Reinforcement learning for automatic data quality monitoring in HEP experiments

CHIPP 2024 Annual Meeting

Olivia Jullian Parra (CERN, Geneva) Lorenzo Del Pianta (CERN, Geneva) Julián García Pardiñas (CERN, Geneva) Suzanne Klaver (Nikhef, Amsterdam) Thomas Lehéricy (University of Zurich, Zurich) Maximilian Janisch (University of Zurich, Zurich) Nicola Serra (University of Zurich/CERN, Geneva)

19th of June 2024

Outline

- Data Quality Monitoring (DQM)
- CERN's Data Quality Monitoring
- Reinforcement learning with human feedback for DQM
- Prototype and POC studies
- Conclusions and outlook

Data Quality Monitoring (DQM) at large HEP experiments

- Detectors are complex systems with a **huge** number of different components
- Those components are prompt to **unpredictable errors** (e.g. something can break)
- Those errors may render the data unusable

We need to carefully monitor the status of the systems and the collected data

LHCb experiment at CERN

Data Quality Monitoring at large HEP experiments

- DQM done by trained non-experts: Shifters
- Shifters monitor the system in two stages:
 - Online regime
 - Real-time monitoring (focused on fast decisions)
 - Goal: finding quickly the system
 problems and solving them

Offline regime

- Monitoring after the data has been collected (focused on high accuracy)
- Goal: determining the quality of the data for posterior physics analysis

Current limitations

- Different level of shifter's training/experience
- Different judgement across shifters
- Local attention (inability to look at all the histograms all the time)

Hundreds of shifters per year

Noisy labels

High person power demand

Improve data collection efficiency and automation

Challenges for automating the process

- Fast adaptation to changing operational conditions
- Optimising human-machine interactions scheme
 - Balance between automatic checks and shifter's decisions during online regime
 - Assist the shifters to improve accuracy during offline regime

Reinforcement learning with human feedback

Challenges for automating the process

- Fast adaptation to changing operational conditions (Continuously trained during data collection) *
- Optimising human-machine interactions scheme (Possibility to design complex interactions) with the shifter)
 - ✓ Balance between automatic checks and shifter's decisions during online regime
 - Assist the shifters to improve accuracy during offline regime

Reinforcement learning with human feedback

System's data

System status prediction

System status prediction

Used to update the algorithm

System status prediction

Toy dataset: data generation

- ID histogram with statistical noise
- Generation: histograms representing nominal/anomalous distributions

Offline Regime

Set up

- anomalous
- •
- Constant human feedback •

The histograms are fully independent from each other with a fixed probability of become

Time dependency: change in the type of distribution representing anomaly or nominal status

Prototype and POC studies

Toy dataset

Online regime

Adaptation to changing conditions

Abrupt change in nominal conditions introduced

Episode*: Individual Histogram

The algorithm adapts automatically to the new nominal conditions.

Prototype and POC studies

Toy dataset

Online regime

Accuracy improvement

Can the algorithm improve the shifter's accuracy?

We swap the target label in 30% of the **cases** during training, and evaluate the true accuracy of the algorithm

The algorithm learns how to filter th noise and achieve a higher accuracy than the shifter

Prototype and POC studies

Toy dataset

Online regime

Human-machine interaction

What happens when the human enters in the loop?

Would the shifters improve their accuracy if they could see the algorithm's output beforehand?

* If so, would the algorithm still learn from the resulting shifters' predictions?

Human-machine interaction

What happens when the human enters in the loop?

- The emulated shifter has access to the algorithm's accuracy, measured with respect to the previous shifter's labels
- We assume that the shifter randomly "trusts" the algorithm with a probability that increases with the accuracy measured in the recent past

Online Regime

Histogram

- Fixed probability of being anomalous. The **anomaly persists until it is correctly detected** by the algorithm (concept of **"problem fixing"**)
- The **label** of the histogram is **only available** when the **shifter is called** by the algorithm or then the shifter randomly decides to take a look at the data

Algorithm's output

One agent to determinate the system status (predictor) and another to call the shifter (checker)

Prototype and POC studies

Toy dataset

Online regime

Balancing accuracy vs human "workload"

Predictor

Episode*: Group of histograms between checkpoints

High accuracy achieved with a limited number of calls to the shifter, which are focused only on the critical moments

Conclusions

- Novel approach towards automating DQM at HEP experiments
 - Reinforcement Learning used to optimise Human-Machine interaction and and adapt to changing operational conditions
- Prototype and proof of concept studies done:
 - Offline: Accuracy gain by combined human-machine training
 - Online: Continuous automated monitoring in real time, calling the shifter when relevant

Link to the paper: https://arxiv.org/abs/2405.15508

Outlook **Useful for low statistics data?**

Use of data augmentation techniques for low statistics data

Going towards a real case scenario

Toy dataset: time dependance

- The **histograms are ordered sequentially** to emulate the data collection
 - The type of (NOMINAL/ANOMALOUS) distributions used in generation are changed at specific points in time
- The training is also done sequentially, (potentially) in batches

Proximal Policy Optimization (\mathbf{PPO})

- comparing it to the average prediction presented by the policy and the given reward
- changes in the actor's decisions
- In addition, we use clipping to ensure stability on the policy update

PPO uses the **advantage function**: the critic evaluates how much better the actor prediction is

PPO maximises a surrogate objective: improving the policy average while not making big

