

Unsupervised tagging of semivisible jets with normalized autoencoders in CMS

Florian Eble, Annapaola de Cosa, Christoph Ribbe, Roberto Seidita

ETHzürich

19/06/2024

CHIPP 2024 annual meeting

- Hidden Valley [\[arXiv:hep-ph/0604261\]](https://arxiv.org/abs/hep-ph/0604261) with new particles and forces form the dark sector
- Strongly coupled dark sector
	- \rightarrow New confining $SU(N)$ force, dark QCD, and dark quarks
	- ➔ Dark hadronic showers and jets
	- ➔ Experimental signature: semivisible jets (SVJs) [\[arXiv:1503.00009,](https://arxiv.org/abs/1503.00009) [arXiv:1707.05326\]](https://arxiv.org/abs/1707.05326)
- Portal between the standard model (SM) and dark sectors via a mediator particle

Anomaly detection to search for SVJs

- ➔ Different jet substructure due to double hadronization
- \rightarrow Experimental signatures of SVJs very model-dependent
- ➔ Large parameter space to cover

The details of the shower in the dark sector depend on many unknown
parameters $\alpha \sigma$: parameters, e.g.:

- number of colors and flavors in the dark sector
- Masses of the dark hadrons

 \rightarrow Use anomaly detection to identify SVJs as anomalies \tilde{U} interactions of the dark sector with the massive U(1) gauge U(1)0 ga

CMS detector

- The CMS detector is composed of different subdetectors allowing to identify and measure the properties of photons, electrons, muons and hadrons
- SM decay products of SM jets and SVJs can be reconstructed, and clustered into jets
- → Exploit the different jet substructure of SVJs compared to SM jets to tag them

Backgrounds

SVJ experimental signature:

Missing transverse momentum (E_T) aligned with a jet

$$
\not\!\!E_{\mathrm{T}} = \left|\left|\sum \vec{p_{\mathrm{T}}}\right|\right|
$$

$\overline{}$ I $\overline{}$ I

QCD multijet

- Artificial missing transverse energy $E_{\rm T}$ aligned with jet from jet energy mismeasurement
- Autoencoder-based anomaly detection proved to work well against QCD jets [\[arXiv:2112.02864\]](https://arxiv.org/abs/2112.02864) α to work

$t\bar{t}$ + jets

- Semi-leptonic channel $W(\rightarrow l\nu)$ with lost lepton, genuine E_T from neutrino
- More challenging for anomaly detection

SM hadrons Stable dark hadrons

CMS

A. A. Es are trained to minimize the reconstruction error (e.g. MSE) between input and output:

 $L(x) = ||g(f(x)) - x||$

- \rightarrow Aim: that examples out of the training distribution, i.e. anomalies, have a higher reconstruction error
- ➔ Trained on SM data, AEs can perform signal-agnostic searches for new physics [\[arXiv:1808.08979,](https://arxiv.org/abs/1808.08979) [arXiv:1808.08992\]](https://arxiv.org/abs/1808.08992)
- \rightarrow Will use interchangeably:
	- "training" and "background"
	- "anomaly" and "signal"
	- AE network is a fully connected NN with jet substructure input features (see backup slides [19-](#page-33-0)[21\)](#page-35-0)

The problem of out-of-distribution (OOD) reconstruction

Ensure that the low reconstruction error probability distribution matches that of the training data

Define a probability distribution p_θ so that regions $p_\theta(x) = \frac{1}{\Omega_0}$
with low reco error E_θ have high probability

$$
p_{\theta}(x) = \frac{1}{\Omega_{\theta}} \exp(-E_{\theta}(x))
$$

- Minimize the distance between the training and p_{θ} probability distributions
	- Sample from p_{θ} via MCMC \rightarrow "Negative samples"
	- Wasserstein distance between training and negative samples¹

¹First developments on Normalized Autoencoders in [arXiv:2105.05735](https://arxiv.org/abs/2105.05735) and [arXiv:2206.14225\)](https://arxiv.org/abs/2206.14225) with different loss function resulting in several failure modes, see backup slides [23-](#page-37-0)[26](#page-40-0)

Wasserstein Normalized Autoencoder: Performance

- Direct (anti-)correlation between Wasserstein distance and AUC!
- Fully signal-agnostic training procedure: training until minimal Wasserstein distance is achieved
- Drastic improvement over standard AEs!

