

Unsupervised tagging of semivisible jets with normalized autoencoders in CMS

Florian Eble, Annapaola de Cosa, Christoph Ribbe, Roberto Seidita

ETH zürich

19/06/2024

CHIPP 2024 annual meeting

- Hidden Valley [arXiv:hep-ph/0604261] with new particles and forces form the dark sector
- Strongly coupled dark sector
 - \twoheadrightarrow New confining SU(N) force, dark QCD, and dark quarks
 - \rightarrow Dark hadronic showers and jets
 - → Experimental signature: semivisible jets (SVJs) [arXiv:1503.00009, arXiv:1707.05326]
- Portal between the standard model (SM) and dark sectors via a mediator particle

Anomaly detection to search for SVJs

- → Different jet substructure due to double hadronization
- → Experimental signatures of SVJs very model-dependent
- → Large parameter space to cover

The details of the shower in the dark sector depend on many unknown parameters, e.g.:

- Number of colors and flavors in the dark sector
- Masses of the dark hadrons

 \rightarrow Use anomaly detection to identify SVJs as anomalies

CMS detector

- The CMS detector is composed of different subdetectors allowing to identify and measure the properties of photons, electrons, muons and hadrons
- SM decay products of SM jets and SVJs can be reconstructed, and clustered into jets
- \rightarrow Exploit the different jet substructure of SVJs compared to SM jets to tag them

CMS.

Backgrounds

SVJ experimental signature:

Missing transverse momentum $(\not\!\!\!E_{\rm T})$ aligned with a jet

QCD multijet

- Artificial missing transverse energy $\not\!\!E_{\rm T}$ aligned with jet from jet energy mismeasurement
- Autoencoder-based anomaly detection proved to work well against QCD jets [arXiv:2112.02864]

$t\bar{t} + jets$

- More challenging for anomaly detection

SM hadrons Stable dark hadrons

• AEs are trained to minimize the reconstruction error (e.g. MSE) between input and output:

$$L(x) = ||g(f(x)) - x||$$

- → Aim: that examples out of the training distribution, i.e. anomalies, have a higher reconstruction error
- → Trained on SM data, AEs can perform signal-agnostic searches for new physics [arXiv:1808.08979, arXiv:1808.08992]
- \rightarrow Will use interchangeably:
 - "training" and "background"
 - "anomaly" and "signal"
 - AE network is a fully connected NN with jet substructure input features (see backup slides 19-21)

The problem of out-of-distribution (OOD) reconstruction

Working principle of the Wasserstein Normalized Autoencoder

Ensure that the low reconstruction error probability distribution matches that of the training data

• Define a probability distribution p_{θ} so that regions with low reco error E_{θ} have high probability

$$p_{\theta}(x) = \frac{1}{\Omega_{\theta}} \exp\left(-E_{\theta}(x)\right)$$

- Minimize the distance between the training and p_{θ} probability distributions
 - Sample from p_{θ} via MCMC \rightarrow "Negative samples"
 - Wasserstein distance between training and negative samples¹

¹First developments on Normalized Autoencoders in arXiv:2105.05735 and arXiv:2206.14225) with different loss function resulting in several failure modes, see backup slides 23-26

Wasserstein Normalized Autoencoder: Performance

CMS

- Direct (anti-)correlation between Wasserstein distance and AUC!
- Fully signal-agnostic training procedure: training until minimal Wasserstein distance is achieved
- Drastic improvement over standard AEs!

Epoch 1

Epoch 40

Epoch 500

A more natural representation: graphs

- Reconstructed jets are unordered sets of particles
- Can naturally be represented as graphs!

$$X_{1} \qquad X_{2} \qquad X_{3} \qquad X = (x_{0}, ..., x_{N}) \qquad \rightarrow \text{ Node features}$$

$$X_{1} \qquad X_{2} \qquad X_{3} \qquad X = (x_{0}, ..., x_{N}) \qquad \rightarrow \text{ Node features}$$

$$A = \begin{bmatrix} 1 & \dots & x_{0,N} \\ \vdots & \ddots & \vdots \\ a_{N,0} & \dots & 1 \end{bmatrix} \qquad \rightarrow \text{ Adjacency matrix}$$

а.

Towards normalized graph autoencoder

- Need to sample from p_{θ} in a graph space!
- Can run an MCMC on graphs:

$$X_n = X_{n-1} - \alpha \nabla E_\theta(X_{n-1}, A_{n-1}) + \beta \sigma_X$$

$$A_n = A_{n-1} - \gamma \nabla E_\theta(X_{n-1}, A_{n-1}) + \delta \sigma_A$$

→ Extends normalized autoencoders to graph networks!

