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* Feebly interacting particles appear in many BSM scenarios

 This work focuses on:

* Heavy neutral leptons (HNL)
* Axion like particles (ALP)

Unique detector signatures

* Long lifetimes lead to unique challenges and opportunities
* Particles could decay beyond the last tracking station

* We suggest to use the muon detector as a sampling calorimeter

* Very rare signature in the SM
» Similar searches done by ATLAS [1jand CMS [2, 3]
* LHCDb could contribute in a short timescale [4]
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https://inspirehep.net/literature/2040545
https://inspirehep.net/literature/1883075
https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO-22-017/index.html
https://indico.cern.ch/event/1411427/

LHCDb muon detector

* Four multiwire proportional chambers (M2-M5)

* Three iron layers of each 4.84;
(80 c¢m of iron)

Unexpected shower

* Large decay volume

. Side View ECAL HCAL M4
* But not designed for shower A w ¥ g
. Tracker — i
detection o G N\
o, SR UT =\ e ol
* No energy deposit = ¢
measurements == ﬂ — /
Vertex)/ i H /= |
* Rough timing only VA s SR TEEE | | | | e \

LHCDb reoptimized detector design and performance : Technical Design Report, LHCb
Collaboration, 2003
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https://cds.cern.ch/record/630827?ln=en
https://cds.cern.ch/record/630827?ln=en

LHCDb muon detector

* Four multiwire proportional chambers

* Three iron layers of each 4.84;
(80 c¢m of iron)

LHCDb reoptimized detector design and performance : Technical Desien Report, LHCb
Collaboration, 2003

* Large decay volume

* But not designed for shower

detection
* No energy deposit £ N L 1
measurements / N
* Very clean environment I S
* First plane (M2) after 6.71; of material © g [ So
0’.“;0 e 10 300
a Energy (GeV)

Handbook of Particle Detection and Imaging, R. Wigmans. pp 497-517
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https://cds.cern.ch/record/630827?ln=en
https://cds.cern.ch/record/630827?ln=en
https://link.springer.com/referenceworkentry/10.1007/978-3-642-13271-1_20

How to trigger on such signatures? GES EPFL

Everything

e Full-software HLT1 and HLT?2

« HLT1: 40 TB/s to 2 TB/s = GPUs
« HL'T2: 2 TB/s to a 80 GB/s = CPUs

* No existing trigger line for such events

Signal
* One HLT?2 line since April 2024
. . CMS simulation & 33 segments in ME-2/1
* Information at our disposal:
* Number of hits in (parts of) the muon system R
* Hit coordinates (x,y,z) (and time) f%*,lﬁ% /__
o Similar trigger in CMS HNLs at CMS, L. Lunerti, LHCP 2024 \ \

* Based on hit counting only

CSC High Multiplicity Trigger in Run 3,
CMS Collaboration, 2022

107 background rejection when combined with vetos
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https://cds.cern.ch/record/2842376?ln=en
https://cds.cern.ch/record/2842376?ln=en
https://indi.to/M9zfZ

Anomaly detection elevator pitch (iE& EPFL

* Need an inclusive trigger for HLT'1

* Usual triggers identity the rare signal events
* Based on the signal properties
* Set selection threshold to reduce the rate of “boring” events

 What if we tried to recognise the boring events”’
* Anomaly detection:

What we don’t recognise as boring = interesting events
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How can we do that?

(88 EPFL

Autoencoder Under Normalization Constraints,

° USG an normalised aUtOenCOder (AE) S. Yoon ef al, 2021, arXiv:2105.05735

* Encoder neural network =2 Bottleneck =2 Decoder neural network

* Punish the model if it has too low error on non-MinBias events
e j.e., reconstruct well the minimum bias events, and only them
* Measure this by MCMC sampling of fake events

* Measure error between input and reconstruction (MSE)

* Train to on minimum bias events
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* Events with large error are anomalous

-> Signal
 Other models tried and benchmarked
* Model info in backup
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Encoder De

Applied Deep Learning - Part 3: Autoencoders,
Arden Dertat
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https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://doi.org/10.48550/arXiv.2105.05735

How well does it work?

* Excellent efficiency
* Outperforms BDT thanks to larger background data set
* Increased model independence for the HNLs

» Z and B, samples still effectively rejected

° COUld be much faster than BDT Last signal bin contains overflow
* Thanks to HLT1 being on GPUs —
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https://cds.cern.ch/record/2899695/

Efficiency curves

* Can pick up much

smaller showers
* Keeps high

efficiency for large

showers

* Much flatter
efficiency as a
function of the
distance to the
beam pipe

* Better etfficiency
at low energy
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https://cds.cern.ch/record/2899695/

x [m]

How to study such events?

(88 EPFL

* Can we find the signal shower among the hits? = clustering
* Active layers clearly visible along z

* And one big group of hits = the signal shower
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Can we make clusters?

* Clusters using the distances between the points

* The cluster containing the most signal is the Best Cluster (BC)

(88 EPFL

in backup

Algorithms & parameters

* Using k-means (6 clusters) or DBSCAN (€ = 1, nyi, = 10)
samples)
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Using k-means, each colour
is a different cluster




Is it clean enough?

* We want all of the signal to be all within one cluster
» Signal efficiency = (signal hits in BC) / (all signal hits)

* We want the cluster to only contain signal
* Contamination = (non-signal hits in BC) / (all hits in best cluster)

* Most of the background

within the BC is
unassociated hits

» Caused by electronic noise
or low energy particles
discarded by the simulation

e Extraction of kinematic
information under work

* See backup for preliminary

results

a.u.

| 1 DBsCAN
[—1 KMeans

(88 EPFL

a.u.