Epoch 1

Epoch 40

Epoch 500

A more natural representation: graphs

- Reconstructed jets are unordered sets of particles
- Can naturally be represented as graphs!

! " # \$ % !," ",\$ ",# #,% = D, … , E = 1 ⋯ D,E ⋮ ⋱ ⋮ E,D ⋯ 1 Edge matrix X = (x0, ..., x^N) ➔ Node features A = 1 . . . x0,N aN,⁰ . . . 1 ➔ Adjacency matrix

Towards normalized graph autoencoder

- \bullet Need to sample from p_θ in a graph space!
	- Can run an MCMC on graphs:

$$
X_n = X_{n-1} - \alpha \nabla E_{\theta}(X_{n-1}, A_{n-1}) + \beta \sigma_X
$$

$$
A_n = A_{n-1} - \gamma \nabla E_{\theta}(X_{n-1}, A_{n-1}) + \delta \sigma_A
$$

→ Extends normalized autoencoders to graph networks!

- Signal-agnostic searches for new physics in HEP can be implemented by learning a score that depends on the probability density of the SM data
- Standard AEs are prone to out-of-distribution reconstruction because they are free to minimize the reconstruction error outside the training phase space
- Normalized AEs propose a mechanism to ensure that the learned probability distribution matches that of the training data
- Wasserstein Normalized AEs is an improvement over Normalized AEs, based on the Wasserstein distance to minimize the distance between the AE probability distribution and that of the training data
- The Normalized AE paradigm can be extended to graph networks

Backup

• [Analysis](#page-16-0)

• [Normalized autoencoder \(theory\)](#page-22-0)

³ [Normalized autoencoder \(in practice\)](#page-32-0)

- Dark quarks hadronize in the dark sector
- A fraction of dark hadrons promptly decays to SM quarks which hadronize in the SM sector
- Remaining dark hadrons are stable and invisible \implies DM candidates
- → Production of semivisible jets (SVJ) [\[arXiv:1503.00009,](https://arxiv.org/abs/1503.00009) [arXiv:1707.05326\]](https://arxiv.org/abs/1707.05326)
- ➔ Different jet substructure due to double hadronization

$$
\not\!\!{E}_{\mathrm{T}} = \left|\left|\sum \vec{p_{\mathrm{T}}}\right|\right|
$$

SM hadrons Stable dark hadrons

t -channel production of SVJ \sim

3 production mechanisms:

- Direct production: Production of dark quarks without resonance
- Associated production: Production of the mediator associated with a dark quark
- Pair production: Production of a pair of mediators

q χ

Direct production

g

5

g

Associated production

Pair production

sull is the mediator Φ , gv11 is a dark quark

6

5 2

6

6

Model parameters

Model parameters:

- \bullet m_{Φ}: Mass of the mediator
- m_D : Mass of the dark hadrons (π_D, ρ_D)
	- Same for all dark hadrons
- \bullet y_D : Yukawa coupling between SM and dark quarks

- \bullet r_{inv} : Jet invisible fraction
	- Effective parameter in the simulation Branching ratio DM \rightarrow $q\bar{q}$

 $r_{\text{inv}} = \left\langle \frac{\text{Number of stable dark hadrons}}{\text{Number of dark hadrons}} \right\rangle$

Backgrounds

$\textbf{S}\textbf{V}\textbf{J}$ experimental signature: $\not\!\!E_\text{T}$ aligned with jets!

