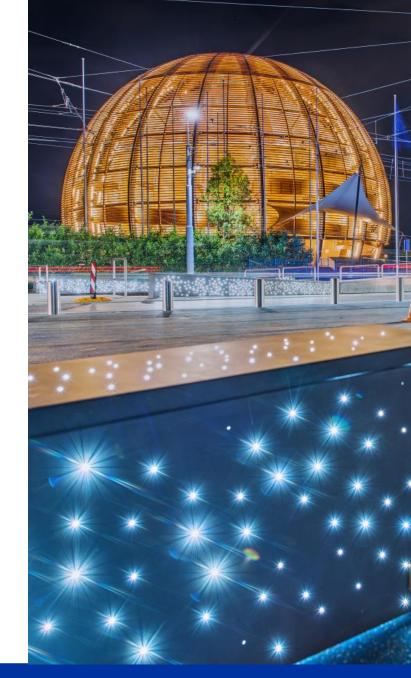


CERN: Going Digital with Asset Lifecycle Management using HxGN

David Widegren, CERN, Engineering Information Management

EDMS 2897729

What is CERN?

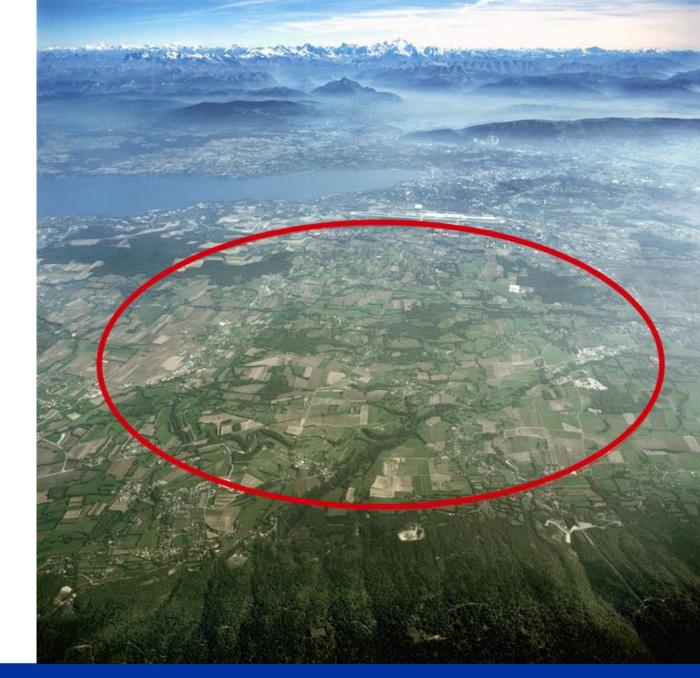

CERN is the world's largest research center for particle physics.

Our mission is to provide scientists with tools to study the building blocks of matter and the origins of the universe.

How: By building and operating huge particle accelerators.

