power

Supplies
ZYNQ

FPGA

JTAG

USB

Interface

Rx

Tx

Rx

Tx

FPGA

1V0

2xQDR
(Bottom)

2V5

3V3

1V5

1V8

SD

USB

C
(Bottom)

3 CXP

modules

MiniPod

modules

CTP7 MP7

CTP7 FW Infrastructure

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 68

Xilinx FPGAs – Phase-2 choice: VU13P

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 69

HL-LHC

Multi-gigabit-per-second serial links

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 70

LHC

10 Gbps

HL-LHC

25 Gbps

HL-LHC

Advanced Processor Prototype for HL-LHC

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 71

• Wisconsin APxF Board

• Xilinx VU13P or VU9P FPGA

• ZYNQ-IPMC
(ATCA IPMI controller)

• ELM (ZYNQ-based
embedded Linux endpoint)

• ESM (GbE switch)

• High efficiency heatsinks

• Front-panel inputs

• 25G Samtec Firefly positions
loaded – 10x12 + 1x4
(124 25 Gbps links)

Latenct budget for HL-LHC: 12.5 𝜇s

APx – Firmware/Software

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 72

• A new paradigm for
firmware development
• Core firmware written in VHDL

by engineers

• Gigabit link support

• Data exchange between SLRs
within chip

• Test buffers

• Clock and control

• Physics
• Algorithmic firmware in high-

level languages like C++ written
by physicists

ELM:
Control endpoint,
providing complete
board overhead
functionality

Processing FPGA:
- I/O
- data processor
- DAQ

Trigger Upgrade FW testing

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 73

Firmware prepared and tests
conducted by former UoH PhD

student Piyush Kumar

(Now Research Engineer @
University of Notre Dame, USA

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 74

Comparison of CPU/GPU/FPGA/ASICS

CPU/FPGA Advantages

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 75

CPU advantages FPGA Advantages

• Better with floating point numbers

• Programming a CPU is normally easier
than programming an FPGA (does not
require to understand digital electronics)

• Faster compilation
• Easier code portability

• Lower unit cost

• More versatile & adaptable

• More flexible input/output
• Parallel processing
• Better with multi-clock systems

• Better with time-critical operations
• Power Efficient

• Faster than processors

More and more often, FPGAs and CPUs (or GPUs) are complementary:
 They co-exist in the same system and perform different tasks

ASICS

ASIC: Application Specific Integrated Circuit

FPGAs were originally popular for prototyping ASICs,
but now also for high performance computing

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 76

Efficiency

Fl
e

x
ib

ili
ty

FPGA

ASIC

FPGA/ASIC Advantages

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 77

FPGA Advantages ASIC Advantages

Faster time-to-market - no layout, masks or other

manufacturing steps are needed
Lower constant/initial cost
Simpler design cycle - due to software that

handles much of the routing, placement, and
timing

More predictable project cycle due to
elimination of potential re-spins, wafer
capacities, etc.

Re-programmability: a new configuration can
be uploaded

Full custom capability (including analog)

- since device is manufactured to design
specs
Lower unit costs – For mass production

Smaller form factor - since device is
manufactured to design specs

Higher clock speeds

Uses of FPGAs outside HEP

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 78

• Telecommunication
• Automotive
• Aerospace and Defense
• Medical Electronics
• ASIC Prototyping

• Audio
• Broadcast
• Consumer Electronics
• Data Center
• Distributed Monetary Systems

• High Performance Computing

• Industrial
• Scientific Instruments
• Security systems
• Video & Image

Processing

• Digital signal processing
• Bioinformatics
• Controllers
• Computer hardware

emulation

• Voice recognition
• Cryptography

More Advanced Architectures

• Embedded FPGA System on Chip (SoC)

• High Bandwidth Memory (HBM) on Xilinx FPGA
• A theoretical bandwidth up to 460 GB/s

• ACAP: Adaptive Compute Acceleration Platform
• A fully software-programmable, heterogeneous compute platform that combines

Scalar Engines, Adaptable Engines, and Intelligent Engines to achieve dramatic
performance improvements of up to 20X over today’s fastest FPGA
implementations and over 100X over today's fastest CPU implementations—for
Data Center, wired network, 5G wireless, and automotive driver assist applications.

