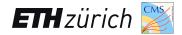
ML in CMS: new developments and challenges

CHIPP AI/ML workshop 2024

Davide Valsecchi (ETH Zurich)

19/06/2024

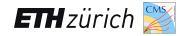


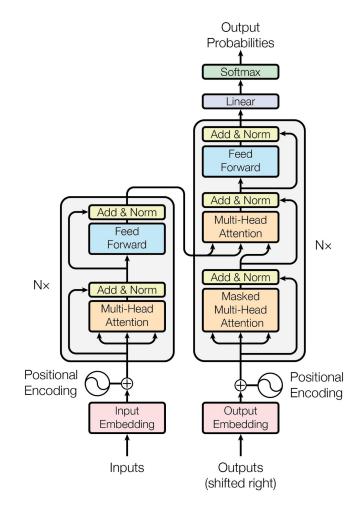
ML is an increasingly important part of CMS trigger, reconstruction and statistical analysis

\rightarrow Jet taggers

- Many different architectures under exploration:
- State-of-art performance with transformer models
- Exploring new techniques to make taggers robust against data/MC differences
- \rightarrow ML particle flow:
 - particle flow based on graph neural network
- \rightarrow Reconstruction
 - Complex graph networks for end-to-end detector reconstruction
 - Graph networks for object linking and noise/pileup cleaning
- $\rightarrow \quad \text{Generative models for simulation:} \quad$
 - Fast simulation based on normalizing flows able to achieve full simulation quality
 - Normalizing Flows for data/MC correction and for multidim integrals
- \rightarrow Anomaly detection in the trigger:
 - ML algorithms on the FPGAs of the CMS L1 trigger to select anomalous events in new ways

Today I will mention only a biased selection of ML applications in CMS



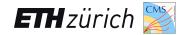


Transformers and **graph neural networks** are the base architecture for many state of art ML models in CMS:

- handle variable set of objects
- no intrinsic ordering
- extract information from the relation between objects
- possibility to customize the attention mechanism to add physics insight \rightarrow invariant masses

Natural applications in HEP:

- Particle Cloud tagging (jets)
- Objects linking and particle flow applications
- Full-event analysis → no need to extract high level features



L blocks Class token () Transformer architecture on jet Class constituents for AK4 jet Class Particle Particle Particle Attention Attention Particles -> Attentio Attention Attentior flavour tagging. \mathbf{x}^0 \mathbf{x}^{L-1} Block Block \mathbf{x}^L v1 Block Block Block Interactions → (a) Particle Transformer x'_{class} Modified attention layer with ⊕∙ **P-MHA** custom interaction features Linear Linear MatMul LN LN $\Delta = \sqrt{(y_a - y_b)^2 + (\phi_a - \phi_b)^2},$ SoftMax GELU GELU U Linear Linear $k_{\mathrm{T}} = \min(p_{\mathrm{T},a}, p_{\mathrm{T},b})\Delta,$ LN LN Mask $z = \min(p_{T,a}, p_{T,b})/(p_{T,a} + p_{T,b}),$ (+) Scale $m^2 = (E_a + E_b)^2 - \|\mathbf{p}_a + \mathbf{p}_b\|^2,$ LN LN MatMul **P-MHA** MHA K 0 Linear Linear Linear LN LN conca X \mathbf{x}^{l-1} xclass (c) Class Attention Block (b) Particle Attention Block $P-MHA(Q, K, V) = SoftMax(QK^T/\sqrt{d_k} + \mathbf{U})V,$

Huilin Qu et al <u>2202.03772</u>

ECAL DeepSuperClustering

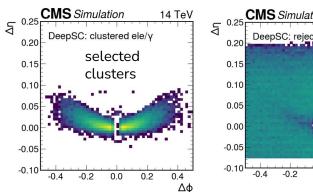
ETH zürich 🞽

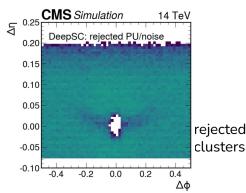
SuperClustering in the CMS electromagnetic calorimeter (ECAL):

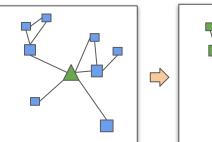
- Linking to recover Bremsstrahlung or photon conversion
- Starting point for ele/gamma reconstruction, ECAL calibration
- Classical algo has high efficiency, but only geometrical + seed energy