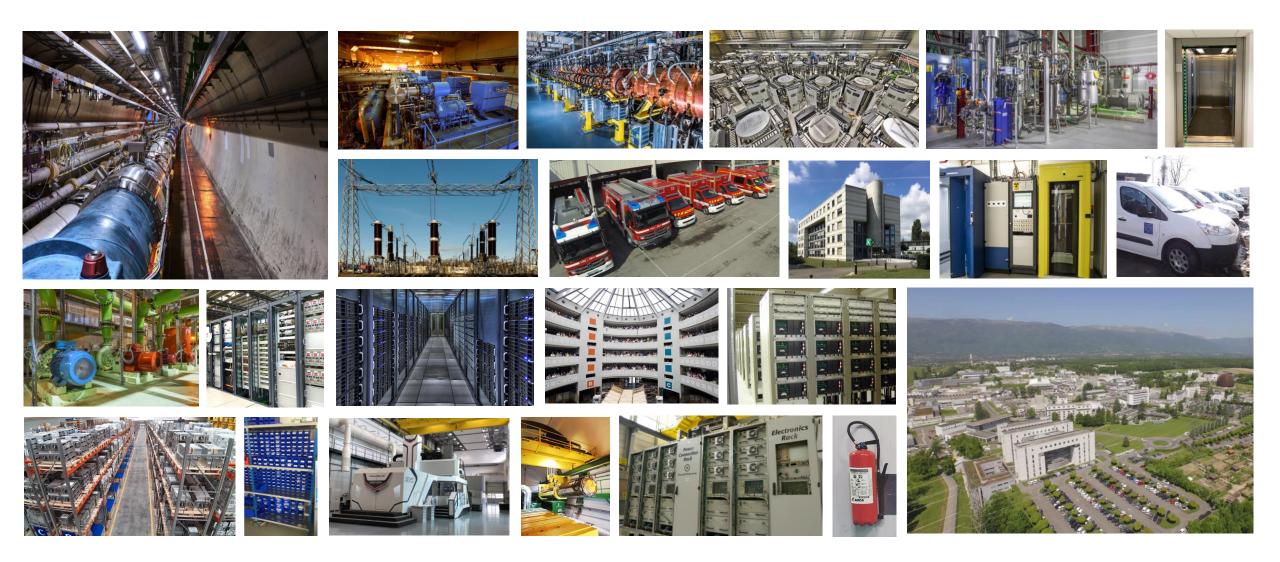
23 Member States >10k People On-site

>80 Collaborating Countries **1.4 bn** CHF Annual Budget



The LHC

The Large Hadron Collider:


- Located outside Geneva, Switzerland.
- 100 million components
- 27 km circular tunnel
- 100 m below ground
- Speed of particles:
 - 99.999999% of speed of light
 - 11,000 revolutions / second

Asset Management at CERN

HxGN EAM at CERN in 2024

3.2 M - 1.8 M Assets 1.2 M Positions 0.2 M Systems

4.6 k Classes 33 k Categories

350 k Work Orders / Year

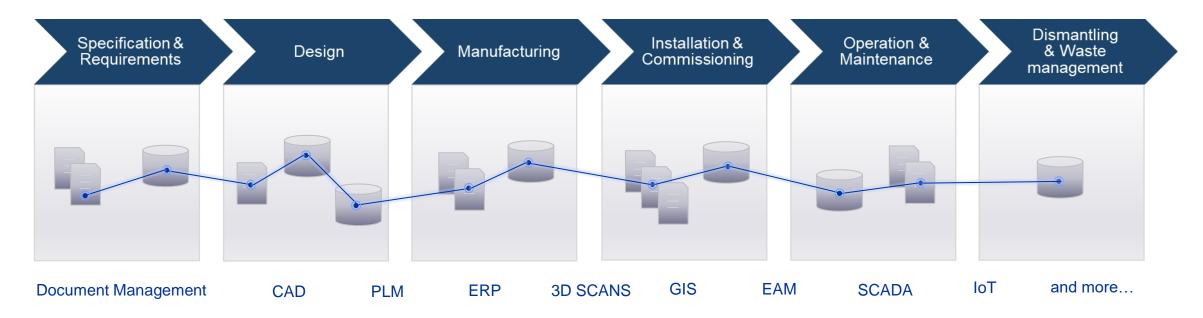
3600 Annual Users

Data: The key to "Going Digital"

- Digital Twins, Digital Realities, AR and AI will never unlock their full potential without managed quality data.
- Understand and focus on your data:
 - Data Capture
 - Data Quality
 - Data Formats
 - Data linked across systems.
 - Data manged over time.
- With large, complex and expensive assets with long lifecycles, a data focus is not just important it is a must!
- Our installations are often designed and built by one generation of scientists and used by the next.

