
Alexander Held1

1 University of Wisconsin-Madison

HSF India Hyderabad
https://indico.cern.ch/event/1394564/

Jan 16, 2025

Software environment management

This work was supported by the U.S. National Science Foundation (NSF) under Cooperative Agreements OAC-1836650 and PHY-2323298.

https://indico.cern.ch/event/1394564/

Why are we only talking about this (only) now?

• Some slides are based on a similar talk from a previous workshop by Gordon Watts (link) — check those out as well!

2Alexander Held

This week we have been working in a
custom-made environment. What do we
do if something like that is not available?

https://indico.cern.ch/event/1461967/contributions/6264681/

A typical situation

• You are a new collaborator in a group of people performing a physics analysis

• To get started, you might need to find answers to a few questions:

‣ Are there dedicated computing resources for me to use?

‣ How can I access the data I want to analyze?

‣ Is there specific software I need to use?

‣ How do I create a software environment to perform my work in?

3Alexander Held

will look at some patterns for this today

4

Best practices: reproducibility & reuse

Reproducibility in sciences
• From “1,500 scientists lift the lid on reproducibility” [Nature volume 533, pages452–454 (2016)]

5Alexander Held

https://www.nature.com/articles/533452a

Reproducible research
• Classification according to “The Turing Way” [https://book.the-turing-way.org/]

6Alexander Held

The Turing W
ay Com

m
unity. This illustration is created

by Scriberia w
ith The Turing W

ay com
m

unity, used
under a CC-BY 4.0 licence. D

O
I: 10.5281/zenodo.3332807

https://book.the-turing-way.org/
https://doi.org/10.5281/zenodo.3332807

Reproducibility and reuse
• With analyses preserved, we can reuse them

‣ further extend physics impact!

7Alexander Held

https://ep-new
s.w

eb.cern.ch/content/extending-atlas-physics-reach-analysis-reuse-technology

unexcluded supersymmetry models before (left) and
after (right) the 2023 ATLAS pMSSM analysis

https://ep-news.web.cern.ch/content/extending-atlas-physics-reach-analysis-reuse-technology
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2020-15/

Requirements for reusable data analysis
• Preservation of input data

‣ see e.g. https://opendata.cern.ch/

• Preservation of analysis code

‣ see e.g. https://zenodo.org/

• Preservation of environment to run software in

‣ typically containers, see e.g. https://hub.docker.com/

• Instructions for how to run everything

‣ ideally automated and ready-to-run, see workflow languages

• Focus on environments today, but all of these points are worth thinking about more deeply

8Alexander Held

https://opendata.cern.ch/
https://zenodo.org/
https://hub.docker.com/

9

Python environments

Python environment management

10Alexander Held

https://xkcd.com
/1987/

https://xkcd.com/1987/

Hands-on: dependencies and problems

• So far we have been using a pre-configured software environment designed to contain everything we need

• It is common to need functionality from a libraries (= “dependency”) which may not (yet) be available

‣ Python has an extensive Standard Library but we already used a lot of additional libraries this week

‣ we will now see how to handle dependencies in practice

• Exercise

‣ if you do not yet have a BinderHub instance running, start one

- https://binderhub.ssl-hep.org/v2/gh/research-software-collaborations/courses-hsf-india-january2025/HEAD

‣ navigate to the ManagingSoftware directory and open the networkx_visualization.ipynb notebook

‣ try running the notebook — what happens?

11Alexander Held

https://binderhub.ssl-hep.org/v2/gh/research-software-collaborations/courses-hsf-india-january2025/HEAD

pip
• pip is the official Python package manager https://pip.pypa.io/en/stable/ (pip = pip installs packages)

‣ install a package: pip install package-name

- also from e.g. GitHub: pip install git+https://github.com/org/name.git@branch_name

‣ update a package: pip install --upgrade package-name

• You can also package up your own code and distribute it on the Python Package Index (PyPI)

‣ see a tutorial at https://packaging.python.org/en/latest/tutorials/packaging-projects/

‣ distributing packages like this is a great way to share code with others

‣ putting your package on e.g. GitHub is already one way of distribution!