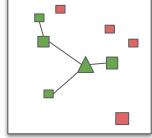
Studied an improvement with a **ML model**:

- Graph convolution network + attention layers
- ML model able to analyze the full info in the detector window and removes more efficiently pileup and noise
 - Can reach **5-10% resolution improvement** in detector regions with high material budget

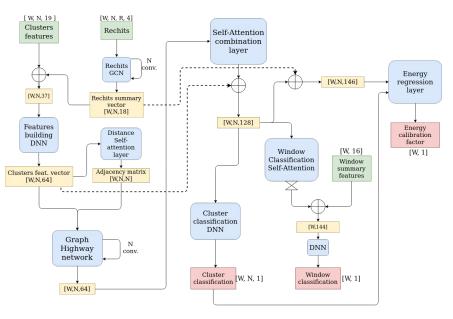








Davide Valsecchi for the CMS Collaboration 2023 J. Phys.: Conf. Ser. **2438** 012077

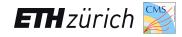


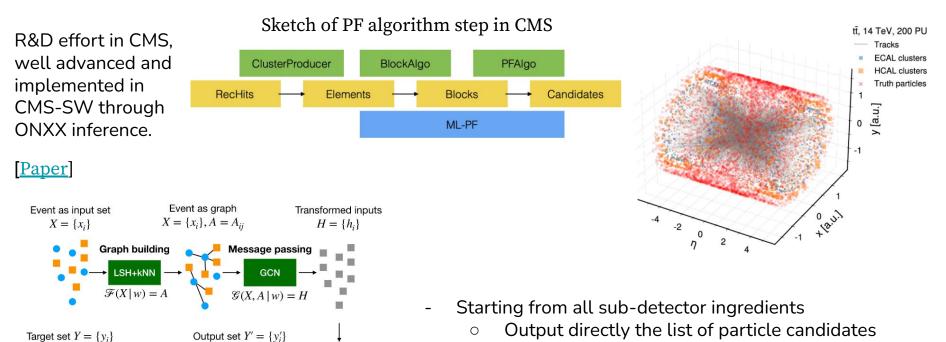
ML in CMS

Elementwise loss $L(y_i, y_i)$

classification & regression

 $\begin{aligned} x_i &= [\text{type}, p_{\text{T}}, E_{\text{ECAL}}, E_{\text{HCAL}}, \eta, \phi, \eta_{\text{outer}}, \phi_{\text{outer}}, q, \ldots], \text{ type} \in \{\text{track, cluster}\}\\ y_j &= [\text{PID}, p_{\text{T}}, E, \eta, \phi, q, \ldots], \text{ PID} \in \{\text{none, charged hadron, neutral hadron}, \gamma, e^{\pm}, \mu^{\pm}\}\\ h_i \in \mathbb{R}^{256} \end{aligned}$





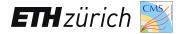
- Particle ID and properties regression in one go
- **Dynamic graph building** done in an efficient way:
 - Locality sensitive hashing (LSH) arxiv
- Based on dense operations for portability

Decoding

elementwise

FFN

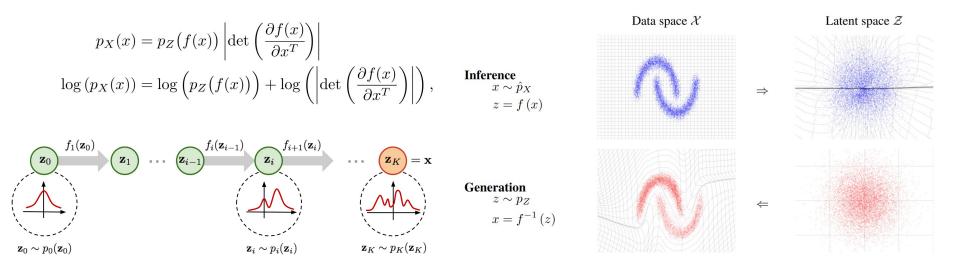
 $\mathcal{D}(x_i, h_i | w) = y'_i$



Normalizing Flows are a class of ML models used to learn complex, multimodal **probability density functions**:

- fast probability density estimation
- fast sampling

In the CMS experiment Normalizing Flows (NFs) are being successfully applied for **MC correction and** calibration, fast simulation, and analysis methods using importance sampling