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 79

ACAP Application

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 80

Xilinx ACAP Devices enable sensor fusion in small power envelopes

Path to firmware

January 13-17, 2025

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf

HSF India, Hyderabad - Varun Sharma 81

C/C++
algo

Constraints/
directives

Firmware
block

VHDL/Verilog

High Level Synthesis (HLS)
• Compile from C/C++ to VHDL/Verilog
• Pre-processor directives and constraints used

to optimize the design

Hardware Description Languages
• VHDL/Verilog
• Programming languages which describe

electronic circuits

Drastic decrease in firmware development time!

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 82

High Level Synthesis

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Getting-Started-with-Vitis-HLS

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Getting-Started-with-Vitis-HLS

What is HLS?

HLS is an automated design process that
transforms a high-level functional
specification to an optimized register-transfer
level (RTL) descriptions for efficient
hardware implementation

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 83

What is HLS?

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 84

Why use HLS?

• Productivity
• Lower design complexity and faster simulation speed
• Ease of use

• Portability
• Single source -> multiple implementations (different target devices)

• Permutability
• Much more optimization opportunities at higher level

• Rapid design space exploration

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 85

HLS Design Flow

• Compile, execute (simulate), and debug the C
algorithm

• Synthesize the C algorithm into an RTL
implementation, optionally using user
optimization directives

• Generate comprehensive reports and analyze
the design

• Verify the RTL implementation using a
pushbutton flow

• Package the RTL implementation into a
selection of IP formats

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 86

Simulation and Synthesis

The two major purposes of HDLs are logic simulation
and synthesis:

• During simulation, inputs are applied to a module,
and the outputs are checked to verify that the
module operates correctly

• During synthesis, the textual description of a module
is transformed into logic gates

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 87

HDL code is divided into synthesizable modules and a

test bench:
• The synthesizable modules describe the hardware

• The test bench checks whether the output results are
correct (only for simulation and cannot be synthesized)

HLS Pragmas

“Pragmas”: Instructions to tell your compiler how to build the hardware

• HLS tool provides different set of pragmas that can be used to optimize the design,
reduce latency, improve performance etc. These pragmas can be directly added to
the source code for the kernel.

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 88

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas

Pragma HLS array_partition

• Partitions an array into smaller arrays or individual elements and provides
the following:

• Results in RTL with multiple small memories or multiple registers instead of
one large memory

• Effectively increases the amount of read and write ports for the storage

• Potentially improves the throughput of the design

• Requires more memory instances or registers

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 89

#pragma HLS array_partition variable=<name> <type> factor=<int> dim=<int>

Syntax:

Place the pragma in the C source within the boundaries of the function where the array

variable is defined

Ex: Pragma HLS array_partition

• This example partitions the 13 element array, AB[13], into four arrays using block
partitioning:

• Because four is not an integer factor of 13:

• Three of the new arrays have three elements each,

• One array has four elements (AB[9:12])

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 90

#pragma HLS array_partition variable=AB block factor=4

#pragma HLS array_partition variable=AB block factor=2 dim=2

• This example partitions dimension two of the two-dimensional array, AB[6][4] into
two new arrays of dimension [6][2]:

Pragma HLS unroll

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 91

• Unroll loops to create multiple independent operations rather than a single collection of
operations

• UNROLL pragma transforms loops by creating multiples copies of the loop body in the
RTL design, which allows some or all loop iterations to occur in parallel

• Loops in the C/C++ functions are kept rolled by default

• When loops are rolled, synthesis creates the logic for one iteration of the loop, and
the RTL design executes this logic for each iteration of the loop in sequence

• UNROLL pragma allows the loop to be fully or partially unrolled

• Fully unrolling the loop creates a copy of the loop body in the RTL for each loop
iteration, so the entire loop can be run concurrently

• Partially unrolling a loop lets you specify a factor N

Ex: Pragma HLS unroll

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 92

#pragma HLS unroll factor=<N> region skip_exit_check

The following example fully unrolls loop_1 in function foo

Place the pragma in the body of loop_1 as shown:

This example specifies an unroll factor of 4 to
partially unroll loop_2 of function foo, and removes

the exit check:

Basic Mapping Rule C/C++ ➛ RTL

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 93

Basic Mapping Rule C/C++ ➛ RTL

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 94

Basic Mapping Rule C/C++ ➛ RTL

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 95

Basic Mapping Rule C/C++ ➛ RTL

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 96

Deterministic at Compile time

On an FPGA, memory maps to a physical address space

Everything must be decided at compile time – your hardware cannot
be changed while running!

