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Active directions in CMS ML ETH:zirich

ML is an increasingly important part of CMS trigger, reconstruction and statistical analysis

— Jet taggers
- Many different architectures under exploration:
- State-of-art performance with transformer models
- Exploring new techniques to make taggers robust against data/MC differences

— ML particle flow:
- particle flow based on graph neural network

—  Reconstruction
- Complex graph networks for end-to-end detector reconstruction
- Graph networks for object linking and noise/pileup cleaning

—  Generative models for simulation:
- Fast simulation based on normalizing flows able to achieve full simulation quality
- Normalizing Flows for data/MC correction and for multidim integrals

—  Anomaly detection in the trigger:
- ML algorithms on the FPGAs of the CMS L1 trigger to select anomalous events in new ways

Today | will mention only a biased selection of ML applications in CMS
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Transformers and Graphs in CMS
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Transformers and graph neural networks are the base
architecture for many state of art ML models in CMS:

- handle variable set of objects

- no intrinsic ordering

- extract information from the relation between objects

- possibility to customize the attention mechanism to add
physics insight — invariant masses

Natural applications in HEP:

- Particle Cloud tagging (jets)

- Objects linking and particle flow applications
Full-event analysis — no need to extract high level
features
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Particle Transformer AK4 (ParT)

Transformer architecture on jet
constituents for AK4 jet
flavour tagging.

Modified attention layer with
custom interaction features

_

A = V(ga — 95)2 + (0 — B0)?,
kr = min(pr,q, prp)A,

z = min(pr,q, pr,p)/(P1,0 + P18,
m? = (Eq + Ep)? — [[pa + psl%,

L blocks
AL

Class token

CMS /!

ETH:urich

'S

Particles —»

Particle Particle
|—>| Attention Attention f======--
x0 Block x! Block xL-!

U

A

A

Interactions =,

(Embedding) (Embedding)

[ P-MHA

K
(Linear) (Linear) (Linear)
1 )

P-MHA(Q, K, V) = SoftMax(QK~ /\/di + U)V,

(b) Particle Attention Block

Attention

Class
Attention
Block

Particle

Block

Class g
= <
Attention & =
Block = =
w2
'
Xelass

@

Linear

Xclass

(c) Class Attention Block

Huilin Qu et al 2202.03772


https://arxiv.org/pdf/2202.03772.pdf

ECAL DeepSuperClustering ETHzirich %

SuperClustering in the CMS electromagnetic calorimeter (ECAL): -
- Linking to recover Bremsstrahlung or photon conversion -
- Starting point for ele/gamma reconstruction, ECAL calibration
- Classical algo has high efficiency, but only geometrical + seed energy 0>

Studied an improvement with a ML model. m
- Graph convolution network + attention layers
- ML model able to analyze the full info in the detector window Davide Valsecchi for the CMS Collaboration 2023 J.

and removes more efficiently pileup and noise Phys.: Conf. Ser. 2438 012077
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https://www.google.com/search?client=firefox-b-d&sxsrf=ALiCzsaBvd_PxUtTwUgRdnX0YGmBBWveaQ:1658326484889&q=Bremsstrahlung&spell=1&sa=X&ved=2ahUKEwijm7bI04f5AhUxh_0HHexZBTgQkeECKAB6BAgCEDg
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012077/meta
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012077/meta
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ML for Particle Flow ETH:zlrich =
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https://link.springer.com/article/10.1140/epjc/s10052-021-09158-w#citeas
https://arxiv.org/abs/2001.04451

Normalizing Flows in CMS ETHziirich 1

Normalizing Flows are a class of ML models used to learn complex, multimodal probability density
functions:

- fast probability density estimation
- fast sampling

In the CMS experiment Normalizing Flows (NFs) are being successfully applied for MC correction and
calibration, fast simulation, and analysis methods using importance sampling
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Morphing with Normalizing Flows ETHzirich =

Normalizing Flows (NF) can morph a multivariate distribution in another one:

- Classical use case: input features for a regression/ID are different between o o -y

Data and Simulation. Need to include corrections and related uncertainties,
reducing the precision of the result.

The simulation can be calibrated by morphing the input features to be distributed as
Data:

Base Distribution
- Train 1 NF, conditioned on a boolean switch, on Data and Simulation N
simultaneously. Then use the reverse NF transformation to go from sim space to A
the Data space

Simulation Base Distribution Data
i
0.20 I| 0.35
0.30
0.10 =

0.05

=== 25% Quantile

0.00

b v T T 0
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 6 8

One flow to correct them all: improving simulations in high-energy physics with a single normalising flow and a switch, (C. C.
Daumann, J. Erdmann, M. Donega’, M. Galli, J.L.Spah, D. Valsecchi,) 2403.18582


https://arxiv.org/pdf/2403.18582

Morphing with Normalizing Flows - results ETH:zirich

The NF approach works very well also with complicated differences in correlations
between Sim and Data and in many dimensions (also conditionally on ancillary values).

— Successful study on toy data now going to be applied on CMS photon ID inputs.
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https://arxiv.org/pdf/2403.18582

Matrix Element Method with generative models ETHziirich

Normalizing Flows and transformers can be combined to perform faster
importance sampling and compute the Matrix Element Method — new
application in CMS-DP-2023/085
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https://cds.cern.ch/record/2879283/

Sampling flow ETHzirich |
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The sampling flow learns the complete conditional probability P(partons|reconstructed event) and
generates partons in the most probable configurations for the MEM integral computation


https://cds.cern.ch/record/2879283/

Improving MLops for models maintenance ETH ziirich

In the CMS ML group we want to streamline the integration of new ML models in the CMS
production.