QCD multijet

- Artificial missing transverse energy $\not\!\!E_{\rm T}$ aligned with jet from jet energy mismeasurement d with jet **QCD multijet**
• Artificial missing transverse energy E_T aligned with jet
	- Large cross-section

$\mathrm{t}\mathrm{\bar{t}}+\mathrm{jets}$

- Large jet from boosted t arge jet from boosted t
- Semi-leptonic channel $W(\rightarrow l\nu)$ with lost lepton, genuine \mathbb{E}_{T} from neutrino

$Z + jets$

• Genuine $\not\mathbb{E}_{\mathrm{T}}$ from $Z \to \nu\nu$

$W + jets$ **Z(**➝**νν) +** *jets*

- $W \to l\nu$ with lost/not reconstructed lepton or hadronic
decay of τ
Genuine E_T from neutrino decay of τ *<u>• Rostructed</u>* lepton or hadronic *s*^{*u*} acted repton or madrome
- Genuine E_T from neutrino

• [Analysis](#page-16-0)

² [Normalized autoencoder \(theory\)](#page-22-0)

³ [Normalized autoencoder \(in practice\)](#page-32-0)

Energy-based models (EMBs)

- CMS
- EBMs are models where the probability is defined through the Boltzmann distribution
- \bullet Let θ denote the model parameters
- The model probability p_{θ} is defined from the energy E_{θ}

$$
p_{\theta}(x) = \frac{1}{\Omega_{\theta}} \exp\left(-E_{\theta}(x)/T\right)
$$
 (1)

where the normalization constant Ω_{θ} is

$$
\Omega_{\theta} = \int \exp\left(-E_{\theta}(x)/T\right) dx \tag{2}
$$

 \bullet The EBM loss for a training example x is the negative log-likelihood:

$$
L_{\theta}(x) = -\log p_{\theta}(x) = E_{\theta}(x)/T + \log \Omega_{\theta}
$$
\n(3)

The gradient of the EBM loss is thus:

$$
\nabla_{\theta} L_{\theta}(x) = \nabla_{\theta} E_{\theta}(x) - \mathbb{E}_{x' \sim p_{\theta}} \left[\nabla_{\theta} E_{\theta}(x') \right]
$$
(4)

 \bullet The expectation value over the training dataset, with probability p_{data} is:

$$
\mathbb{E}_{x \sim p_{\text{data}}} \left[\nabla_{\theta} L_{\theta}(x) \right] = \mathbb{E}_{x \sim p_{\text{data}}} \left[\nabla_{\theta} E_{\theta}(x) \right] - \mathbb{E}_{x' \sim p_{\theta}} \left[\nabla_{\theta} E_{\theta}(x') \right] \tag{5}
$$

Normalized Autoencoder (NAE) paradigm

- **e** Ensure that the low reconstruction error probability distribution matches that of training data
- ➔ Need a way to sample from the low reco error probability, independent of the training dataset
- The network probability distribution p_{θ} is constructed from the reco error E_{θ} via the Boltzmann distribution¹:

$$
p_{\theta}(x) = \frac{1}{\Omega_{\theta}} \exp(-E_{\theta}(x))
$$

- Low reco error probability distribution sampled via Langevin Markov Chain Monte Carlo $(MCMC)²$ to obtain "negative examples" and compute their reconstruction error $E₋$
- \bullet The positive energy E_{+} is the reconstruction error of the training ("positive") examples
- The loss is designed to learn $p_{\theta} = p_{\text{data}}$.

$$
\mathbb{E}_{x \sim p_{\text{data}}} [L_{\theta}(x)] = \mathbb{E}_{x \sim p_{\text{data}}} [E_{\theta}(x)] - \mathbb{E}_{x' \sim p_{\theta}} [E_{\theta}(x')]
$$

positive energy E_+ negative energy E_-

 1 More on Energy Based Models in backup slide [9](#page-23-0)

 2 More on MCMC in backup slide 13

Loss

$$
\mathbb{E}_{x \sim p_{\text{data}}} [L_{\theta}(x)] = \mathbb{E}_{x \sim p_{\text{data}}} [E_{\theta}(x)] - \mathbb{E}_{x' \sim p_{\theta}} [E_{\theta}(x')]
$$

positive energy E_+ negative energy E_-

Positive energy

- Simply the reconstruction error over the training dataset
- Take examples from training dataset and compute the reconstruction error!