• Creating a package has gotten much easier in past years

‣ at a minimum you need a pyproject.toml file as shown on the right

‣ in practice you should add more metadata to this, see the tutorial

12Alexander Held

https://pip.pypa.io/en/stable/
https://packaging.python.org/en/latest/tutorials/packaging-projects/

Conda
• Conda is a package manager, https://docs.conda.io/projects/conda/

‣ Conda is general purpose and supports software beyond just Python

- language-agnostic, cross-platform

• Distinction with pip

‣ pip installs Python packages in any environment

‣ Conda installs any package in Conda environments

• We generally want to use packages from the conda-forge (https://conda-forge.org/) channel

‣ this channel is free to use (see also https://www.anaconda.com/blog/is-conda-free)

‣ the Anaconda company also provides a default channel and generates revenue from that

‣ use Miniforge (not Miniconda) and and you will be using the conda-forge channel by default

13Alexander Held

https://docs.conda.io/projects/conda/
https://conda-forge.org/
https://www.anaconda.com/blog/is-conda-free

Hands-on with conda (1/2)
• Create and use a new conda environment

‣ conda create -n my-env python=3.12

‣ conda activate my-env

‣ check what is installed in the environment

- conda list

- pip list

• Now try to run the script

‣ python networkx_visualization.py

• Exercise: make this work!

‣ use the conda install command to install missing dependencies

14Alexander Held

using the terminal here

1) click

2) click

Hands-on with conda (2/2)

• If your script works, create a file listing everything in the environment that you could share with others

‣ conda export -f environment.yml

• Now generate a new environment from this file and ensure you can still run networkx_visualization.py

‣ conda env create -f environment.yml -n my-env-from-file

‣ conda activate my-env-from-file

• You could now keep this file around and give it to your collaborators to share your software environment

‣ e.g. put it next to your code on GitHub

15Alexander Held

Comparing environments
• The software environment we have been using throughout this week is defined similarly with a environment.yml file

‣ find it on GitHub: davidlange6/courses-hsf-india-january2025/blob/main/binder/environment.yml

• Which differences do you notice to your environment file?

16Alexander Held

https://github.com/davidlange6/courses-hsf-india-january2025/blob/main/binder/environment.yml

Software versioning

• Version control systems can be used to track changes made to files

‣ versions matter: new software features, bug fixes, interface changes …

• Standard approach

‣ Git (https://git-scm.com/) to track software projects

‣ GitHub, GitLab, … to develop & collaborate

‣ deploy tagged versions of project to users

17Alexander Held

The Turing W
ay Com

m
unity. This illustration is created

by Scriberia w
ith The Turing W

ay com
m

unity, used
under a CC-BY 4.0 licence. D

O
I: 10.5281/zenodo.3332807

https://git-scm.com/
https://doi.org/10.5281/zenodo.3332807

• Semantic versioning is a popular software versioning schema described at https://semver.org/

• Given a version number MAJOR.MINOR.PATCH, increment the:

‣ MAJOR version when you make incompatible API changes

‣ MINOR version when you add functionality in a backward compatible manner

‣ PATCH version when you make backward compatible bug fixes

• There is not always a unique correct way to increment

• Not every project with versions that look like v1.2.3 uses SemVer

• Other schemas exist, e.g. CalVer (https://calver.org/)

‣ e.g. coffea v2025.1.0

Versioning schemas

18Alexander Held

https://xkcd.com
/1172/

https://semver.org/
https://calver.org/
https://github.com/scikit-hep/coffea/releases/tag/v2025.1.0
https://xkcd.com/1172/

SemVer examples (1/2)
• Given a version number MAJOR.MINOR.PATCH, increment the:

‣ MAJOR version when you make incompatible API changes

‣ MINOR version when you add functionality in a backward compatible manner

‣ PATCH version when you make backward compatible bug fixes

• Which version should we use for the code on the right?

19Alexander Held

SemVer examples (2/2)
• Given a version number MAJOR.MINOR.PATCH, increment the:

‣ MAJOR version when you make incompatible API changes

‣ MINOR version when you add functionality in a backward compatible manner

‣ PATCH version when you make backward compatible bug fixes

• How should we increment in both of these examples?

20Alexander Held

Version conflicts and isolating environments
• You might have conflicting version requirements of your dependencies

‣ example: one library which requires uproot<5 and another which requires uproot>=5

‣ this is solved by creating dedicated, isolated environments for your projects

‣ we already created new isolated environments with conda

• Virtual environments are a lightweight way to manage isolated Python environments

‣ you will need a Python interpreter already available to start with

‣ create a new virtual environment with python -m venv .venv

- the environment will be located in the folder .venv

‣ activate the environment

- source venv/bin/activate on Linux / macOS

- venv\Scripts\activate on Windows

‣ you can now install packages with pip and they are available within just that environment