- Signal-agnostic searches for new physics in HEP can be implemented by learning a score that depends on the probability density of the SM data
- Standard AEs are prone to out-of-distribution reconstruction because they are free to minimize the reconstruction error outside the training phase space
- Normalized AEs propose a mechanism to ensure that the learned probability distribution matches that of the training data
- Wasserstein Normalized AEs is an improvement over Normalized AEs, based on the Wasserstein distance to minimize the distance between the AE probability distribution and that of the training data
- The Normalized AE paradigm can be extended to graph networks

Backup

Analysis

Normalized autoencoder (theory)

• Normalized autoencoder (in practice)

- Dark quarks hadronize in the dark sector
- A fraction of dark hadrons promptly decays to SM quarks which hadronize in the SM sector
- \bullet Remaining dark hadrons are stable and invisible \implies DM candidates
- → Production of semivisible jets (SVJ) [arXiv:1503.00009, arXiv:1707.05326]
- \rightarrow Different jet substructure due to double hadronization

SM hadrons Stable dark hadrons

t-channel production of SVJ

3 production mechanisms:

q

q

- Direct production: Production of dark quarks without resonance
- Associated production: Production of the mediator associated with a dark quark

 y_D

 u_{L}

(a) Direct production

Florian Eble

Φ

χ

Unsupervised tagging with WNAE

• Pair production: Production of a pair of mediators

19/06/2024

• Direct production

• Associated production

• Pair production

sull is the mediator Φ , gv11 is a dark quark

Model parameters

Model parameters:

- m_{Φ} : Mass of the mediator
- $m_{\rm D}$: Mass of the dark hadrons $(\pi_{\rm D}, \rho_{\rm D})$
 - Same for all dark hadrons
- $y_{\rm D}$: Yukawa coupling between SM and dark quarks

- r_{inv} : Jet invisible fraction
 - Effective parameter in the simulation Branching ratio DM $\to q\bar{q}$

 $r_{\rm inv} = \left\langle \frac{\text{Number of stable dark hadrons}}{\text{Number of dark hadrons}} \right\rangle$

6/27

Backgrounds

SVJ experimental signature: $\not\!\!E_T$ aligned with jets!

QCD multijet

- Artificial missing transverse energy ${\not\!\!E}_{\rm T}$ aligned with jet from jet energy mismeasurement
- Large cross-section

$t\bar{t} + jets$

- Large jet from boosted t

Z + jets

W + jets

- $W \rightarrow l \nu$ with lost/not reconstructed lepton or hadronic decay of τ
- Genuine ${\not\!\! E}_{\rm T}$ from neutrino

Analysis

• Normalized autoencoder (theory)

• Normalized autoencoder (in practice)

Energy-based models (EMBs)

- CMS
- EBMs are models where the probability is defined through the Boltzmann distribution
- Let θ denote the model parameters
- The model probability p_{θ} is defined from the energy E_{θ}

$$p_{\theta}(x) = \frac{1}{\Omega_{\theta}} \exp\left(-E_{\theta}(x)/T\right)$$
(1)

where the normalization constant Ω_{θ} is

$$\Omega_{\theta} = \int \exp\left(-E_{\theta}(x)/T\right) dx \tag{2}$$

• The EBM loss for a training example x is the negative log-likelihood:

$$L_{\theta}(x) = -\log p_{\theta}(x) = E_{\theta}(x)/T + \log \Omega_{\theta}$$
(3)

• The gradient of the EBM loss is thus:

$$\nabla_{\theta} L_{\theta}(x) = \nabla_{\theta} E_{\theta}(x) - \mathbb{E}_{x' \sim p_{\theta}} \left[\nabla_{\theta} E_{\theta}(x') \right]$$
(4)

 $\bullet\,$ The expectation value over the training dataset, with probability $p_{\rm data}$ is:

$$\mathbb{E}_{x \sim p_{\text{data}}} \left[\nabla_{\theta} L_{\theta}(x) \right] = \mathbb{E}_{x \sim p_{\text{data}}} \left[\nabla_{\theta} E_{\theta}(x) \right] - \mathbb{E}_{x' \sim p_{\theta}} \left[\nabla_{\theta} E_{\theta}(x') \right]$$
(5)