Negative energy

- Reconstruction error of the "negative samples" x' from the probability distribution p_{θ}
- Need to sample from the model to get the "negative samples"
- ➔ Monte Carlo Markov Chain (MCMC) employed

MCMC

- Start from an initial point x'_0
- \bullet Run *n* Langevin MCMC steps:

$$
x'_{i+1} = x'_{i} - \lambda_{i} \nabla_{x} E_{\theta}(x'_{i}) + \sigma_{i} \epsilon \qquad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

drift diffusion

Repeat with several points $x_0^{\prime(j)}$, the negative samples are the $x_n^{\prime(j)}$

Wasserstein Normalized Autoencoder (WNAE) paradigm

CMS

- **e** Ensure that the low reconstruction error probability distribution matches that of the training data
- → Need to sample from the low reco error probability distribution, independent from the training dataset
	- The network probability distribution p_{θ} is constructed from the reco error E_{θ} via the Boltzmann distribution¹:

$$
p_{\theta}(x) = \frac{1}{\Omega_{\theta}} \exp(-E_{\theta}(x))
$$

- Low reco error probability distribution sampled via Langevin Markov Chain Monte Carlo $(MCMC)^2$ to obtain "negative examples"³
- The loss is the Wasserstein distance (a.k.a. Energy Mover's Distance) between negative examples and training examples to learn $p_{\theta} = p_{\text{data}}$.

$$
L_{\theta}(x) = \inf_{\gamma \in \Pi(p_{\text{data}}, p_{\theta})} \mathbb{E}_{(x, x') \sim \gamma}[\|x - x'\|]
$$

The WNAE learns the probability distribution of the training data

 1 More on Energy Based Models in backup slide [9](#page-23-0)

 2 More on MCMC in backup slide 13

- • Let p be a probability distribution on \mathbb{R}^d
- Consider x_0 a random initial set of n points in \mathbb{R}^d
- With the update rule:

$$
x_{t+1} = x_t + \lambda \nabla \log (p(x_t)) + \sqrt{2 \cdot \lambda} \cdot \epsilon_t
$$

where ϵ_t is a sample of n points drawn from a multivariate normal distribution on \mathbb{R}^d

- Let ρ_t denote the probability distribution of x_t
- In the limit $t \to \infty$, ρ_t approaches a stationary distribution ρ_∞ , and $\rho_\infty = p$

• Recall the MCMC equation:

$$
x'_{i+1} = x'_{i} - \lambda \nabla_x E_{\theta}(x'_{i}) + \sigma \epsilon \qquad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

A theoretically motivated choice¹ for the MCMC hyper-parameters is:

$$
2 \cdot \lambda = \sigma^2
$$

- The MCMC is run on every batch: in practice, for training in a reasonable amount of time, the MCMC is rather short
- \bullet To speed up the convergence of the MCMC, the temperature T is introduced:

$$
x'_{i+1} = x'_{i} - \frac{\lambda}{T} \nabla_x E_{\theta}(x'_{i}) + \sigma \epsilon \qquad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

- \bullet Tweaking the gradient step size can be seen as adjusting the temperature T : the strength of the gradient term is increased for $T < 1$
- The parameter space where σ and T are set independently, with $T < 1$ and $\lambda = \sigma^2/2$ is in theory a good region

 1 For an infinitely long chain, see backup slide 13

MCMC initialization:

- In theory, MCMC convergence independent on the initial point
- However, in practice with short chain, initialization is crucial

Several commonly used initialization algorithms of the MCMC:

- Contrastive Divergence¹ (CD)
- Persistent CD² (PCD)

$CD³$

- Initial distribution from training data
- \bullet Re-initialization after each parameter update (*i.e.* epoch)