21Alexander Held

Library vs application

22Alexander Held

Library
reusable code, functionality to use in your projects

example: dependencies of the cabinetry library

Application
specific code for a particular purpose

example: dependencies for a specific data analysis pipeline

[…]

loose version specification: avoid version conflicts precise version specification: ensure reproducibility

https://github.com/scikit-hep/cabinetry/blob/cd0af1b7d30b17b5dfbe6e4df6bea19f769441a7/pyproject.toml#L38-L52
https://github.com/iris-hep/analysis-grand-challenge/blob/c37bf595519089fb1f20272721c705a20cd34d24/analyses/cms-open-data-ttbar/requirements.txt

Other tools in this space
• pipx allows you to run Python applications in isolated environments

‣ great e.g. for command-line tools like uproot-browser

‣ documentation: https://pipx.pypa.io/

• uv is a drop-in replacement for pip with a range of additional features

‣ written in Rust and extremely fast

‣ documentation: https://docs.astral.sh/uv/

• pixi is a package manager similar to conda

‣ slightly different philosophy: focused on projects instead of environments

‣ similarly to uv: written in Rust and fast!

‣ documentation: https://pixi.sh/

- transitioning from conda: https://pixi.sh/dev/switching_from/conda/

23Alexander Held

https://pipx.pypa.io/
https://docs.astral.sh/uv/
https://pixi.sh/
https://pixi.sh/dev/switching_from/conda/

24

Containers and images

Containers and images
• If we want truly reproducible workflows, the concepts we have covered so far are insufficient

‣ we might have a huge stack of software dependencies, far reaching beyond just Python libraries

‣ “it works on my machine” but not on another can still happen frequently and be difficult to debug / fix

• Containers provide snapshots of full project environments to deploy them as production environments

‣ this can include libraries, environment & system settings, specific files you might need

‣ you can share this environment with others: can significantly lower barrier to entry

‣ the environment is isolated and can be reset in case something breaks

• Images package up everything needed to run a container (which adds state)

• Focus today on Docker, a very popular containerization tool

‣ many others exist, see in particular Podman as a drop-in replacement and Apptainer (formerly Singularity)

25Alexander Held

https://w
w

w
.docker.com

/resources/w
hat-container/

https://www.docker.com/
https://podman.io/
https://apptainer.org/
https://apptainer.org/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://podman.io/
https://www.docker.com/
https://www.docker.com/resources/what-container/

Containers and virtual machines
• Containers share the system kernel of the host operating system

‣ generally better performance and more lightweight than virtual machines

26Alexander Held

https://w
w

w
.docker.com

/resources/w
hat-container/

https://www.docker.com/resources/what-container/

General workflow

27Alexander Held

recipe

colleague 1

image

container

container registry

container container

colleague 2

create

publish

execute
download &

execute

download

• docker image ls shows images you might already have

• download more with docker pull

‣ example: docker pull python:3.12-slim

• Run container: docker run -it python:3.12-slim

‣ -it for interactive session with terminal access

‣ we land in a Python interpreter session

‣ add e.g. /bin/bash at the end for a bash session

‣ exit to leave the container

• docker container ls shows containers (optionally -a)

‣ from here can pause / stop / remove containers

‣ can also attach to running containers

Using a container

28Alexander Held

image container registry

download

container

execute

version, default “latest”

e.g. https://hub.docker.com/

https://hub.docker.com/

• A Dockerfile is a recipe for creating a new container:

• Create image: docker build -t my-image . (can be published with docker push)

‣ it will now show up in your list with name “my-image” and default tag “latest”

• Test that a container using the new image can use the uproot library

‣ mount create_file_uproot.py, launch with -v host_path:container_path

Creating our own container

29Alexander Held

recipe

image

create

container

execute

build upon existing image

interactive session starts here

copy file into image

install dependency

start up bash by default

Dockerfile

From BinderHub to your laptop &
summary

30

Managing software environments on your laptop

• We started with exercises that all run on the provided BinderHub resources

‣ this greatly simplifies this lecture: same starting point for everyone!

• If we have time left at this point (or as an optional exercise for afterwards): repeat the exercises on your own laptop!