• Adding one more piece of memory after the circuit is built?

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 97

Lets run some examples (ex1)

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 98

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 99

Is Machine Learning Possible on
FPGAs?

hls4ml

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 100

https://fastmachinelearning.org/hls4ml/

• hls4ml is a software package for automatically
creating implementations of neural networks for
FPGAs and ASICs

• Supports common layer architectures and model

software (keras, tensorow, pytorch, ONNX)

• pip installable

• arXiv:1804.06913

https://fastmachinelearning.org/hls4ml/

hls4ml Workflow

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 101

Machine Learning at Level-1 Trigger

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 102

ML decisions based on level-1 inputs themselves

o Minimize human bias, completely data-driven

o ML can unearth unknown and complex correlation

o New physics searches in model-independent way
Model independence

R
a

te
 c

o
n

tr
o

l

Model-specific

selection

Kinematic

selection

Anomaly

Detection

Traditional event selection at L1 based on

object thresholds

➢ High-level and Data analysis selections

limited to use those objects

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 103

CIC DA

Calorimeter Image Convolutional Anomaly Detection Algorithm

https://cicada.web.cern.ch/
CMS-DP-2023-086

https://cicada.web.cern.ch/

CIC DA: New Addition in Run-3

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 104

Calorimeter Trigger
Layer-2

Global
Trigger

Calorimeter Trigger
Layer-1

CICADA

ML-Based
Improvements for

Run-3

Currently
taking Physics

data @ CMS

Advantage
of FPGA

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 105

CIC DA: Inputs

Anomaly Detection Algorithm to Select ~un-biased events for new physics searches

Calorimeter ET deposit

from One ZeroBias event
Calo tower region map

One region = 4x4 trigger towers
CICADA Inputs from CALO Layer-1

• 18 𝜙 x 14 𝜂 regions, 252 regions in

total
• Each region contains energy

deposits from both ECAL and HCAL
• Summary of the energy distribution

profile within the region

• Low level information not

dependent on object
reconstructions

CaloL1 Setup

• Calo-Layer 1 Trigger consists of 3-𝜇TCA crates each
equipped with 6-CTP7 cards

• Each CTP7 cards receive information from the
calorimeters (HCAL, ECAL, HF) and send calibrated
E+H & E/H to next lyare

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 106

120º𝝓

120º𝝓

120º𝝓

Backplane links

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 107

CIC DA: Layer-1 to uGT

All data is collected in one card

‘Summary Card’

Global Trigger
LC fibres

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 108

CIC DA: Auto-encoder Model

Autoencoder-based anomaly detection

• Input is a 2D tensor from the Calo region energy information

• Encoder and decoder are Convolutional Neural Networks

• Unsupervised learning : train only on ZeroBias data to learn input reconstruction

Model architecture: calo input → encoder → latent space → decoder → reconstructed input

CIC DA: Event Reconstruction

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 109

Input InputReconstruction Reconstruction

Zero Bias Data BSM Simulated Signal

Expectation:
• Good reconstruction on normal events (ZeroBias used for training)

• Bad reconstruction on anything else such as BSM signals (never seen during training)

Goal:
• Anomaly Score: Mean Squared Error, MSE(input, output)

(Loss: 0.8) (Loss: 14.2)

CIC DA: Naive Auto-encoder Model

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 110

324 K parameters model size

can’t fit L1 constraints…

Encoder(compressor)

Latent space (compressed input)

Decoder (decompressor)

Challenges!