Morphing with Normalizing Flows

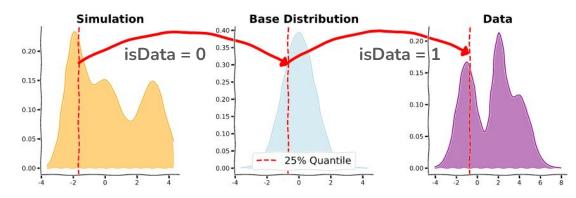
ETH zürich 🞽

Normalizing Flows (NF) can morph a multivariate distribution in another one:

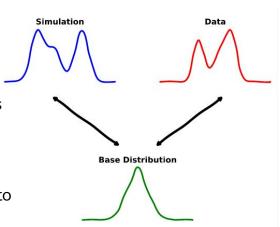
- Classical use case: input features for a regression/ID are **different between Data and Simulation.** Need to include corrections and related uncertainties, reducing the precision of the result.

The simulation can be calibrated **by morphing the input features** to be distributed as Data:

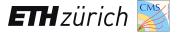
- Train 1 NF, conditioned on a **boolean switch**, on Data and Simulation simultaneously. Then use the reverse NF transformation to go from sim space to the Data space



One flow to correct them all: improving simulations in high-energy physics with a single normalising flow and a switch, (C. C. Daumann, J. Erdmann, M. Donega', M. Galli, J.L.Spah, D. Valsecchi,) <u>2403.18582</u>

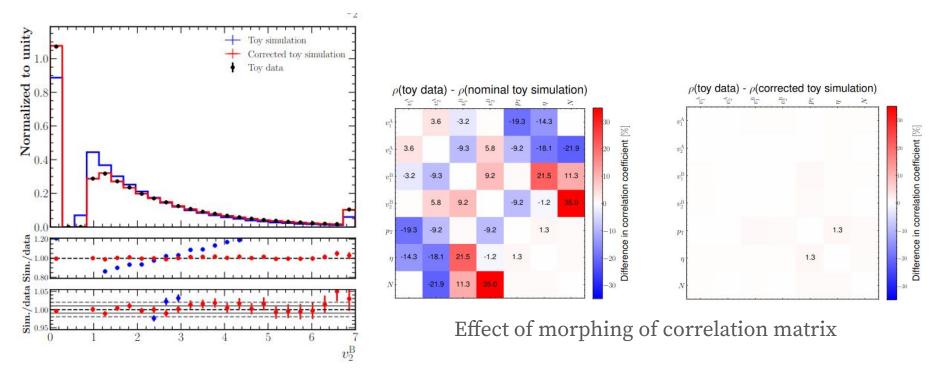


ML in CMS

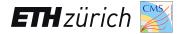


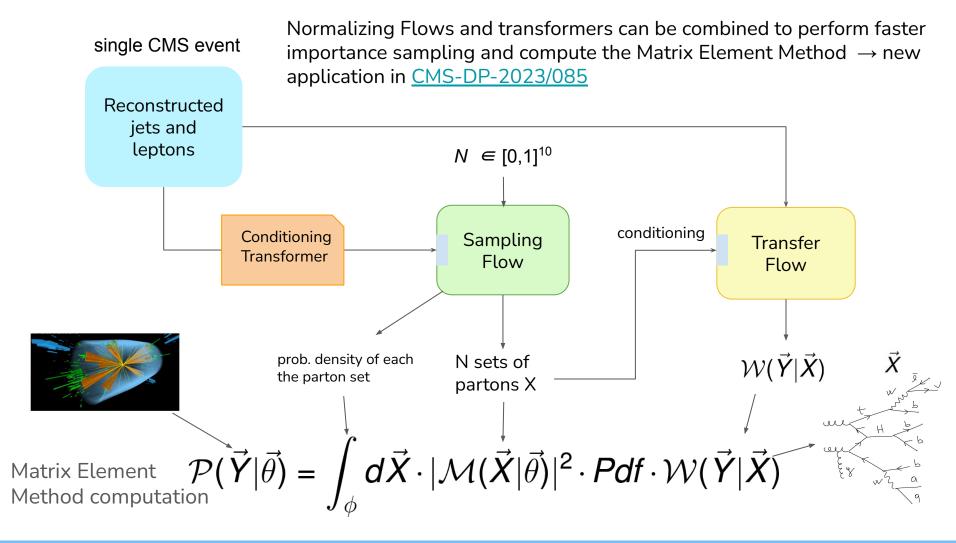
The NF approach works very well also with complicated differences in correlations between Sim and Data and in many dimensions (also conditionally on ancillary values).

