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☆ plus maybe missing out 
on some unconventional 
design→innovation 
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Fast assessment of design with local surrogate model

- For a set of designs {D(i)}, each parametrized by a θ(i), we want to find design that 
minimizes    between the true and reconstructed x

- Need differentiability wrt θ 
- Idea: Replace Simulation + Reco by a local ML Surrogate

Surrogate conditioned on local θ
Once trained, can provide a direction for optimization

SIMULATION

RECONSTRUCTION
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To assess detector design i for task j, simulation + reconstruction has to be developed 

➔ resource demanding 
➔ not differentiable wrt design
➔ High complexity (pixels, hits, ...)
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Local surrogate setup

Gives access to p(   | θ, x )→a scalar which encompasses sim+reco process

Which    to pick?
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Mutual information (MI): proxy for   truth vs measurement

Information theoretic metric: 

= average reduction in uncertainty about A when observing B=b

= average amount of information that B conveys about A

Strengths of MI:
- Tells us if information is conserved during sim+reco process
- Captures non-linear dependencies
- X is multidimensional 

→MI able to cover large part of phase space
→MI able to cover multiple tasks at once →    can be multi-task

Drawback: Must be recomputed for each design and inputs
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Data & Studies

- Geant4 simulation of calorimeter 
- Study single particle shot orthogonally at 

detector (50K)
- Two types of layers: absorber (cheap, lost 

info) & scintillator (expensive, yields info)
- Particles: photons and hadrons
- Recovering energy deposited
- θ = layer count, layer thickness
- Task: energy resolution and particle ID
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Mutual information: # layers vs energy
Y: energy 
deposited 
in each layer 

X: true particle energy
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Material change in 
layer 10: 
lead -> brass

- MI score for set of designs
- Design θ = number of layers in detector
- Tasks: true energy of particle
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Plateau after 
majority of 
energy absorbed

MI ∝ inverse of 
energy 
resolution

Low MI →
Energy 
containment



Mutual information: # layers vs particle ID

X: photon or hadron

K x Y: energy 
deposited 
in each layer

0      1
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- MI score for set of designs
- Design θ = number of layers in detector
- Tasks: ID of particle
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Accumulation 
dilutes positional 
information of 
deposit (early/late)

Individual 
contribution 
informs pid 
discrimination until 
deposit saturation



Surrogate: scintillator and absorber thickness
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- Design θ = thicknesses of absorber and scintillator
- Metric    = energy accuracy

Thickness Evolution: 
increase scintillator  
decrease absorber
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Surrogate: scintillator and absorber thickness
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- Design θ = thicknesses of absorber and scintillator
- Metric    = energy accuracy

Transfer Learning Hypothesis: 
Surrogate is able to map out local θ landscape across design tests

re-initialized bumpy model 
w/o transfer learning

refined smooth transfer 
learning model 
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Conclusion

Problem: 

development of detector involves simulation + reconstruction 

→resource demanding

Solution: 

- Surrogate model which maps out local design parameter space and allows for 
detector optimization

- Mutual information as a viable metric to encompass high-dimensional 
complex

First promising results applying solution to typical HEP tasks   
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Backup
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Surrogate: Scintillator and Absorber Thickness
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Applicable to more complex multi-layer problems

Absorbers 
minimized
- - - - - - - - 

Scintillators 
maximized with 
decreasing intensity
________________

Smooth refined 
model evolution
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Mutual Information - The Theory

H … entropy

Equivalent to Kullback-Leibler divergence between the joint distribution and the 
product of the marginals
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Mutual Information Estimation with DNNs

Mine: Mutual Information Neural Estimation
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Donsker-Varadhan dual representation of DKL

For a class of functions T for which the expectations are finite

=> Chose T to be parametrized by a neural network 
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https://arxiv.org/abs/1801.04062


MI Model - architecture

X, Y … input random variables

Π … permutation
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