Knowledge Distillation + Quantization

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 111

Teacher

Anomaly score

Score regression

Compare
with

teacher’s
score

Compute score
(e.g. MSE)

Knowledge Distillation
• Train a smaller model (student) under the

guidance of a bigger model (teacher)

• The student learns to regress MSE from teacher
outputs

Quantization-aware training (QKeras)
• Model weights quantized to fixed precision (e.g., 2 bits for

integer, 4 bits for fraction)

• Train a quantized model rather than quantize a trained model

→ x10 reduction
in resources/latency

CIC DA: Teacher ➞ Student Model

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 112

324K parameters go down
to 3.8K parameters

Student

CIC DA: Physics Performance

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 113

Simulated signals

• Model trained on 2023 ZB, evaluated on 2023 Simulated signals
• Able to pick up a wide range of BSM signals

CIC DA: Rate Stability

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 114

A Flexible trigger: tunable threshold for different rates, stable over the run

HL-LHC: Can be more adventurous

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 115

Wisconsin APxF Board

• Xilinx VU13P FPGA

• 25G Samtec Firefly optics

 (124 25 Gbps links)

CMS Upgrade to Level-1 Trigger

More resources available to implement ML based triggers

Concluding Remarks

• We in HEP may not be the pioneers of modern electronics technologies, but we
are among those who drive their advancement most aggressively

• Progress in telecommunications and field-programmable logic devices is
constantly leveraged to manage the growing demands of data processing

• A collaborative team of engineers and physicists has mastered the challenge of
handling the massive data output from the LHC, using advanced
telecommunications and field-programmable logic devices to facilitate
groundbreaking discoveries in fundamental physics

• With advances in ML and FPGAs, more complex models can be implemented in
future

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 116

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 117

Thank you

धन्यवाद
ధన్య వాదాలు

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 118

Extra Slides

Jargons

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 119

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip

● PCB: Printed Circuit Board

● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm

● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput

● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA

● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements

● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer

to one or more peripheral devices

● InfiniBand is a computer networking communications standard used in high-performance computing that features very

high throughput and very low latency

● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores

● HDL - Hardware Description Language - low level language for describing circuits

● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates

● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds

● II - Initiation Interval - time from accepting first input to accepting next input

CMS Level-1 Trigger

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 120

Calorimeter Trigger
Layer-2

Global
Trigger

Calorimeter Trigger
Layer-1

Wisconsin CTP7 Board
Xilinx’s Virtex7 FPGA

What is CICADA ☺

January 13-17, 2025HSF India, Hyderabad - Varun Sharma 121

A “CICADA” is an insect of the
family “Cicadoidea”

• Cicadas are known for their loud

vocalizations (typically during
summer)

