ML methods for stop pair production search

19st June 2024

Daniele Dal Santo

 $u^{\scriptscriptstyle b}$

^b UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Motivation for a Run-3 stop search

Search for stop pair production in all-hadronic tt+MET (0L) final state

Aim: extend ATLAS Run 2 analysis thanks to

- increased statistics (> 90fb-1)
- increased center of mass energy during Run-3
- improved signal background discrimination with ML

u^b

UNIVERSITÄT BERN

daniele.dalsanto@unibe.ch

Daniele Dal Santo

Search for stop pair production in all-hadronic tt+MET (0L) final state

stop OL: Run 2 vs early Run 3

b UNIVERSITÄT BERN ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYS

In <u>Run 2 analysis</u>:

- only use final state information
- define regions employing physically motivated variables

In early Run 3 analysis:

- reconstruct the resolved top decays
- use classifier score to define regions
- (end-to-end classification is also being considered)

stop OL: Run Z vs early Run 3

In <u>Run 2 analysis</u>:

- only use final state information
- define regions employing physically motivated variables

In early Run 3 analysis:

- reconstruct the resolved top decays
- use classifier score to define regions
- (end-to-end classification is also being considered)

Do we expect improvements?

11

UNIVERSITÄT BERN AEC

LINIVERSITÄT DENN AEC POR FUNDAMENTAL PHYS

Consider signal samples and the truth *W* and *top* 4-momenta:

- apply a truth matching procedure
 - find the b-jet + true *W* that are in the decay cone of a true *top*
 - find the light jet(s) that are in the decay cone of a true *W* and ensure that the (di-)jet mass is close to W mass

$$\Delta R_{y} < 2.1 \cdot m(t)/p_{\rm T}(t)$$
 $\frac{|m_W - m(jj)|}{m_W} < 0.3$

- this identifies up to 2 truth matched triplets (doublets)
- all the other multiplets are labeled as combinatorial background

Idea: train a classifier to distinguish between truth matched multiplets and combinatorial background

 \mathbf{L}^{b}

UNIVERSITÄT BERN AEC

Global AUC= 0.913

Performance gradient due to events being harder to reconstruct

500

600

700

800

900

1000

Stop mass [GeV]

1100

1200

1300

1400

1500

1600

daniele.dalsanto@unibe.ch

Daniele Dal Santo

b

UNIVERSITÄT BERN AEC

Limit of the approach:

• not trivial to select the 2 multiplets to be matched with the 2 hadronic top decays

Daniele Dal Santo

• the classifier doesn't have the full picture about the event

 u^{\flat}

UNIVERSITÄT BERN AEC

Next steps

Moving to a transformer (*SPANet-like*, investigated by 1L group) or graph (*Topograph-like*, investigated by 0L group) NN approach:

- the full information about the event is exploited
- a score can be calculated to match every final-state particle with its parent
- it's possible to implement a multi-loss approach combining
 - truth-matching information
 - regression of kinematic variables of *W*s and *top*s
 - end-to-end signal vs background classification

OR-iet

l-jet b-jet MET

Wp

Wm

tp

tm

ML methods for stop pair production search

19st June 2024

Daniele Dal Santo

 $u^{\scriptscriptstyle b}$

^b UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

daniele.dalsanto@unibe.ch

Daniele Dal Santo

Preselections

- MC20e vs data18
- $E_{\mathrm{T}}^{\mathrm{miss}} > 250 \ \mathrm{GeV}$
- *n*_{lep} < 2
- $n_{\rm jets}>3$
- $n_{\rm bjets} > 0$
- $p_{\rm T}(\text{2nd leading jet}) > 80 \text{ GeV}$
- $p_{\rm T}(\text{4th leading jet}) > 40 \text{ GeV}$
- $\min \Delta \Phi(E_T^{miss}, \text{leading 4 jets}) > 0.4$
- $E_{\rm T}^{\rm miss}$ significance > 5

Daniele Dal Santo

25

50

75

100

Reconstructed W mass [GeV]

125

150

175

200

Consider the two leading multiplets (in NN score) per event as identifying the top

candidates

600

500

400

Events 000

200

100

0 0

b 11

UNIVERSITÄT BERN AEC

Matched pair

Matched triplet

Unmatched pair