 \rightarrow Successful study on toy data now going to be applied on CMS photon ID inputs.

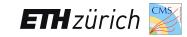


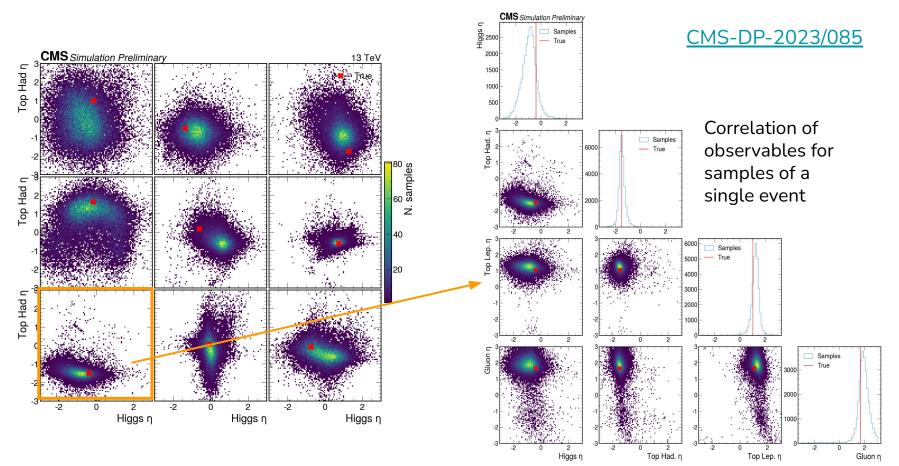
One flow to correct them all: improving simulations in high-energy physics with a single normalising flow and a switch, (C. C. Daumann, J. Erdmann, M. Donega', M. Galli, J.L.Spah, D. Valsecchi,) <u>2403.18582</u>



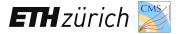


Sampling flow



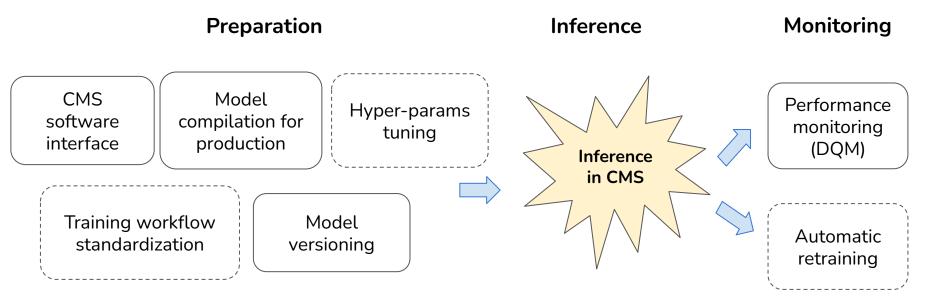


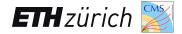
The sampling flow learns the complete conditional probability *P***(partons/reconstructed event)** and generates partons in the most probable configurations for the MEM integral computation



In the CMS ML group we want to **streamline the integration** of new ML models in the CMS production.

- Defining best practices
- Preparing tools for profiling, compilation, packaging, versioning, monitoring
- Documenting all the necessary steps: <u>CMS-ML-docs</u>





ML development in CMS is carried out **independently by many groups**:

- no central training infrastructure yet in place:
 - Work ongoing on common training frameworks and tools! / 🕍
- Analysis, reconstruction, trigger, DQM, anomaly detection, simulation \rightarrow many different requirements and use cases
- **GPUs are always used for training:** up to 10 GPUs used for prototyping complex end-to-end reconstruction models
 - Groups relying on university clusters, CMS Tier 2 / 3 resources, CERN resources or seldom HPCs
 - Dedicated ML training facilities are emerging as a dedicated solution
- Hyper-parameters optimization is rarely performed due to the lack of time or large training infrastructures and tools

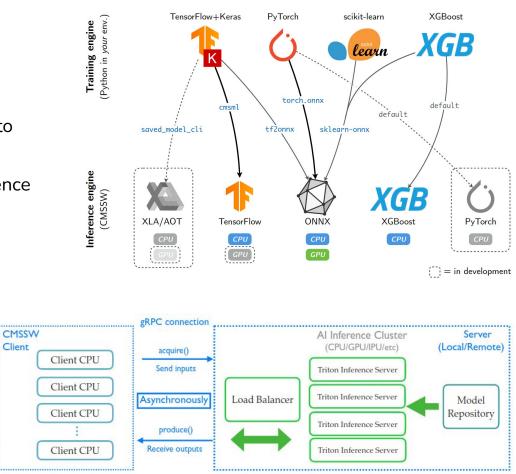
In general the availability of more GPUs resources enables **faster time-to-science** and more hyper-parameters optimization. **Fast storage** well connected to the GPU hardware is also crucial (~TBs training datasets)