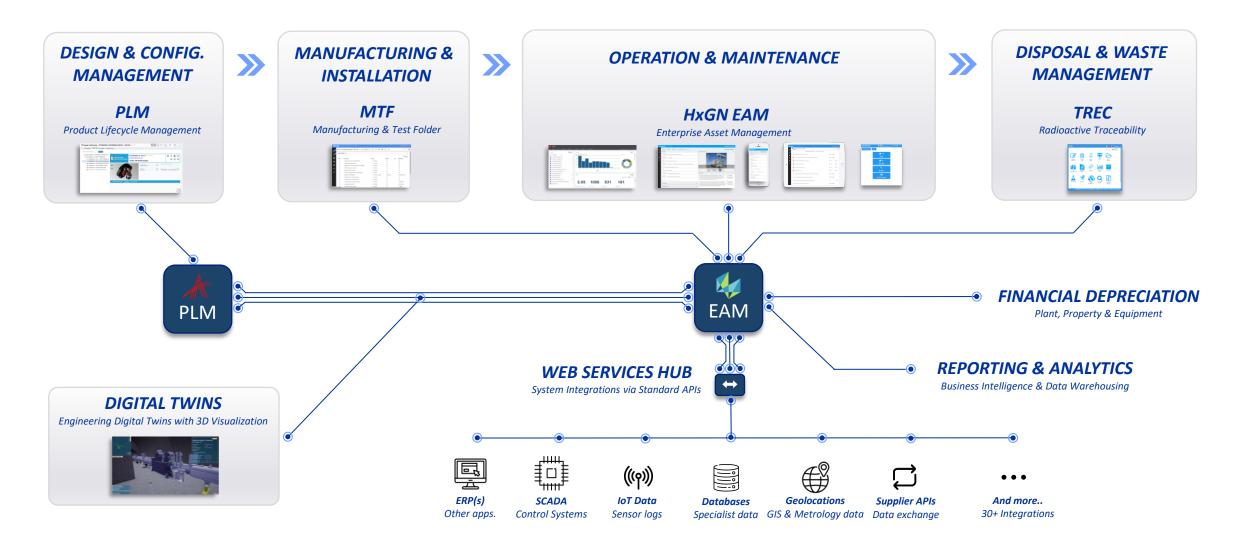
Complex Assets with long lifecycles

Key questions we ask ourselves for data in our asset lifecycles:


- What to capture: What is needed now and what is needed later?
- **How** to capture: Can mobile devices be used? Can SCADA or IoT automate processes?
- Which format to use: How can data be explored, linked and a natural part in handovers between phases?

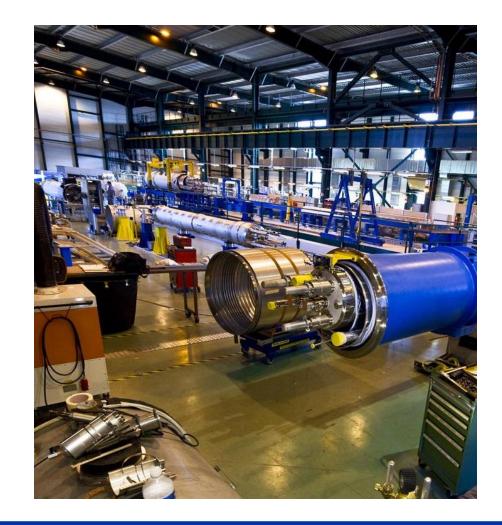
Managing the Digital Thread

- A managed Digital Thread of asset and engineering data, across systems and lifecycle phases, opens many possibilities:
 - Data analysis and correlation of trends or problems previously not possible.
 - Visualizations and simulations and compound data sets.
 - Systematic and automated feedback-loops of data.
 - The combined, and properly linked, data is worth much more than just the sum of it.



Examples of Hexagon technology used

Our Digital Asset Management Platform



Manufacturing & Testing: EAM on the shop floor

- Manufactured Assets are registered and labelled on the shop floor. (At CERN or at manufacturer.)
- Data is mainly registered using mobile devices and kiosks, but also via Excel imports.
- Progress of activities is tracked with EAM and followed-up with reports and large information screens.

Examples of EAM functionality used:

- Equipment Configurations (templates) to register Assets with structures and links to design data in PLM.
- Structured Standard Work Orders to define sequences of Work Orders.
- **Checklists** to capture quality test results and calibration data.(Incl. signatures for approvals.)
- Non-Conformities to document potential quality issues and their resolution.

Maintenance: EAM in the field and beyond

- Basically all maintenance activities are managed and documented with EAM – including sub-contracted maintenance!
- Invoices for sub-contracted maintenance are not paid for if the intervention is not documented and approved in EAM.
- Heavy use of mobile devices. (Mainly consumer grade tablets & phones.)

Examples of functionality used:

- Heavy use of **PM Schedules** and **Routes** for preventive maintenance.
- **Projects** and integrated (interactive) Gantt charts for planning and work preparation.
- **Checklists** are used a lot, also to guide technicians though the maintenance steps.
- Warrantees to avoid "unnecessary" repairs.
- **GIS** integration to located equipment.
- Case Management for operational log books.
- **Contract Management** for invoicing/cost controlling of work.

Maintenance: Explosive adoption of checklists

- Important tool for capturing structured data:
 - Replacing paper everywhere.
 - Replacing Work Order comments.
 - Replacing separate instruction sheets.
 - Extensive use combined with equipment structures and classes.
 - Over 2300 task plans with active checklists.
 - Over 1 million checklist items completed per year.

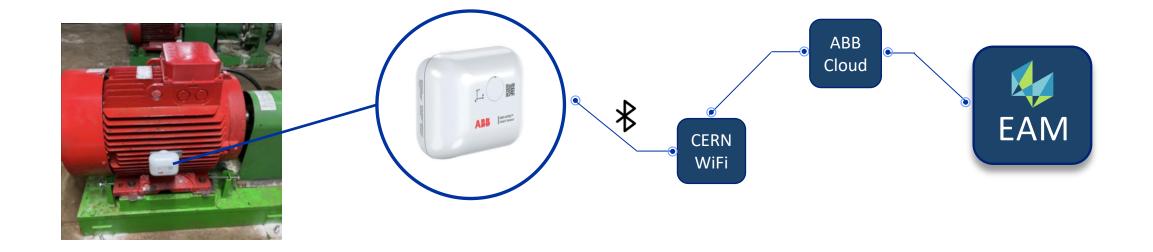
Mainly used via the simplified EAM Light user interface.

