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Fast assessment of design with local surrogate model

To assess detector design i for task j, simulation + reconstruction has to be developed

|44 RECONSTRUCTION

o => resource demanding
. => not differentiable wrt design
arg meln 5(X7 D9 (X)) => High complexity (pixels, hits, ...)

P
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- For a set of designs {D"}, each parametrized by a 8%, we want to find design that
minimizes ¢ between the true and reconstructed x
- Need differentiability wrt 6
- ldea: Replace Simulation + Reco by a local ML Surrogate
Surrogate conditioned on local 6
Once trained, can provide a direction for optimization
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Local surrogate setup

Gives access to p( | 6, x )—a scalar which encompasses sim+reco process

Which § to pick?
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Mutual information (MI): proxy for d truth vs measurement

Information theoretic metric: MI(A, B) — H(A) — H(A|B)
= average reduction in uncertainty about A when observing B=b

= average amount of information that B conveys about A

min é(z, £) ~ max Ml(z, z)

Strengths of MI:
- Tells us if information is conserved during sim+reco process
- Captures non-linear dependencies
- X is multidimensional
—MI able to cover large part of phase space
—MI able to cover multiple tasks at once — () can be multi-task
Drawback: Must be recomputed for each design and inputs
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Data & Studies

- Geant4 simulation of calorimeter
- Study single particle shot orthogonally at

detector (50K)
- Two types of layers: absorber (cheap, lost 1 Absorber . Pb
info) & scintillator (expensive, yields info) s Wl Scinilator - POWO4
- Particles: photons and hadrons T wero _wyern_

- Recovering energy deposited
- O = layer count, layer thickness
- Task: energy resolution and particle ID

—_

—
abs thickness [cm] scint thickness [cm]
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Mutual information: # layers vs energy

- Ml score for set of designs Y energy

- Design 6 = number of layers in detector _depos'ted

- Tasks: true energy of particle in each layer
deposited energy

>
X: true particle energy
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Mutual information: # layers vs particle ID L =i

- Ml score for set of designs K x Y: energy
- Design 6 = number of layers in detector deposited
- Tasks: ID of particle in each layer
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Surrogate: scintillator and absorber thickness

- Design 8 = thicknesses of absorber and scintillator
- Metric 0 = energy accuracy

Thickness Evolution:
increase scintillator
decrease absorber
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Surrogate: scintillator and absorber thickness

- Design 8 = thicknesses of absorber and scintillator
- Metric O = energy accuracy
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Transfer Learning Hypothesis:

Surrogate is able to map out local 6 landscape across design tests
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Conclusion

Problem:
development of detector involves simulation + reconstruction
—resource demanding

Solution:

- Surrogate model which maps out local design parameter space and allows for
detector optimization

- Mutual information as a viable metric to encompass high-dimensional
complex

First promising results applying solution to typical HEP tasks
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Surrogate: Scintillator and Absorber Thickness

Applicable to more complex multi-layer problems
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Mutual Information - The Theory

MI(X,Y) = H(X) — H(X|Y)
H ... entropy

Equivalent to Kullback-Leibler divergence between the joint distribution and the
product of the marginals

Dkr(P(X,Y)||P(X)® P(Y))
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Mine: Mutual Information Neural Estimation

Donsker-Varadhan dual representation of D,

Dy.(U||V) = sup Ey[T] - log(Ev[e")

For a class of functions T for which the expectations are finite

=> Chose T to be parametrized by a neural network Tg

Dy (P(X,Y)||P(X)® P(Y)) = sup Epy, [To] — log(Ep(x)orv)le™])
G
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https://arxiv.org/abs/1801.04062

M| Model - architecture

X, Y ... input random variables

Forward [1... permutation

P(X,Y) ~ NN(X,Y)
P(X)® P(Y) ~ NN(X,II(y € Y))
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