Inference in production

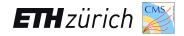
ETH zürich

ML models inference in CMS production workflow relies on ML frameworks integrated in the CMS software stack (monolitic):

- TensorFlow, ONNX, XGB, PyTorch available
- Run in single-thread CPU configuration, due to the CMS software nature
- GPU support available but not used for inference in production yet
- Exploring an alternative model based on indirect inference using Nvidia Triton servers:
 - delegate ML models execution to external servers, also with GPUs
 - Reduce **dependencies complexity** in CMS software
 - promising performance study done in 2402.15366



Client



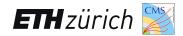
Machine Learning developments are flourishing in many aspect of the CMS experiment

 \rightarrow High potential of improving even more the experiment Physics results output!

CMS is applying state-of-the-art models, such as transformers and generative AI, to HEP problems with success.

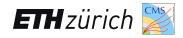
MLOps in CMS are challenging:

- Training hardware needs becoming heavier and hyper-parameter optimization still rare
- Common tools and frameworks are under development
- Maintenance and optimization of models used in production is under way
- R&D ongoing about future models for ML inference at scale

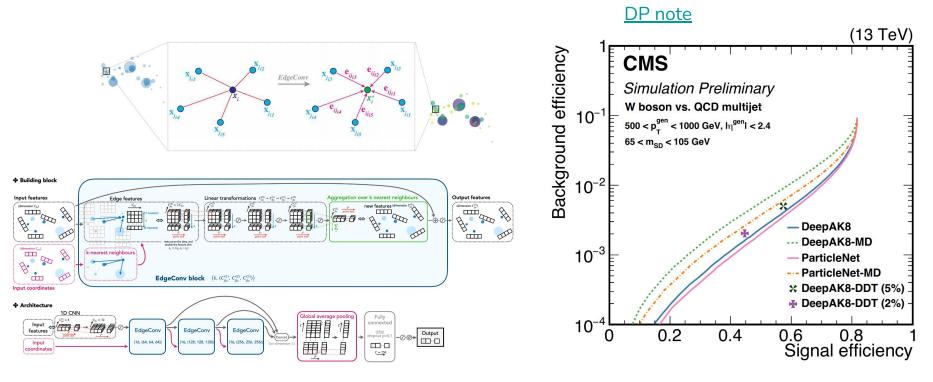


Backup

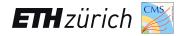
ParticleNet



- EdgeConv GNN based architecture on jet constituents.
- **Success story** of full integration in CMS: similar architecture used for many different tasks. AK4, AK8 tagging, mass regressions..
- Inference in CMSSW from ONXX runtime.
- Full documentation and training framework (Weaver) available



MLPF architecture

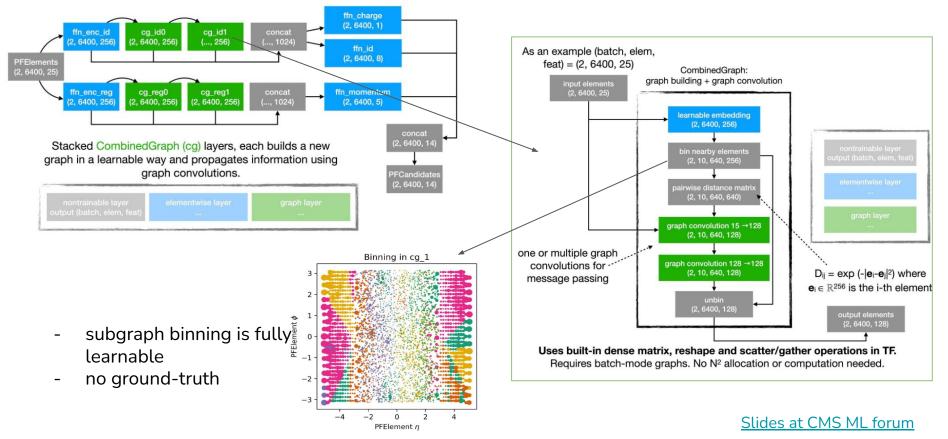


Particle ID an properties are stacked together in the decoder

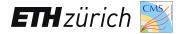
As an example (batch, elem, feat) = (2, 6400, 25)