- Defining best practices
- Preparing tools for profiling, compilation, packaging, versioning, monitoring
- Documenting all the necessary steps: CMS-ML-docs

Preparation Inference Monitoring

____________________

CMS Model | 3

- : Performance
software compilation for Hyper barams ! monitoring
interface production tuning ! DOM
MEETate [ presuse g o Inference (DQM)
__________________________ |:> in CMS
. Training workflow Model % f/ A :

standardization versioning i utomatic

retraining



https://cms-ml.github.io/documentation/inference/tensorflow2.html

Training resources and hyper-param optimization ETHZrich =

ML development in CMS is carried out independently by many groups:

no central training infrastructure yet in place:
- Work ongoing on common training frameworks and tools!

- Analysis, reconstruction, trigger, DQM, anomaly detection, simulation — many different
requirements and use cases

- GPUs are always used for training: up to 10 GPUs used for prototyping complex
end-to-end reconstruction models

- Groups relying on university clusters, CMS Tier 2 / 3 resources, CERN resources or
seldom HPCs

- Dedicated ML training facilities are emerging as a dedicated solution

Hyper-parameters optimization is rarely performed due to the lack of time or large training
infrastructures and tools

In general the availability of more GPUs resources enables faster time-to-science and more
hyper-parameters optimization. Fast storage well connected to the GPU hardware is also crucial (~TBs
training datasets)




Inference in production ETHzirich %

ML models inference in CMS production workflow
relies on ML frameworks integrated in the CMS
software stack (monolitic):

- TensorFlow, ONNX, XGB, PyTorch available

TensorFlow+Keras PyTorch scikit-learn XGBoost

N

torch.onnx

Training engine
(Python in your env.)

cmsml
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https://arxiv.org/pdf/2402.15366

Conclusions ETH:zUrich

Machine Learning developments are flourishing in many aspect of the CMS experiment

— High potential of improving even more the experiment Physics results output!

CMS is applying state-of-the-art models, such as transformers and generative Al, to HEP
problems with success.

MLOps in CMS are challenging:

Training hardware needs becoming heavier and hyper-parameter optimization still rare
Common tools and frameworks are under development
Maintenance and optimization of models used in production is under way

R&D ongoing about future models for ML inference at scale
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Backup
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. LR CMS /!
ParticleNet ETH:zirich
- EdgeConv GNN based architecture on jet constituents.
- Success story of full integration in CMS: similar architecture used for many different tasks. AK4,
AK8 tagging, mass regressions..
- Inference in CMSSW from ONXX runtime.
- Full documentation and training framework (Weaver) available
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https://cms-ml.github.io/documentation/inference/particlenet.html
https://github.com/hqucms/weaver
https://cds.cern.ch/record/2707946/files/DP2020_002.pdf

MLPF architecture ETHziirich =/

Particle ID an properties are stacked together in

the decoder CombinedGraph layer

- Learnable embedding to form sub-graph
- Multiple graph-conv to propagate info.

As an example (batch, elem, feat) = (2, 6400, 25)
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https://indico.cern.ch/event/1081541/contributions/4561025/attachments/2338881/3987069/MLPF_CMS_ML_Forum_20211103.pdf

MLPF performance

CMS

ETH:urich

- Hyperparameters optimization is going, but the performance on a realistic environment is very promising.
- Until now trained on PF candidated — work ongoing to define the best possible GEN-level truth
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Pata, J. et al. Machine Learning for Particle Flow Reconstruction at CMS. ACAT 2021. https://doi.org/10.48550/arXiv.2203.00330



https://doi.org/10.48550/arXiv.2203.00330

ECAL DeepSC performance ETH:zUrich

Improvements in the final resolution (after regression) where the material budget is larger —
DeepSC cleans the object, especially at low energy
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https://indico.cern.ch/event/1172543/contributions/4942285/attachments/2473498/4248982/DeepSC_regressions_plots_approval_v2.pdf

Flows for Importance Sampling ETH:zirich =

arxiv2001.05486

arxiv2011.13445

Flows for integration by importance sampling are gaining a lot of momentum in the theory community:
- general algorithm described as i-flow arxiv2001.05486

Large interest to optimize the phase-sampling for cross-section calculations

Very recent nice paper about multi-channel integration via normalizing flows to be integrated with MadGraph:

- MadNIS - Neural Multi-Channel Importance Sampling arxiv2212.06172
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https://arxiv.org/pdf/2001.05486.pdf
https://arxiv.org/abs/2001.05486
https://arxiv.org/pdf/2212.06172.pdf
https://arxiv.org/pdf/2011.13445.pdf

Conditioning on reconstructed events ETHzlrich >

- Sampled particle sets for the MEM integral computation strongly depends on the reconstructed
objects.

- Use a transformer to extract a fixed-size conditioning latent space for the unfolding flow
— can handle additional radiation and missing objects
— avoids direct jet-parton combination

- The conditioning latent space should be correlated with the most probable partons

Conditioning
Transformer "
— latent space

Tagging I Fixed dimension latent space
network

—>

/

Using a pretrained SPANET network and adding to each
jet the probability to be generated from H, top hadronic,
top leptonic 2



Conditioner pre-training ETH:ziirich

- ldea: pretrain the conditioning transformer with a regression of the generator-level particles:
higgs, top, _, topLep (P N, @) + total event boost p,

— additional radiation (gluon) computed from momentum balance

—  maximize the correlation with the target of the unfolding flow _
Decoding network

Genlevel
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MET

Boost: 4-vector sum of all objects |n| < 2.4

free latent space, not constrained in the pretraining
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Parton regression performance
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The regression of the
generator-level particles is
overall unbiased

Also the total p, of the event s
well regressed

— the particles can be boosted
in the centre-of-mass (CM)
correctly.

CMS/|
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