- EAM Light was developed at CERN but is made Open Source and now available to all HxGN EAM users.
 - www.cern.ch/eam-opensource
 - <u>www.github.com/cern-eam</u>

AM Light = t:	. w	
Work Order 25269464 SAVE MORE -	X	WSJOBS
CMU HCMQXFBC09-4200228A - Insulated Cable MQXF6	В	^
Appeler l'équipe QA pour effectuer le contrôle	Complete	d
A.3.3.1 QA - Contrôle qualité après mise en place du touret couche externe	Complete	d
QA: Présence des étiquettes sur les 2 flasques	🗌 Yes	No No
QA: Fixation du câble côté mur	🗌 Yes	No No
QA: Câble sortant par le dessous	🗌 Yes	No No
QA: Côté épais vers le mur	🗌 Yes	No No
A.3.3.2 Paramétrage de l'enrouleur effectué (noter en com si une valeur change)	Complete	d
A.3.3.3: Controle Production - Mise à 0 du système de mesure	Complete	d
Controle Production - Vérification de la tension du frein du dérouleur		Ν
A.3.3.4 Longueur sur les tourets interne et externe	Complete	d
Longueur totale sur le touret interne		m
Longueur totale sur le touret externe		m
15 – A.3.3-Mise en cassette du cable - Contrôle qualité (FP-0036-V.4.0)		^

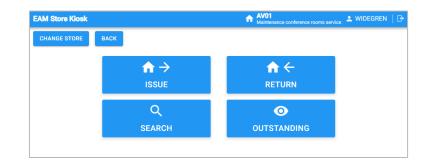
Maintenance: Data from SCADA & IoT

- We are since many years mapping SCADA meters with EAM meters, using a User Defined Screen to define "sampling" method and frequency.
- Currently several groups are in the process of installing more IoT devices communicating over the LoRa network.
- *Example:* One of CERN's 371 overhead cranes.

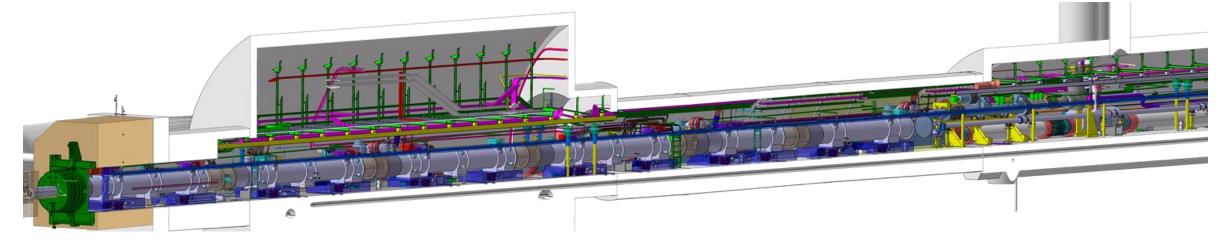


	EAM	k ▼ Materials ▼ Ec	uipment ▼ Purchasing ▼	Operations ▼ Adm	inistration 💌			
S	SCADA Data Mappings							
<	- ▼ 🖹 🖸 💼 Record View	ৰ ► छै •	ē @ ? ¥ 🕅	←				
	Meter in Infor EAM				^			
	EAM Meter:	HMH-PA-01317-1-0						
	Meter Description:	HMH-PA-01317-1-0						
	Meter UOM:	h						
	Equipment Description:	PALAN TAIM 5T (SUR PR-7	60)					
	Equipment:	CRPA-01317						
	Meter in Infor EAM							
	Last Scada Value:	0	Force Meter Limit:	1,092	2.27			
:	Minimum reading value allowed:	0.01	Maximum allowed difference (maximum		24			
	Maximum reading value allowed:	1,092.25	jump):					
	Data Nature:	Q=						
	Data Source:							
	Meter in SCADA							
	NXCALS Variable:*	PA-01317_UXC55_IOT-1-0						
	Update Configuration				^			
	Period:*	1	Last Manual Update:	27-JAN-2023 00:00	Ö			
	Period UOM:*	DAY Q=	Last Automatic Update:	20-MAY-2023 00:00				
	Decimal:	2	User:	VERCOUTB				
			Meter active:					