Normalized Autoencoder (NAE) paradigm

- Ensure that the low reconstruction error probability distribution matches that of training data
- → Need a way to sample from the low reco error probability, independent of the training dataset
- The network probability distribution p_{θ} is constructed from the reco error E_{θ} via the Boltzmann distribution¹:

$$p_{\theta}(x) = \frac{1}{\Omega_{\theta}} \exp\left(-E_{\theta}(x)\right)$$

- Low reco error probability distribution sampled via Langevin Markov Chain Monte Carlo $(MCMC)^2$ to obtain "negative examples" and compute their reconstruction error E_-
- The positive energy E_+ is the reconstruction error of the training ("positive") examples
- The loss is designed to learn $p_{\theta} = p_{\text{data}}$:

$$\mathbb{E}_{x \sim p_{\text{data}}} \left[L_{\theta}(x) \right] = \mathbb{E}_{x \sim p_{\text{data}}} \left[E_{\theta}(x) \right] - \mathbb{E}_{x' \sim p_{\theta}} \left[E_{\theta}(x') \right]$$
positive energy E_{\pm} negative energy E_{\pm}

 $^{^1\,\}mathrm{More}$ on Energy Based Models in backup slide 9

²More on MCMC in backup slide 13

Loss

$$\mathbb{E}_{x \sim p_{\text{data}}} \left[L_{\theta}(x) \right] = \mathbb{E}_{x \sim p_{\text{data}}} \left[E_{\theta}(x) \right] - \mathbb{E}_{x' \sim p_{\theta}} \left[E_{\theta}(x') \right]$$

positive energy E_+ negative energy E_-

Positive energy

- Simply the reconstruction error over the training dataset
- Take examples from training dataset and compute the reconstruction error!

Negative energy

- Reconstruction error of the "negative samples" x' from the probability distribution p_{θ}
- Need to sample from the model to get the "negative samples"
- \rightarrow Monte Carlo Markov Chain (MCMC) employed

MCMC

- Start from an initial point x'_0
- Run n Langevin MCMC steps:

$$\begin{aligned} x_{i+1}' &= x_i' - \lambda_i \nabla_x E_{\theta}(x_i') + \sigma_i \epsilon \qquad \epsilon \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}\right) \\ \text{drift} \quad \text{diffusion} \end{aligned}$$

• Repeat with several points $x_0^{\prime(j)}$, the negative samples are the $x_n^{\prime(j)}$

Wasserstein Normalized Autoencoder (WNAE) paradigm

CMS

- Ensure that the low reconstruction error probability distribution matches that of the training data
- → Need to sample from the low reco error probability distribution, independent from the training dataset
- The network probability distribution p_{θ} is constructed from the reco error E_{θ} via the Boltzmann distribution¹:

$$p_{\theta}(x) = \frac{1}{\Omega_{\theta}} \exp\left(-E_{\theta}(x)\right)$$

- \bullet Low reco error probability distribution sampled via Langevin Markov Chain Monte Carlo $(\rm MCMC)^2$ to obtain "negative examples" ^3
- The loss is the Wasserstein distance (a.k.a. Energy Mover's Distance) between negative examples and training examples to learn $p_{\theta} = p_{\text{data}}$:

$$L_{\theta}(x) = \inf_{\gamma \in \Pi(\underline{p_{\text{data}}}, p_{\theta})} \mathbb{E}_{(x, x') \sim \gamma}[\|x - x'\|]$$

• The WNAE learns the probability distribution of the training data

 2 More on MCMC in backup slide 13

 $^{^{1}}$ More on Energy Based Models in backup slide 9

- Let p be a probability distribution on \mathbb{R}^d
- Consider x_0 a random initial set of n points in \mathbb{R}^d
- With the update rule:

$$x_{t+1} = x_t + \lambda \nabla \log (p(x_t)) + \sqrt{2 \cdot \lambda} \cdot \epsilon_t$$

where ϵ_t is a sample of n points drawn from a multivariate normal distribution on \mathbb{R}^d

- Let ρ_t denote the probability distribution of x_t
- In the limit $t \to \infty$, ρ_t approaches a stationary distribution ρ_{∞} , and $\rho_{\infty} = p$

$$x_{i+1}' = x_i' - \lambda \nabla_x E_\theta(x_i') + \sigma \epsilon \qquad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

• A theoretically motivated choice¹ for the MCMC hyper-parameters is:

$$2 \cdot \lambda = \sigma^2$$

- The MCMC is run on every batch: in practice, for training in a reasonable amount of time, the MCMC is rather short
- To speed up the convergence of the MCMC, the temperature T is introduced:

$$x'_{i+1} = x'_i - \frac{\lambda}{T} \nabla_x E_{\theta}(x'_i) + \sigma \epsilon \qquad \epsilon \sim \mathcal{N}(\mathbf{0}, I)$$