• Much of a cicada’s life cycle is

actually spent underground, with a

few famous American species (the
“periodical cicada”) only emerging

every 13 (magicicada tredecim) or
17 (magicicada septendecim) years

Source: https://kids.nationalgeographic.com/animals/invertebrates/facts/cicada

https://kids.nationalgeographic.com/animals/invertebrates/facts/cicada

	Slide 1: LHC Level – 1 Trigger Software and Architecture
	Slide 2: Acknowledgements
	Slide 3: What do we want?
	Slide 4: Scientific Process @ Colliders
	Slide 5: Scientific Process @ Colliders
	Slide 6: Large Hadron Collider
	Slide 7: Large Hadron Collider
	Slide 8: LHC Parameters
	Slide 9: Proton-Proton collision @ LHC
	Slide 10: Proton-Proton collision @ LHC
	Slide 11: Particle Physics Detectors
	Slide 12: Example: CMS Detectors
	Slide 13: The CMS Detector
	Slide 14: Goal
	Slide 15: Reminder: DAQ
	Slide 16: Reminder: DAQ
	Slide 17: There is a problem…
	Slide 18: There is a problem…
	Slide 19: Trigger concept
	Slide 20: A Simple Trigger System
	Slide 21: CMS Trigger System
	Slide 22: CMS Trigger Architecture
	Slide 23: Data Processing to Trigger
	Slide 24: “Interesting” Physics Signatures
	Slide 25: How to Identify these “interesting” events?
	Slide 26: Input to CMS level-1 Trigger
	Slide 27: Input to CMS level-1 Trigger
	Slide 28: Input to CMS level-1 Trigger
	Slide 29: Trigger Final Decisions
	Slide 30: What all we keep?
	Slide 31: High Level Trigger
	Slide 32: GPU Acceleration @ CMS HLT
	Slide 33: All set to do physics analyses
	Slide 34: Lets discuss about FPGAs
	Slide 35: Xilinx Field Programmable Gate Array
	Slide 36: FPGAs:
	Slide 37: FPGA Architecture
	Slide 38: FPGA Architecture
	Slide 39: FPGA Components
	Slide 40: FPGA Components: LUT
	Slide 41: FPGA Components: Flip Flops
	Slide 42: FPGA Components: DSP
	Slide 43: FPGA Components: Storage elements
	Slide 44: FPGA Components: Storage elements
	Slide 45: FPGA Components: Routing
	Slide 46: FPGA Components: I/O
	Slide 47: Programming FPGA
	Slide 48: FPGA Parallelism
	Slide 49: Program execution on a Processor
	Slide 50: Program execution on a Processor
	Slide 51: Program execution on FPGA
	Slide 52: Execution steps on FPGA
	Slide 53: Scheduling
	Slide 54: Pipelining
	Slide 55: Pipelining
	Slide 56: Pipelining
	Slide 57: Pipelining
	Slide 58: Pipelining
	Slide 59: Dataflow
	Slide 60: Why in HEP we need to know so much about FPGAs?
	Slide 61: Workflow during FPGA development
	Slide 62: Save $$$!!!
	Slide 63: Back to Trigger!
	Slide 64: Xilinx FPGAs – Phase-1 choice: V7 690T
	Slide 65: Key Element: Multi-Gigabit Opto-electronics
	Slide 66: CMS Level-1 Trigger Hardware
	Slide 67: Trigger Processor Boards
	Slide 68: CTP7 FW Infrastructure
	Slide 69: Xilinx FPGAs – Phase-2 choice: VU13P
	Slide 70: Multi-gigabit-per-second serial links
	Slide 71: Advanced Processor Prototype for HL-LHC
	Slide 72: APx – Firmware/Software
	Slide 73: Trigger Upgrade FW testing
	Slide 74: Comparison of CPU/GPU/FPGA/ASICS
	Slide 75: CPU/FPGA Advantages
	Slide 76: ASICS
	Slide 77: FPGA/ASIC Advantages
	Slide 78: Uses of FPGAs outside HEP
	Slide 79: More Advanced Architectures
	Slide 80: ACAP Application
	Slide 81: Path to firmware
	Slide 82: High Level Synthesis
	Slide 83: What is HLS?
	Slide 84: What is HLS?
	Slide 85: Why use HLS?
	Slide 86: HLS Design Flow
	Slide 87: Simulation and Synthesis
	Slide 88: HLS Pragmas
	Slide 89: Pragma HLS array_partition
	Slide 90: Ex: Pragma HLS array_partition
	Slide 91: Pragma HLS unroll
	Slide 92: Ex: Pragma HLS unroll
	Slide 93: Basic Mapping Rule C/C++ ➛ RTL
	Slide 94: Basic Mapping Rule C/C++ ➛ RTL
	Slide 95: Basic Mapping Rule C/C++ ➛ RTL
	Slide 96: Basic Mapping Rule C/C++ ➛ RTL
	Slide 97: Deterministic at Compile time
	Slide 98: Lets run some examples (ex1)
	Slide 99: Is Machine Learning Possible on FPGAs?
	Slide 100: hls4ml
	Slide 101: hls4ml Workflow
	Slide 102: Machine Learning at Level-1 Trigger
	Slide 103: CIC DA
	Slide 104: CIC DA: New Addition in Run-3
	Slide 105: CIC DA: Inputs
	Slide 106: CaloL1 Setup
	Slide 107: CIC DA: Layer-1 to uGT
	Slide 108: CIC DA: Auto-encoder Model
	Slide 109: CIC DA: Event Reconstruction
	Slide 110: CIC DA: Naive Auto-encoder Model
	Slide 111: Knowledge Distillation + Quantization
	Slide 112: CIC DA: Teacher ➞ Student Model
	Slide 113: CIC DA: Physics Performance
	Slide 114: CIC DA: Rate Stability
	Slide 115: HL-LHC: Can be more adventurous
	Slide 116: Concluding Remarks
	Slide 117
	Slide 118: Extra Slides
	Slide 119: Jargons
	Slide 120: CMS Level-1 Trigger
	Slide 121: What is CICADA

