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DM as a strongly coupled dark sector

o Hidden Valley [arXiv:hep-ph/0604261] with new particles and forces form the dark sector

e Strongly coupled dark sector
- New confining SU(N) force, dark QCD, and dark quarks
- Dark hadronic showers and jets
-> Experimental signature: semivisible jets (SVJs) [arXiv:1503.00009, arXiv:1707.05326]

e Portal between the standard model (SM) and dark sectors via a mediator particle
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https://arxiv.org/abs/hep-ph/0604261
https://arxiv.org/abs/1503.00009
https://arxiv.org/abs/1707.05326

Anomaly detection to search for SVJs

- Different jet substructure due
to double hadronization

- Experimental signatures of
SVJs very model-dependent

= Large parameter space to
cover

The details of the shower in the dark sector depend on many unknown
parameters, e.g.:

o Number of colors and flavors in the dark sector
o Masses of the dark hadrons

- Use anomaly detection to identify SVJs as anomalies
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CMS detector

o The CMS detector is composed of different subdetectors allowing to identify and
measure the properties of photons, electrons, muons and hadrons

e SM decay products of SM jets and SVJs can be reconstructed, and clustered into jets

- Exploit the different jet substructure of SVJs compared to SM jets to tag them

Tracker

Electromagnetic
Calerimeter

Hadron /
Calorimeter Superconducting
Solenoid Iren return yoke interspersed
with muen chambers
~—— Muon Electron Charged hadron (e.g. pion)
«==.Neutral hadron (e.g. neutron) ~  ----. Photon
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SVJ experimental signature: SM hadrons

- Stable dark hadrons
Missing transverse momentum (£)

aligned with a jet

o= IS

QCD multijet

o Artificial missing transverse energy Fr aligned with jet
from jet energy mismeasurement

o Autoencoder-based anomaly detection proved to work
well against QCD jets [arXiv:2112.02864]

tt + jets

o Semi-leptonic channel W (— lv) with lost lepton,
genuine 1 from neutrino

@ More challenging for anomaly detection
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https://arxiv.org/abs/2112.02864

Anomaly detection with autoencoders (AE)

o AEs are trained to minimize the
reconstruction error (e.g. MSE) between Input Reconstructed
input and output: features features

Latent space
L(z) = |lg(f(z)) — =l

Encoded features

- Aim: that examples out of the training
distribution, i.e. anomalies, have a higher
reconstruction error

- Trained on SM data, AEs can perform
signal-agnostic searches for new physics
[arXiv:1808.08979, arXiv:1808.08992]

Encoder f Decoder g

- Will use interchangeably: Training examples

o “training” and “background” Examples out of

» training distribution

e “anomaly” and “signal”

Number of
examples

o AE network is a fully connected NN with

jet substructure input features (see | Reconstruction error
backup slides 19-21)
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https://arxiv.org/abs/1808.08979
https://arxiv.org/abs/1808.08992

The problem of out-of-distribution (OOD) reconstruction

e Standard AEs are trained to minimize CMS Simulation Preliminary _ S

reco error in the background phase space g b Background ----Signal

qc) 1.2:7 t E

e but AEs are free to minimize reco 2 E
error outside the background phase 3 E
space! including the unknown signal o 08 E
phase space... § 06 E

- No classification power & eE B

- This is the problem of o.zE E
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reconstruction
in the signal

Training / background phase space

phase space

00D Anomaly / signal
phase space
Low reconstruction
error phase space
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Working principle of the Wasserstein Normalized Autoencoder

Ensure that the low reconstruction error probability distribution matches that
of the training data

o Define a probability distribution py so that regions 1
= — —Eg(x
with low reco error Ey have high probability po () Qg exp (= Ep(2))

o Minimize the distance between the training and py probability distributions
o Sample from py via MCMC - “Negative samples”

o Wasserstein distance between training and negative samples!

Training / background data Anomalous / Training / background data

Anomalous /

signal data signal data

Negative samples

Low reconstruction error Low reconstruction error

1First developments on Normalized Autoencoders in arXiv:2105.05735 and arXiv:2206.14225) with
different loss function resulting in several failure modes, see backup slides 23-26



https://arxiv.org/abs/2105.05735
https://arxiv.org/abs/2206.14225

Wasserstein Normalized Autoencoder: Performance

CMS Simulation Preliminary
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Learning the background probability

Neg. / pos.

