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X B-field

Cyclotron = spin precession
              

X B-field

Cyclotron ≠ spin precession

In presence of vacuum effects: 

 Muons in a Storage Ring

g = 2

g > 2
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In general, relativistic muons, in presence of electric fields + magnetic field 

Spin
precession

Cyclotron

Thomas-BMT equation for spin dynamics in EM fields:

g-2 term EDM term

 Muons Electric Dipole Moment (EDM)

● Non-zero muon EDM indicates CP-violation

● Standard model prediction ~10-38 e.cm

● PSI muon EDM sensitivity target 6 x 10-23 e.cm → ~3 order of magnitude 
   better than current limit 3



g-2 term EDM term

 Frozen Spin Technique

● E ⊥B ⊥ β

● Suppress g-2 term by setting

● Radial E-field   

Precession frequency only due to EDM
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 PSI muEDM Experiment

Asymmetry in number of detected
positrons upstream vs downstream is 
proportional to EDM signal
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 Design Optimization Layout

Initial design 
variables

Design objective
evaluation

Update design
variables
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 Design Optimization Layout

Design simulation in g4bl

Design parameters:
● Injection coordinates
● Magnetic field strength
● Correction coil features
● Weak-focusing coil features
● Kicker pulse features
● …...
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 Design Optimization Layout

● Sampling input variables

● Sobol distribution   (Sobol, 1967)

● Maximum uniform spread

Random distribution Sobol distribution 8



 Design Optimization Layout

● Maximize injection efficiency

● Minimize power dissipation of setup

● Minimize polarization spread in stored muons

● ….
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 Design Optimization Layout

● Update design variables based
on objective evaluation

● Repeat until optimal solution found

● Required to run simulation thousands of times
→ computationally expensive

● Replace physics simulation with approximation
→ surrogate model

Surrogate model for objective
evaluation
→ Many ways
→ PCE and NN models explored
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 PCE Surrogate Model

● Polynomial Chaos Expansion (PCE) :

Y → Model response (injection efficiency), Ψi → Orthogonal polynomials
           x → input variables, αi → expansion coefficients

● Polynomial basis based on input variable distribution

● Coefficients determined using regression based methods
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 NN Surrogate Model

● Use the input (design) and 
output (objective) to train a 
neural network

● Hyper parameters:
→ no. of hidden layers = 8
→ no. of neurons/layer = 500 
→ learning rate = 0.001
→ optimizer: Adam1

→ scheduler: ReduceLRonPlateaue2

→ activation function: LeakyReLu3
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1 Kingma and Ba, 2014     2 Maas, 2013    3 K Developers, 2019



 Surrogate Model Performance

Model performance for a 6 dimensional input space
(Kicker timing, Kicker strength, Corr coil position, Corr coil length, Corr coil
thickness and Corr coil radius)

PCE Mean Square Error: 3.47 e-08
 

NN Mean Square Error: 1.88 e-08 
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 Multi-objective Optimization

Genetic Algorithms  (GA)
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Non-dominated Sorting Genetic Algorithm (NSGA) – II 1 

1 Deb 2002



 Surrogate model based NSGA-II1 performance

● 103 speed up for PCE Surr and 104 speed up for NN Surr

● Agreement within 5% vs 2%  for PCE/NN based GA performance for 
average injection efficiency of 0.35%

Optimization to maximize Injection Efficiency/minimize Power Dissipation
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 Summary

● PSI muEDM experiment will be most precise muon EDM measurement
to date → setup needs to be carefully optimized

● Running simulations iteratively is bottleneck in optimization process

● Orders of magnitude speed up can be achieved by replacing physics 
simulation by surrogate model

● Genetic algorithm NSGA-II used to run multi-objective optimization 

● PCE and NN surrogate models based GA investigated; 
~103 speed up for PCE, ~104 for NN

● Plan to expand into Bayesian optimization where higher dimensional input 
space can be implemented with straightforward uncertainty quantification 
techniques
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 Extra



 Polynomial Chaos Orthogonal Basis

(Xiu and Karniadakis, 2002)



 Total phase space after collimation



 Neural Net hyperparameters



 Neural Net activation function



 6-d optimization parameter bounds
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