‣ we focused on popular tools, so lots of documentation and help available on the internet

‣ worth having a look at the various tools the exist and find the best for your use case

31Alexander Held

• A range of approaches exists to create reproducible and isolated environments

‣ Python-only? virtual environments

‣ other packages as well? conda environments

‣ package up full stack of software? containers

• The right approach depends on your specific use case and requirements

‣ a large range of widely used tools exists, often with great documentation (see links throughout these slides)

• More recommended resources

‣ HSF training: Intro to Docker and Podman https://hsf-training.github.io/hsf-training-docker/

‣ The Turing Way https://book.the-turing-way.org/

‣ Python Packaging Authority: Python packaging user guide https://packaging.python.org/

‣ Scientific Python topical guides: https://learn.scientific-python.org/development/guides/

→

→

→

Summary

32Alexander Held

https://hsf-training.github.io/hsf-training-docker/
https://book.the-turing-way.org/
https://packaging.python.org/
https://learn.scientific-python.org/development/guides/

33

Backup

The big picture: collision to publication

34Alexander Held

Phys. Lett. B 784 (2018) 173

LHC ring size

https://natronics.github.io/science-hack-day-2014/lhc-map/

O(100 M) files with
O(100 B) events

(data + simulation)

1) collide protons 2) observe remnants 3) infer nature

O(1000) sources of uncertainty

N
ature 607, 52–59 (2022)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-13/
https://natronics.github.io/science-hack-day-2014/lhc-map/
https://doi.org/10.1038/s41586-022-04893-w

End-user physics analysis

• “Analysis” in practice: the whole pipeline turning centrally provided datasets into results for a paper

‣ iterative process, optimize, debug, validate: low latency means faster time-to-insight

35Alexander Held

CERN-EX-1301009

event generation detector interaction

Fig. 1 Pictorial representation of a tt̄h event as produced by an event generator. The hard interaction (big
red blob) is followed by the decay of both top quarks and the Higgs boson (small red blobs). Additional
hard QCD radiation is produced (red) and a secondary interaction takes place (purple blob) before
the final-state partons hadronise (light green blobs) and hadrons decay (dark green blobs). Photon
radiation occurs at any stage (yellow).

on the understanding of LHC physics. The construction, maintenance, validation and extension of event
generators is therefore one of the principal tasks of particle-physics phenomenology today.

The inner working of event generators

Fig. 1 pictorially represents a hadron-collider event, where a tt̄h final state is produced and evolves by
including effects of QCD bremsstrahlung in the initial and final state, the underlying event, hadronisation
and, finally, the decays of unstable hadrons into stable ones. Event generators usually rely on the fac-
torisation of such events into different well-defined phases, corresponding to different kinematic regimes.
In the description of each of these phases different approximations are employed. In general the central
piece of the event simulation is provided by the hard process (the dark red blob in the figure), which
can be calculated in fixed order perturbation theory in the coupling constants owing to the correspond-
ingly high scales. This part of the simulation is handled by computations based on matrix elements,
which are either hard-coded or provided by special programs called parton-level or matrix-element (ME)
generators. The QCD evolution described by parton showers then connects the hard scale of coloured
parton creation with the hadronisation scale where the transition to the colourless hadrons occurs. The
parton showers model multiple QCD bremsstrahlung in an approximation to exact perturbation theory,
which is accurate to leading logarithmic order. At the hadronisation scale, which is of the order of a
few ΛQCD, QCD partons are transformed into primary hadrons (light green blobs) by applying purely
phenomenological fragmentation models having typically around ten parameters to be fitted to data.
The primary hadrons finally are decayed into particles that can be observed in detectors. In most cases
effective theories or simple symmetry arguments are invoked to describe these decays. Another impor-
tant feature associated with the decays is QED bremsstrahlung, which is simulated by techniques that
are accurate at leading logarithmic order and, eventually, supplemented with exact first-order results. A
particularly difficult scenario arises in hadronic collisions, where remnants of the incoming hadrons may
experience secondary hard or semi-hard interactions. This underlying event is pictorially represented by
the purple blob in Fig. 1. Such effects are beyond QCD factorisation theorems and therefore no complete
first-principles theory is available. Instead, phenomenological models are employed again, with more
parameters to be adjusted by using comparisons with data.

3

JHEP 0902 (2009) 007

Ph
ys

. L
et

t.
B

78
4

(2
01

8)
 1

73

object reconstruction “analysis”

centrally
provided
datasets

N
ature 607, 52–59 (2022)

https://cds.cern.ch/record/1505342
https://doi.org/10.1088/1126-6708/2009/02/007
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-13/
https://doi.org/10.1038/s41586-022-04893-w

Preparing for the HL-LHC: the AGC project
• Analysis Grand Challenge (AGC) project (https://agc.readthedocs.io/) defines physics analysis task for HL-LHC R&D

‣ multiple implementations available: reference with coffea, RDataFrame, Julia, columnflow

36Alexander Held

example pipeline in reference AGC implementation

https://agc.readthedocs.io/
https://github.com/iris-hep/analysis-grand-challenge/
https://github.com/root-project/analysis-grand-challenge
https://github.com/Moelf/LHC_AGC.jl
https://github.com/columnflow/agc_cms_ttbar