- Tweaking the gradient step size can be seen as adjusting the temperature T: the strength of the gradient term is increased for T < 1
- The parameter space where σ and T are set independently, with T<1 and $\lambda=\sigma^2/2$ is in theory a good region

¹For an infinitely long chain, see backup slide 13

MCMC initialization:

- In theory, MCMC convergence independent on the initial point
- However, in practice with short chain, initialization is crucial

Several commonly used initialization algorithms of the MCMC:

- Contrastive Divergence¹ (CD)
- Persistent CD² (PCD)

CD^3

- Initial distribution from training data
- Re-initialization after each parameter update (*i.e.* epoch)

PCD^4

- Random initial distribution for first MCMC
- The model changes only slightly during parameter update
- Thus, for subsequent chains, initialize chain at the state in which it ended for the previous model
- Possibility to randomly re-initialize a small fraction of the samples

¹ Neural Comput 2002; 14 (8)	³ Illustration in backup	p slide <mark>16</mark>
² PCD paper	⁴ Illustration in backup	p slide 17
Florian Eble	Unsupervised tagging with WNAE	19/06/

2024

Example of a failure mode of CD: High Training data probability mode far from training data distribution: distribution is not sampled Step N Initial distribution Step 1 Step 2 Chain i $-E_{\theta_i}$. . . Model parameter Initial distribution Step 1 Step 2 Step N update Chain i+1 $-E_{\theta_{i+1}}$. . .

Florian Eble

Unsupervised tagging with WNAE

Analysis

Normalized autoencoder (theory)

• Normalized autoencoder (in practice)

- Input features used for the training on top jets at pre-selection level
- Leading two jets
- Truth-tagged SVJ only for signals

Input features Using AK8 jets because SVJ are expected to be wide

Jet width	Axis major axis minor
N-pronginess	
Other	$p_{\rm T}^{\rm D}, {\rm EFP1}$ log(softdrop mass)

Architecture

Fully connected neural net Hidden layers: 10, 10, 6, 10, 10

Number of events

m_{Φ} [GeV]	1000	1500	2000		3000	4000	OCD	tŦ		
$r_{\rm inv}$	0.3	0.3	0.1	0.5	0.3	0.7	0.3	0.3		
Number of events	23k	25k	23k	18k	16k	11k	14k	14k	83k	23k

Number of AK8 jets

Background jets	Leading 2 jets	
Signal jets	Only SVJ in leading 2 jets	

Hyper-parameters

Hyper-parameter	Value
Batch size	256
Reconstruction loss	MSE
Activation	ReLU
Output encoder/	Lincor
decoder activation	Linear
Optimizer	Adam
Learning rate	1e-5
Dropout	0.
MCMC	PCD
Sampling phase space	[-3, 3] hypercube

Train/validation/test splitting

0.7/0.15/0.15

Failure modes of NAEs

Observed two failure modes when training a NAE:

- Negative energy difference: the loss function can be < 0
 - $\rightarrow p_{\theta} = p_{\text{data}} \implies L = 0$
 - $\rightarrow L \neq 0 \implies p_{\theta} \neq p_{\text{data}}$!
 - → Incentive to learn $p_{\theta} \neq p_{\text{data}}$ as it has lower loss (L < 0) than $p_{\theta} = p_{\text{data}}$ (L = 0)

• Divergence of energies

Modified default loss function, compared to arXiv:2105.05735, to:

- discourage the network to converge to negative energy difference configurations
- prevent the divergence of the energies

$$L = \log\left(\cosh\left(E_{+} - E_{-}\right)\right)$$

- \rightarrow Signal SVJ reconstruction is efficiently suppressed!
- \rightarrow How to define stopping condition in a fully signal-agnostic way?

Wasserstein distance: signal-agnostic metric for optimal performance

- The Wasserstein ditance (a.k.a. Energy Mover's Distance, EMD) between the training and negative samples is a measure of the distance between the background and NN probabilities directly in the input feature space
- Always observing a "collapse": the energy difference stays zero but background and NN probabilities differentiate

Illustration before collapse:

- Background (positive) and NN (negative) probability distributions match
- → Low EMD and low energy difference between negative and positive probability distributions
- \rightarrow Anomalies have large reco error

Illustration after collapse:

- Large discrepancy between background and NN probability distributions
- → Large EMD but low energy difference between negative and positive probability distributions
- → Anomalies are not distinguishable from background

CMS

- Can visualize negative samples as 1D histograms in the feature space!
- $C_2^{\beta=0.5}$ negative samples distribution is wider and offset after the collapse