CombinedGraph layer

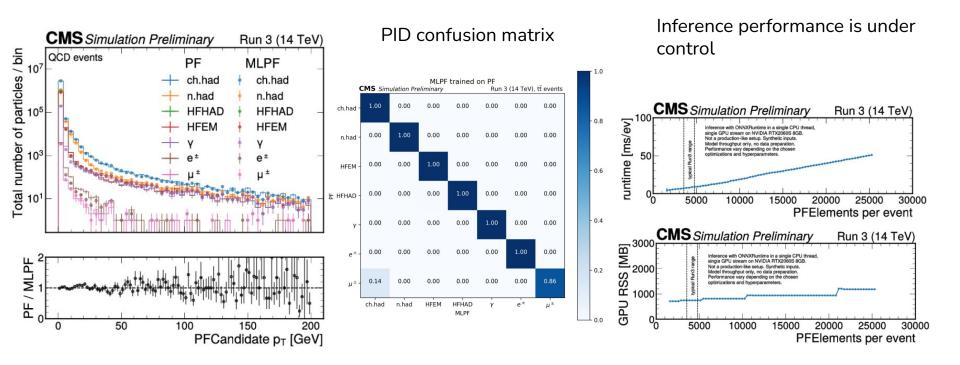
- Learnable embedding to form sub-graph
- Multiple graph-conv to propagate info.



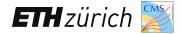
MLPF performance



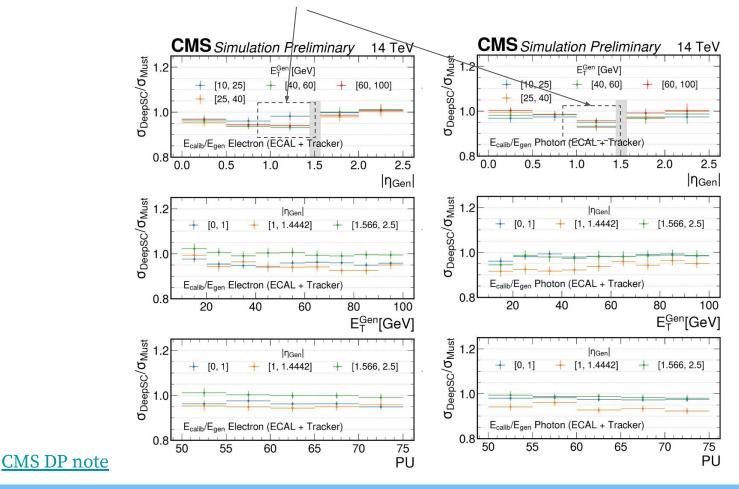
- Hyperparameters optimization is going, but the performance on a realistic environment is very promising.
- Until now trained on PF candidated \rightarrow work ongoing to define the best possible GEN-level truth



Pata, J. et al. Machine Learning for Particle Flow Reconstruction at CMS. ACAT 2021. https://doi.org/10.48550/arXiv.2203.00330



Improvements in the final resolution (after regression) where the material budget is larger \rightarrow DeepSC cleans the object, especially at low energy



arxiv2011.13445

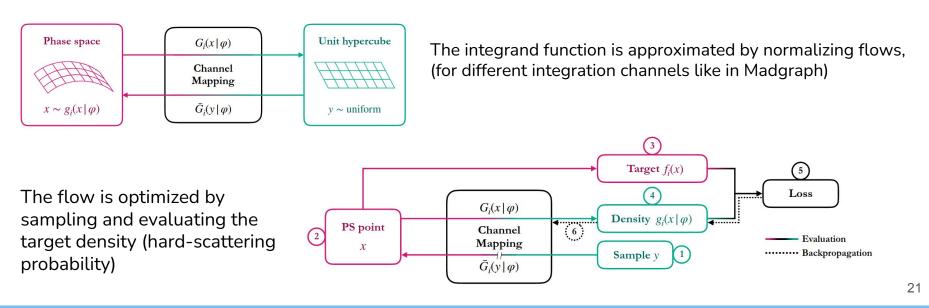
Flows for integration by importance sampling are gaining a lot of momentum in the theory community:

