

ML enhanced optimal detector design

François Fleuret, Tobias Golling, Jan Kieseler, Stephen Mulligan, Atul Sinha, <u>Kinga Anna Wozniak</u>

> CHIPP AI/ML & computing workshop 19.06.2024

RECONSTRUCTION

RECONSTRUCTION

 \rightarrow We want x and x[^] to be 'close'

RECONSTRUCTION

- \rightarrow We want x and x[^] to be 'close'
- → Developing detector with physics task in mind → impacts 'closeness'

I RECONSTRUCTION

- \rightarrow We want x and x[^] to be 'close'
- → Developing detector with physics task in mind → impacts 'closeness'
- ightarrow Different options for detector design ightarrow giving different δ

RECONSTRUCTION

- \rightarrow We want x and x[^] to be 'close'
- → Developing detector with physics task in mind → impacts 'closeness'
- ightarrow Different options for detector design ightarrow giving different δ
- → resource demanding & not differentiable wrt design

RECONSTRUCTION

- \rightarrow We want x and x[^] to be 'close'
- → Developing detector with physics task in mind → impacts 'closeness'
- ightarrow Different options for detector design ightarrow giving different δ
- → resource demanding & not differentiable wrt design

Fast assessment of design with local surrogate model

To assess detector design i for task j, simulation + reconstruction has to be developed

- → resource demanding
- → not differentiable wrt design
- \rightarrow High complexity (pixels, hits, ...)

- For a set of designs {D⁽ⁱ⁾}, each parametrized by a $\theta^{(i)}$, we want to find design that minimizes δ between the true and reconstructed x
- Need differentiability wrt θ
- Idea: Replace Simulation + Reco by a local ML Surrogate Surrogate conditioned on local θ
 Once trained, can provide a direction for optimization

Local surrogate setup

Gives access to p($\delta | \theta, x \rightarrow a$ scalar which encompasses sim+reco process Which δ to pick?

Mutual information (MI): proxy for δ truth vs measurement

Information theoretic metric: $\operatorname{MI}(A,B)\equiv H(A)-H(A|B)$

= average reduction in uncertainty about A when observing B=b

= average amount of information that B conveys about A

 $\min \delta(x, \hat{x}) \sim \max \mathrm{MI}(x, \hat{x})$

Strengths of MI:

- Tells us if information is conserved during sim+reco process
- Captures non-linear dependencies
- X is multidimensional

 $\rightarrow MI$ able to cover large part of phase space

 \rightarrow MI able to cover multiple tasks at once $\rightarrow \delta$ can be multi-task

Drawback: Must be recomputed for each design and inputs

Data & Studies

- Geant4 simulation of calorimeter
- Study single particle shot orthogonally at detector (50K)
- Two types of layers: absorber (cheap, lost info) & scintillator (expensive, yields info)
- Particles: photons and hadrons
- Recovering energy deposited
- θ = layer count, layer thickness
- Task: energy resolution and particle ID

Mutual information: # layers vs particle ID

- MI score for set of designs
- Design θ = number of layers in detector
- Tasks: ID of particle

K x Y: energy deposited in each layer

Individual contribution informs pid discrimination until deposit saturation

Accumulation dilutes positional information of deposit (early/late)

Surrogate: scintillator and absorber thickness

- Design θ = thicknesses of absorber and scintillator
- Metric δ = energy accuracy

Surrogate: scintillator and absorber thickness

- Design θ = thicknesses of absorber and scintillator
- Metric δ = energy accuracy

re-initialized bumpy model w/o transfer learning

refined smooth transfer learning model

Transfer Learning Hypothesis:

Surrogate is able to map out local θ landscape across design tests

Conclusion

Problem:

development of detector involves simulation + reconstruction

→resource demanding

Solution:

- Surrogate model which maps out local design parameter space and allows for detector optimization
- Mutual information as a viable metric to encompass high-dimensional complex

First promising results applying solution to typical HEP tasks

Surrogate: Scintillator and Absorber Thickness

Applicable to more complex multi-layer problems

Absorbers minimized

Scintillators maximized with decreasing intensity

Smooth refined model evolution

Mutual Information - The Theory

$$MI(X,Y) \equiv H(X) - H(X|Y)$$

H ... entropy

Equivalent to Kullback-Leibler divergence between the joint distribution and the product of the marginals

$D_{KL}(P(X,Y)||P(X)\otimes P(Y))$

Mutual Information Estimation with DNNs

Mine: Mutual Information Neural Estimation

Donsker-Varadhan dual representation of D_{KI}

$$D_{ ext{KL}}(U \,||\, V) = \sup_{T: \Omega o \mathbb{R}} \mathbb{E}_U[T] - \log(\mathbb{E}_V[e^T])$$

For a class of functions T for which the expectations are finite

=> Chose T to be parametrized by a neural network $\,T_{ heta}$

$$D_{ ext{KL}}(P(X,Y) \left| \left| P(X) \otimes P(Y)
ight) = \sup_{ heta \in \Theta} \mathbb{E}_{P_{XY}}[T_{ heta}] - \log(\mathbb{E}_{P(X) \otimes P(Y)}[e^{T_{ heta}}])
ight.$$

MI Model - architecture

X, Y ... input random variables

 Π ... permutation

 $egin{aligned} P(X,Y) &\sim \mathrm{NN}(X,Y) \ P(X) \otimes P(Y) &\sim \mathrm{NN}(X,\Pi(y\in Y)) \end{aligned}$