Neg. / pos.
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Learning the background probability
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Learning the background probability

Neg. / pos.

Neg. / pos.
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A more natural representation: graphs

o Reconstructed jets are unordered sets of particles

o Can naturally be represented as graphs!
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Towards normalized graph autoencoder

o Need to sample from pg in a graph space!

e Can run an MCMC on graphs:

Xp =Xn-1—aVEy(Xn_1,An_1) + Box

An =An—1 —YVEg(Xn—1,An—1) + 004

Energy Function

X MCMC Samples
« Initial Samples

Feature Mean
Graph Energy
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“100 5"

'1’;;";’;”';;""""
: : 0.4 o6
ature Mean N

50

- Extends normalized autoencoders to graph networks!




Conclusions

e Signal-agnostic searches for new physics in HEP can be implemented by learning a score
that depends on the probability density of the SM data

o Standard AEs are prone to out-of-distribution reconstruction because they are free to
minimize the reconstruction error outside the training phase space

o Normalized AEs propose a mechanism to ensure that the learned probability
distribution matches that of the training data

o Wasserstein Normalized AEs is an improvement over Normalized AEs, based on the
Wasserstein distance to minimize the distance between the AE probability distribution
and that of the training data

o The Normalized AE paradigm can be extended to graph networks
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Production of semivisible jets

e Dark quarks hadronize in the dark sector

o A fraction of dark hadrons promptly decays to SM quarks which hadronize in the SM
sector

o Remaining dark hadrons are stable and invisible = DM candidates
- Production of semivisible jets (SVJ) [arXiv:1503.00009, arXiv:1707.05326]

- Different jet substructure due to double hadronization

SM hadrons

Stable dark hadrons
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https://arxiv.org/abs/1503.00009
https://arxiv.org/abs/1707.05326

t-channel production of SVJ

3 production mechanisms: 1.0 :

Dit'ecF and i yp =1
. . associated
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Production of dark quarks without 2 i dominant
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Many possible diagrams in the ¢-channel

@ Direct production
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Model parameters

Model parameters:

@ mg: Mass of the mediator @ Tiny: Jet invisible fraction
o Effective parameter in the simulation
e mp: Mass of the dark hadrons (7p, pp) Branching ratio DM — qg

o Same for all dark hadrons

e yp: Yukawa coupling between SM and

Number of stable dark hadrons
Tinv =
dark quarks

Number of dark hadrons

Tiny = 0 0<ripy <1 Tiny = 1

q

|

Er

Dijet search SVJ search WIMP search
SM hadrons

Stable dark hadrons
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Backgrounds

SVJ experimental signature: F aligned with jets!

QCD multijet

o Artificial missing transverse energy Fr aligned with jet
from jet energy mismeasurement

o Large cross-section

tt + jets
o Large jet from boosted ¢

o Semi-leptonic channel W (— lv) with lost lepton,
genuine 1 from neutrino

Z + jets

o Genuine 1 from Z — vv

W + jets

e W — lv with lost/not reconstructed lepton or hadronic
decay of T

o Genuine f1 from neutrino
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@ Normalized autoencoder (theory)
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Energy-based models

Energy-based models (EMBs)
o EBMs are models where the probability is defined through the Boltzmann distribution
o Let 6 denote the model parameters

o The model probability pgy is defined from the energy Fjy

po(z) = Qigexp<—Ee<m>/T> (1)

where the normalization constant €y is

= [ exp (~Eo(a)/T) do 2)
o The EBM loss for a training example z is the negative log-likelihood:
Lo(z) = —logpy(z) = Eo(z)/T + log Qg 3)
o The gradient of the EBM loss is thus:
VoLg(z) = VgEo(x) —Eyrrp, [VoFo(z)] 4)
o The expectation value over the training dataset, with probability pqata is:

Eznpaata [VoLo(z)] = Eznpaata [VoEg(x)] — Ex’~p9 [VeEG(zl)] (5)

Florian Eble sup with WNAE



Normalized Autoencoder (NAE) paradigm

o Ensure that the low reconstruction error
probability distribution matches that of
training data