general algorithm described as *i-flow* <u>arxiv2001.05486</u>

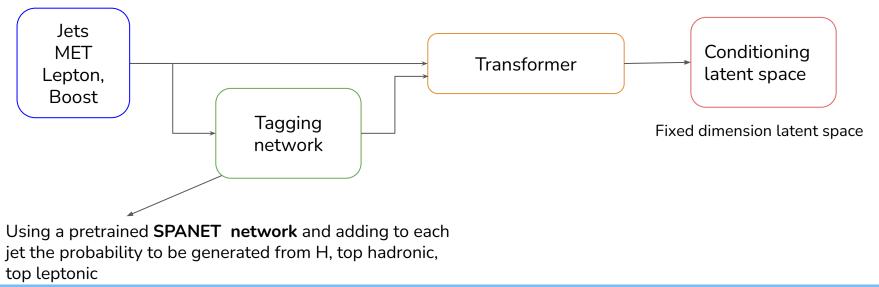
Large interest to optimize the phase-sampling for cross-section calculations

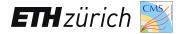
Very recent nice paper about multi-channel integration via normalizing flows to be integrated with MadGraph:

- MadNIS – Neural Multi-Channel Importance Sampling arxiv2212.06172



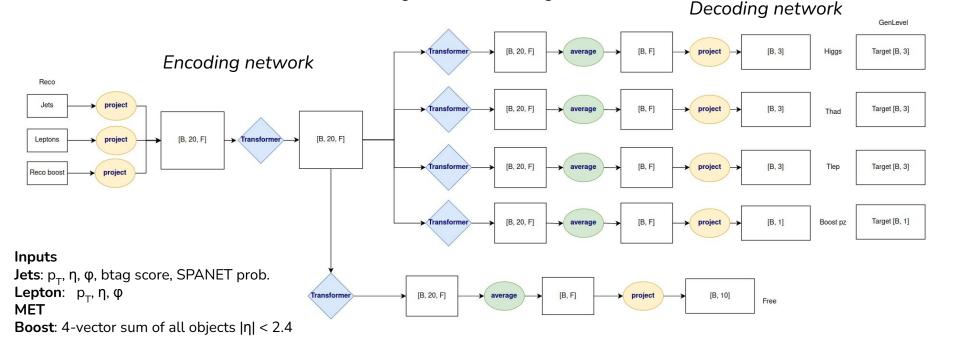
- Sampled particle sets for the MEM integral computation **strongly depends** on the **reconstructed objects.**
- Use a **transformer** to extract a fixed-size conditioning latent space for the unfolding flow
 - \rightarrow can handle additional radiation and missing objects
 - \rightarrow avoids direct jet-parton combination
- The conditioning latent space should be correlated with the most probable partons





Idea: pretrain the conditioning transformer with a **regression** of the **generator-level particles**: higgs, top_{had.} top_{lep} (p_T , η , ϕ) + total event boost p_Z

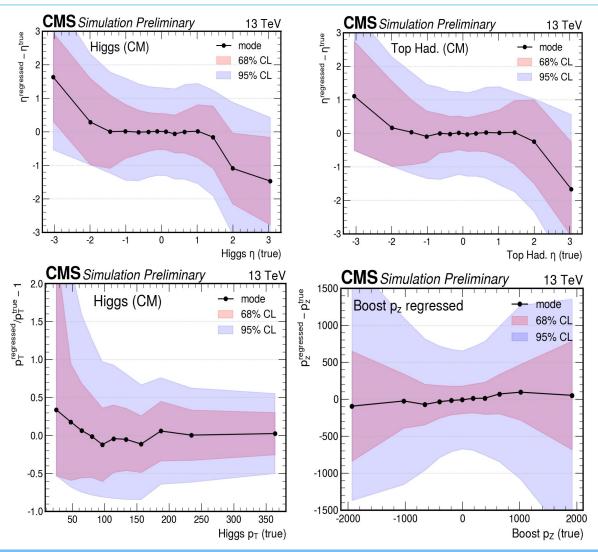
- \rightarrow additional radiation (gluon) computed from momentum balance
- \rightarrow maximize the correlation with the target of the unfolding flow



free latent space, not constrained in the pretraining

23

Parton regression performance



The regression of the generator-level particles is overall unbiased

ETH zürich 🕎

Also the total p_z of the event is well regressed \rightarrow the particles can be boosted in the centre-of-mass (CM) correctly.