Neutrino Reconstruction with Graph Neural Network on SND(a)LHC

Konstantin Androsov, Jan Steggemann, Lesya Shchutska, <u>Zhibin Yang</u>

Zhibin Yang

Scattering and Neutrino Detector at the LHC

Introduction

- - interacting particles
- - 031802

Zhibin Yang

Background and Dataset

• Background

EPFL

- Neutral particles, mainly neutrons and Kaons
- Monte Carlo Simulated dataset

Particle	Count	
Neutrinos	3.18E+05	
Kaons	2.23E+07	
Neutrons	2.43E+07	

- Input features (End-to-End)
 - **Hit features**: two end positions, orientation, detector type
 - Event features: momentum and position of reconstructed muon track

Display of one v_{μ} CC candidate

CHIPP 2024 Annual Meeting, June 19, 2024

Model

- <u>GravNet</u>, a graph neural networks to deal with irregular-geometry detectors in the context of particle reconstruction.
- Loss function: Cross Entropy Loss Function
- Updates of the original GravNet architecture:
 - Graph net layer structure
 - Different aggregation methods
 - Global feature encoder
 - Transformer, attention mechanism (GeoAttention)

Pictorial representation of the data flow across the GravNet layers.

Index	Name	Туре	Para
1	feature_encoder	Sequential	9.2
2	grav_convs	ModuleList	33.4
3	global_feature_encoder	Sequential	16
4	output_network	Sequential	63

The total trainable parameters are listed as 43.3 K.

Training

Weight

> Interaction Rate Normalised w =Number of Training Event

- Event features (reconstructed muon track)
- Multi-class training

Zhibin Yang

Training Evaluation

- Compare the expected background yield with the Cut-base Method. [Phys. Rev. Lett. 131, 031802
- Cut-base method Vm selection performance:
 - Signal efficiency: 2.7%
 - Signal yield: 4.2, background yield: 0.086

TABLE I. Number of events passing the selection cuts in the data and signal simulation.

	Data	Signal sim
All	8.4×10^{9}	157
Fiducial volume	4.9×10^{5}	11.9
One muonlike track	17	6.1
Large SciFi activity	13	5.1
Large hadronic activity	12	4.7
Low muon system activity	8	4.2

EPFL

ulation

Energy [GeV]	Int. Rate	Generated	Passed cuts	Efficiency	Yield
(5, 10)	4.62×10^{4}	2.12×10^{6}	0	0	0
(10, 20)	7.59×10^3	2.05×10^6	1	4.88×10^{-7}	3.70×10^{-10}
(20,30)	1.18×10^{3}	7.54×10^{5}	3	3.98×10^{-6}	4.69×10^{-10}
(30, 40)	5.30×10^2	7.41×10^{5}	5	6.75×10^{-6}	3.58×10^{10}
(40, 50)	4.66×10^2	7.37×10^4	1	1.36×10^{-5}	6.33×10^{-10}
(50,60)	2.60×10^1	3.35×10^5	4	1.19×10^{-5}	3.10×10
(60, 70)	1.80×10^1	3.33×10^5	13	3.91×10^{-5}	7.10×10^{-10}
(70, 80)	8.48	3.24×10^5	14	4.32×10^{-5}	3.66×10
(80, 90)	8.48	1.17×10^5	5	4.26×10^{-5}	3.61×10
(90, 100)	0	3.22×10^5	15	4.66×10^{-5}	0
(100,150)	0	$3.07 imes 10^5$	15	4.88×10^{-5}	0
(150, 200)	0.	2.98×10^5	23	7.71×10^{-5}	0
Tot. (5, 200)	5.61×10^4	7.77×10^{6}	99	3.58×10^{-7}	2.00×10

Table 6: Expected background yield due to neutrons, with the QGSP_BERT_HP_PEN GEANT4 physics list.

Energy [GeV]	Int. Rate	Generated	Passed cuts	Efficiency	Yiel
(5, 10)	2.51×10^{4}	2.14×10^{6}	0	0	0
(10, 20)	5.72×10^{3}	2.09×10^6	7	3.34×10^{-6}	$1.91 \times$
(20, 30)	8.53×10^{2}	7.49×10^{5}	2	2.67×10^{-6}	$2.28 \times$
(30, 40)	1.10×10^{2}	7.53×10^{5}	8	1.06×10^{-5}	$1.17 \times$
(40, 50)	9.38×10^{1}	7.43×10^{5}	13	1.75×10^{-5}	$1.64 \times$
(50, 60)	6.48×10^{1}	3.41×10^{5}	12	3.52×10^{-5}	$2.28 \times$
(60, 70)	9.90×10^{0}	3.34×10^5	7	2.09×10^{-5}	$2.07 \times$
(70, 80)	2.32×10^1	3.35×10^5	7	2.09×10^{-5}	$4.84 \times$
(80, 90)	1.15×10^{1}	3.17×10^5	15	4.73×10^{-5}	$5.44 \times$
(90, 100)	1.15×10^1	3.30×10^5	12	3.64×10^{-5}	$4.19 \times$
(100, 150)	0	3.23×10^5	21	6.50×10^{-5}	0
(150, 200)	0	3.12×10^5	16	5.12×10^{-5}	0
Tot. (5, 200)	3.20×10^4	8.77×10^{6}	120	8.78×10^{-7}	$2.81 \times$

Table 8: Expected background yield due to neutral kaons, with the QGSP_BERT_HP_PEN GEANT4 physics list.

Preliminary results

- Weight and recoMuon information improve the performance
- Current best model (multi-class) ν_{μ} selection results
 - Signal efficiency: 10%
 - Signal yield: 15.7, with background yield: 0.0143
- Current best model (multi-class) ν_e selection results
 - Signal efficiency: 10%
 - Signal yield: 5.0, with background yield: 0.00418
- Results need to be validated, and it's purely on simulation data.

Summary and Next Step

- Summary
 - We have promising results from an End-to-End GNN model
 - Current GNN approach is better than CNN approach
- Next Step
 - Need to consider muon background due to veto inefficiency
 - More input features can be implemented (e.g. hit time information)
 - Try to study and implement different model features
 - More work on dataset (e.g. larger dataset, splits, understand difference between MC simulation data and real data)
- Including emulsion data