Full phase-space

Training / background data Anomalous

signal data
- Need a way to sample from the low reco error Sgnal dala

probability, independent of the training dataset

@ The network probability distribution pg is
constructed from the reco error Ey via the

Boltzmann distribution?:
Low reconstruction error

po(z) = Qie exp (— Ep(z))

o Low reco error probability distribution sampled via Langevin Markov Chain Monte Carlo
(MCMC)2 to obtain “negative examples” and compute their reconstruction error F_

e The positive energy F is the reconstruction error of the training (“positive”) examples
o The loss is designed to learn py = pgata:

Eznpaara [L0(@)] = Eonpgaa [Bo ()] = Eorepy [Fo(2)]

positive energy Ey negative energy E_

1 More on Energy Based Models in backup slide 9
2More on MCMC in backup slide 13
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Normalized Autoencoder loss and MCMC

Loss
EC‘?NPdata [L9 ((E)} = Em’“ﬁdam [EG ('/E)} - E(L"N])() [E9 ("I/)}

positive energy . negative energy F_

Positive energy
e Simply the reconstruction error over the training dataset

o Take examples from training dataset and compute the reconstruction error!

Negative energy
@ Reconstruction error of the “negative samples” z’ from the probability distribution pg
o Need to sample from the model to get the “negative samples”
- Monte Carlo Markov Chain (MCMC) employed

MCMC
o Start from an initial point x,
e Run n Langevin MCMC steps:
wiy =a; — A VaEg(x)) + oe e~N(0,I)
drift diffusion

/( ()

o Repeat with several points xoj), the negative samples are the z
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sserstein Normalized Autoencoder (WNAE) paradigm

o Ensure that the low reconstruction error
probability distribution matches that of the
training data

Full phase-space

Training / background data Anomalous

- Need to sample from the low reco error probability signal data

distribution, independent from the training dataset

@ The network probability distribution pg is
constructed from the reco error Ey via the

Boltzmann distribution?:
Low reconstruction error

po(z) = Qie exp (— Ep(z))

@ Low reco error probability distribution sampled via Langevin Markov Chain Monte
Carlo (MCMC)? to obtain “negative examples”3

o The loss is the Wasserstein distance (a.k.a. Energy Mover’s Distance) between
negative examples and training examples to learn py = pgata:

Lo(z) = inf  E(gu)mry[llz — 2/l

i
YEI(Pdata Po)

o The WNAE learns the probability distribution of the training data

1 More on Energy Based Models in backup slide 9
2More on MCMC in backup slide 13
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Principle of MCMC (Langevin Monte Carlo)

Let p be a probability distribution on R¢

o Consider x¢ a random initial set of n points in R%

‘With the update rule:
i1 =2t + AViog (p(x)) + V2 - X - e

where ¢; is a sample of n points drawn from a multivariate normal distribution on R%

Let p: denote the probability distribution of x;

o In the limit ¢ — oo, p: approaches a stationary distribution peo, and poc = p

Initial distribution Gradient + noise Step 1 Step N
.. .O L] L) { ]
‘o9 ) @ o ° ’
[ ] (] °
[ J [
[ ] 2 "
° o |0 ° P ) L °
° . ° ¢ L e ° o°
[ J [ [ ] °
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Understanding the MCMC hyper-parameters

@ Recall the MCMC equation:

T =a; — AVzEy(z]) + o€ e~N(0,1I)

o A theoretically motivated choicel for the MCMC hyper-parameters is:

2.\ =02

e The MCMC is run on every batch: in practice, for training in a reasonable amount of
time, the MCMC is rather short

@ To speed up the convergence of the MCMC, the temperature T is introduced:
/ ! >\ /
wi+1:xi—szE9(a:i)+Ue e~N(0,1I)

o Tweaking the gradient step size can be seen as adjusting the temperature 7"
the strength of the gradient term is increased for 7' < 1

o The parameter space where o and T are set independently, with T < 1 and A = 02/2 is
in theory a good region

1For an infinitely long chain, see backup slide 13
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MCMC initialization

MCMC initialization:
e In theory, MCMC convergence independent on the initial point

e However, in practice with short chain, initialization is crucial

Several commonly used initialization algorithms of the MCMC:
o Contrastive Divergence! (CD)
e Persistent CD? (PCD)