1 I 1 1 1 1
1 DBSCAN -

1 KMeans
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: ch rmpre
Conclusions misy EPFL
* Exciting trigger lines for LLP decays

* On GPUs: developed, to be included soon

* On CPUs: taking data since April

* Anomaly detection will be used for the first time in a LHCb
trigger
* Model independent
* High efficiencies

» Shower can be cleanly selected
* Develop kinematic information extraction
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Feebly interacting particles

* SM: unparalleled success, but known
to be incomplete

* Many suggested solutions

* Feebly interacting particles have become
the focus of many searches

* Heavy Neutral Leptons (HNLs) are sterile
right-handed neutrinos
— Neutrino mass, Dark matter candidate,
Matter asymmetry

* Axion-like particles (ALPs) come from any
anomalous spontaneously broken U(1) symmetry
* E.g. to explain lack of CP violation in QCD

L. Hartman

The Bullet Cluster. ESA. 2007
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https://indico.cern.ch/event/1039405/attachments/2248654/3814327/2021_05_20_Seminar_at_HEPHY.pdf
https://indico.cern.ch/event/1039405/attachments/2248654/3814327/2021_05_20_Seminar_at_HEPHY.pdf
https://indico.cern.ch/event/1039405/attachments/2248654/3814327/2021_05_20_Seminar_at_HEPHY.pdf
https://www.esa.int/ESA_Multimedia/Images/2007/07/The_Bullet_Cluster2

The samples

* HNLs N
* B, > Nu, N = eh where h is anything hadronic

e N masses 1.6, 4 GeV and lifetime 1 ns

* Axions A (main one used for development)
« H—> AA, A - 11,7 » nin* T v, where H is the SM 125 GeV Higgs boson
* Mass my = 10 GeV and lifetime 1 ns

* Signal requirements:
* Decay in muon detector (15m < z < 19 m)
* At least 5 hits from the signal shower

* Minimum bias events

* Two SM physics processes to benchmark
* Z - up
* By = ¢¢
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How to measure the performance?’

* *All signal events
* Contain = 5 hits in layers M2-M3-M4-M5
* Decay position 15 m <z <19 m

* Minimum bias rejection:
events passing selection

all events in acceptance

* Signal efficiency:
signal events passing selection

all signal events with decays in muon system*
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Region 4
Hit counting o
* Simple cuts are not enough TS
Region 3 Logical pad
e Use a BDT :
* Based on xGBoost Iﬂﬂgi
* More info in backup =

LHCb muon system : Technical Design Report, 2001

* 12 Features are the number of hits
* Per station (M3, M4, M5) and per region

Train sig Test sig
Train bkg 4 Test bkg
— 99.9% bkg rej

* Currently implemented in HLT2 : E""""""""""j
Axion, 10 GeV 63.1 + 0.4 44.5 + 0.4 L ]
HNL, 4 GeV 16.7 £ 0.3 6.4+ 0.2 5 _
HNL, 1.6 GeV 13.14 0.3 48+0.2 “lE I 1

By - b 1.8 +0.2 03 +0.1 o .
Z - uu 3.5+ 0.1 0.6+ 0.1 0.00 0.25 0.50 0.75predicii.8r?
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https://cds.cern.ch/record/504326

Efficiency curves

* Turn on effect with larger showers

* Better etficiencies when decays happen
right before the active layers

* Large loss of efficiency at further away
from the beam pipe
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Hit counting BD'T

 Based on XGBoost

* Hyperparameters are optimised using optuna
e Optimised for maximal AUC under the ROC curve

* Hyperparameters:
 Number of trees: 940

* Maximum depth: 4
* Learning rate: 0.06499

Background rejection
o
o0

=
o
T

0.6

Train, AUC=0.970

Test, AUC=0.963

[ 04 ~
- 0.2 . —
Cl ., Y
0.996 0.998 1.000
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https://github.com/dmlc/xgboost
https://optuna.org/

Hit clustering algorithm: k-means

 Based on the k-means algorithm
e Minimises the distances within each cluster

* Using the scikit-learn implementation

* Depends on only two parameters:
 Number of clusters: 6
* Number of initialisations: 10

* The parameters were optimised to
* Reduce the impact of the random initialisation
* Increase the signal efficiency at 99.9% minimum bias rejection
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https://en.wikipedia.org/wiki/K-means_clustering
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Hit clustering algorithm: DBSCAN

 Based on the DBSCAN algorithm

* Connects hits if within distance €
* Consider it to be a cluster if at least nyj, hits are sufficiently close

* Advantages:
* Computationally faster
* More stable (independent on initialisation)
* Rejects noise

* Using the dbscan-python pip package

* Depends on only two parameters (more physical than k-means)

e Distance for a cluster: e =1 m
* Number of hits for a cluster: nyj, = 10

* The parameters were optimised to maximise signal significance
* Significance = efficiency / contamination
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https://en.wikipedia.org/wiki/DBSCAN
https://github.com/wangyiqiu/dbscan-python
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https://pytorch.org/

Particle reconstruction: proof ot concept

* Reconstruct the position (7, z) of the decay in a using the
centre of the best cluster

* For the particle momentum, we train a DNN regressor

* Tyy 18 good, z is biased, p needs further work

[ simulation [ simulation
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