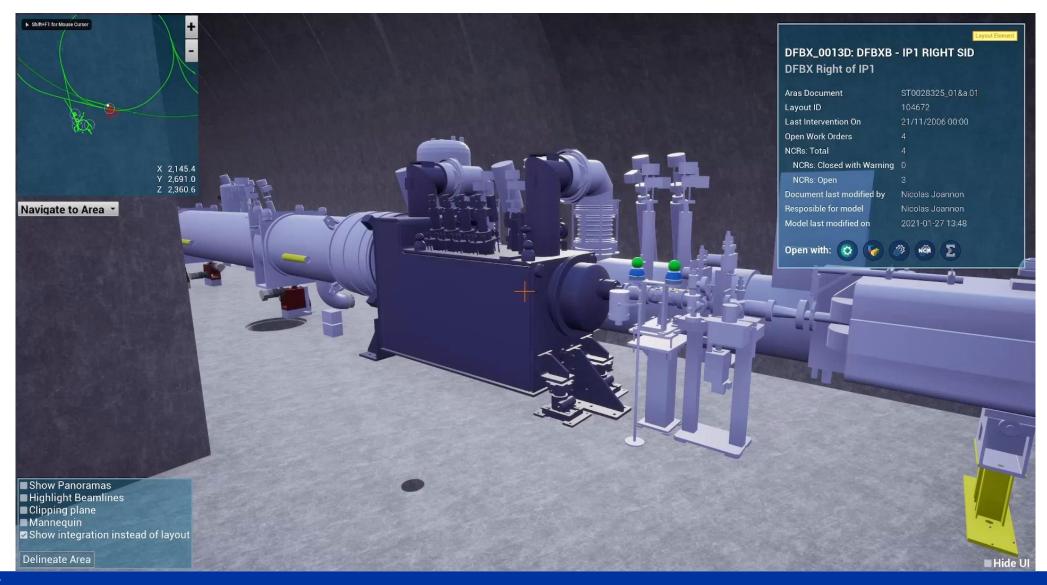
Maintenance: Data from Smart Sensors


- In some cases, in-house analyses or algorithms are developed for data-driven maintenance. In other cases, we rely on services from equipment manufacturers.
- *Example:* Smart Sensors installed on electrical motors communicating information concerning maintenance and energy consumption to EAM via ABB cloud service.

Stores Management: Spare parts


- Successfully implemented for both large and small storerooms.
- Up to 150.000 store transactions per year.
- Integration with GIS to locate stores and bins.
- Integration with ERP for purchasing and transports.
- Use facilitated by a simplified store kiosk interface.

EAM, CAD & 3D Visualisation


- We believe there is a huge potential is combining EAM equipment data with CAD and different visualization tools. Some example:
 - 3D viewers as alternatives to find/search for assets rather then in an EAM list.
 - VR tools to prepare and practice interventions, including safety aspects from EAM.
 - AR and mixed reality to support maintenance personnel in the field.
- At CERN we have large amounts of 3D data (CAD, point clouds, 360 photos), EAM data and many other specialized data sources.

Visualising and Navigating the Digital Thread

New Digital Possibilities

- **Immersive 3D design** process with extended possibilities of virtual prototyping and simulations.
- **3D navigating & reporting** as alternative to a classic search engine and to visualize surrounding hazards, non-conformities or measurements.
- **Virtual Reality** (VR) for design reviews, approvals and preparations of intervention.
- **Augmented Reality** (AR) for better supporting operation and maintenance tasks.
- Continuous comparison between **Reality** and the optimized Digital Twin to detect anomalies and potential problems.
- Automated / Robotic interventions enabled by and based on the **Digital Twin** data.
- And much more...

Blending & Navigating between Reality & Digital Realities

Design:	Specifications, drawings, 3D CAD, simulations, analyses	
Manufacturing:	Manufacturing steps, Quality tests, Non-conformities	
Installation:	Equipment data, alignment, positioning and measurements	
Maintenance:	Maintenance history, preventive/predictive plans, spare parts	
Operations:	SCADA, IoT feeds, cameras, simulations, etc	

Machine Learning

Conclusions

- HxGN EAM has proven to be highly configurable, scalable and open for integrations towards other systems and processes.
- We continue to expand the use of EAM throughout the organization and have big plans for the future.
- EAM is an integral part of our Engineering Platform, which will allow seamless navigation between design and as-built information.
- EAM will become an even more important cornerstone in our IT landscape when now moving forward towards creating Digital Twins of our installations.

home.cern