CcD?
o Initial distribution from training data

o Re-initialization after each parameter update (i.e. epoch)

PCD*
e Random initial distribution for first MCMC
o The model changes only slightly during parameter update

o Thus, for subsequent chains, initialize chain at the state in which it ended for the
previous model

o Possibility to randomly re-initialize a small fraction of the samples

INeural Comput 2002; 14 (8) 3lllustration in backup slide 16
2pCcD paper 41llustration in backup slide 17
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https://doi.org/10.1162/089976602760128018
https://www.cs.toronto.edu/~tijmen/pcd/pcd.pdf

Principle of CD

Example of a failure mode of CD: High Training d .
probability mode far from training data di alr}]l)ng- a?a
distribution is not sampled istribution:

Initial distribution
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Principle of PCD

Initial distribution Step 1 Step 2 Step N
.o o o °
- °* e o o e o N
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@ Normalized autoencoder (in practice)
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Input feature
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Input feature
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Input features (¢t + jets trainings

o Input features used for the training on top jets at pre-selection level
o Leading two jets
o Truth-tagged SVJ only for signals
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Training samples and hyper-parameters

Input features Hyper-parameters
Using AdKS Jsts b.e:icause SVJ are Hy per-parameter Value
expected to be wide Batch size 256
. Axis major Reconstruction loss MSE
Jet width . L
et w axis minor Activation ReLU
. T2, T3 Output encoder/ .
N-pronginess 0520'5 decoder activation Linear
D Optimizer Adam
Other P, EFP1 L : t 1e-5
log(softdrop mass) earning rate €
Dropout 0.
Architecture MCMQ PCD
Fully connected neural net Sampling phase space | [-3, 3] hypercube
Hidden layers: 10, 10,6, 10, 10
Number of events
mg [GeV] 1000 | 1500 2000 3000 | 4000 -
Tine 03 | 03 [ 01050307 03 [ o3| 2P|
Number of events | 23k | 25k | 23k | 18k | 16k | 11k | 14k | 14k || 83k | 23k

Number of AKS8 jets

Background jets | Leading 2 jets
Signal jets Only SVJ in leading 2 jets

Train/validation/test splitting
0.7/0.15/0.15
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Failure modes of NAEs

Observed two failure modes when training a NAE:

o Negative energy difference: the loss function can be < 0
= pp = pdata = L =0
> L#0 = pg# Pdata |
- Incentive to learn pg # pdata as it has lower loss (L < 0) than pg = pgata (L = 0)

o Divergence of energies

CMS Simulation Preliminary CMS Simulation Preliminary
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Modified NAE loss function

Modified default loss function, compared to arXiv:2105.05735, to:
o discourage the network to converge to negative energy difference configurations

o prevent the divergence of the energies

L =log (cosh (E+ — E_))
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- Signal SVJ reconstruction is efficiently suppressed!

- How to define stopping condition in a fully signal-agnostic way?



https://arxiv.org/abs/2105.05735

Wasserstein distance: signal-agnostic metric for optimal performance
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CMS Slmulallun Prellmlnary

o The Wasserstein ditance (a.k.a.
Energy Mover’s Distance, EMD)
between the training and negative
samples is a measure of the distance

Energy Mover's Distance

45F between the background and NN

3 probabilities directly in the input
350 feature space

3
25 o Always observing a “collapse”: the energy
s difference stays zero but background and

0 20004000 so00 G000 10000 NN probabilities differentiate

with WNAE



EMD versus energy difference: illustration of the collapse

Reconstruction
error (energy)

Reconstruction
error (energy)

NN probability

Ei= E_
Signal Background
probability probability

Input feature space

NN probability

Background
probability

Florian Eble

Illustration before collapse:

e Background (positive) and NN
(negative) probability distributions
match

- Low EMD and low energy
difference between negative and
positive probability distributions

- Anomalies have large reco error

Illustration after collapse:

o Large discrepancy between back-
ground and NN probability
distributions

- Large EMD but low energy
difference between negative and
positive probability distributions

-> Anomalies are not distinguishable
from background

with WNAE



Visualizing the low error phase space

e Can visualize negative samples as 1D histograms in the feature space!

° Cg =0.5 negative samples distribution is wider and offset after the collapse
Before phase space collapse After phase space collapse
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