$PCD⁴$

- Random initial distribution for first MCMC
- The model changes only slightly during parameter update
- Thus, for subsequent chains, initialize chain at the state in which it ended for the previous model
- Possibility to randomly re-initialize a small fraction of the samples

Example of a failure mode of CD: High Training data probability mode far from training data distribution: distribution is not sampled Initial distribution Step 1 Step 2 Step N Step 1 Chain i $-E_{\theta_i}$ … Model parameter Initial distribution Step 1 Step 2 Step N Step 1 update Chain i+1 … **…** $-E_{\theta_{i+1}}$

Florian Eble [Unsupervised tagging with WNAE](#page-0-0) 19/06/2024 16/27

• [Analysis](#page-16-0)

² [Normalized autoencoder \(theory\)](#page-22-0)

³ [Normalized autoencoder \(in practice\)](#page-32-0)

[−]⁵ 10 [−]⁴ 10 [−]³ 10 [−]² 10 [−]¹ 10 1∎ ----QCD
----W+jets ² 10 A.U.

[−]⁵ 10 [−]⁴ 10 [−]³ 10 [−]² 10 10 ⁻¹∎ 1 1000 ² 10 A.U.

² 2nd-leading fat jet τ

- Input features used for the training on top jets at pre-selection level
- Leading two jets
- Truth-tagged SVJ only for signals

Input features Using AK8 jets because SVJ are expected to be wide

Architecture

Fully connected neural net Hidden layers: 10, 10, 6, 10, 10

Number of events

m_{Φ} [GeV] 1000 1500 2000 3000 4000 QCD $t\bar{t}$ $r_{\rm inv}$ $\qquad \quad | \quad 0.3 \quad | \quad 0.3 \quad | \quad 0.1 \quad | \quad 0.5 \quad | \quad 0.3 \quad | \quad 0.7 \quad | \quad 0.3 \quad | \quad 0.3$ Number of events 23k 23k 23k 18k 16k 11k 14k 14k 83k 23k

Number of AK8 jets

Hyper-parameters

Train/validation/test splitting

0.7/0.15/0.15

Failure modes of NAEs

Observed two failure modes when training a NAE:

- Negative energy difference: the loss function can be < 0
	- \rightarrow $p_{\theta} = p_{\text{data}} \implies L = 0$
	- \rightarrow $L \neq 0 \implies p_{\theta} \neq p_{\text{data}}$!
	- \rightarrow Incentive to learn $p_{\theta} \neq p_{data}$ as it has lower loss $(L < 0)$ than $p_{\theta} = p_{data} (L = 0)$

Divergence of energies

Modified default loss function, compared to [arXiv:2105.05735,](https://arxiv.org/abs/2105.05735) to:

- discourage the network to converge to negative energy difference configurations
- prevent the divergence of the energies

$$
L = \log\left(\cosh\left(E_{+} - E_{-}\right)\right)
$$

- → Signal SVJ reconstruction is efficiently suppressed!
- \rightarrow How to define stopping condition in a fully signal-agnostic way?

Wasserstein distance: signal-agnostic metric for optimal performance

- The Wasserstein ditance (a.k.a. Energy Mover's Distance, EMD) between the training and negative samples is a measure of the distance between the background and NN probabilities directly in the input feature space
- Always observing a "collapse": the energy difference stays zero but background and NN probabilities differentiate

Illustration before collapse:

- Background (positive) and NN (negative) probability distributions match
- \rightarrow Low EMD and low energy difference between negative and positive probability distributions
- ➔ Anomalies have large reco error

Illustration after collapse:

- Large discrepancy between background and NN probability distributions
- \rightarrow Large EMD but low energy difference between negative and positive probability distributions
- \rightarrow Anomalies are not distinguishable from background

CMS

- Can visualize negative samples as 1D histograms in the feature space!
- $C_2^{\beta=0.5}$ negative samples distribution is wider and offset after the collapse

