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 The ML4FCC project is a collaboration between EPFL, CERN, and The Swiss Data Center (SDSC): 

https://www.epfl.ch/labs/lpap/machine-learning-applied-to-accelerators/

 Our focus is on applying Machine Learning techniques to improve the understanding of Beam 

Dynamics in various accelerator setups. 

 Currently, developing  tools and benchmarking models on an existing accelerator (LHC) to 

demonstrate the ML effectiveness before moving to the design of a future, large accelerator (FCC).

 For the case of lepton accelerators, additional effects (e.g. synchrotron radiation) should be 

included.

MACHINE LEARNING 4 FUTURE CIRCULAR COLLIDER

https://www.epfl.ch/labs/lpap/machine-learning-applied-to-accelerators/
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 Extracting Physics-Relevant Features with ML: Identify key features for predicting beam loss from 

accelerator variables: betatron tunes, chromaticities, octupole strength, realization of magnet 

errors, phase advance, crossing angles and separation, beam energy, emittance, bunch intensity, 

anharmonicities and more.

 Ultra-Fast Simulations: ML enables rapid and efficient simulations, significantly accelerating the 

exploration of machine configurations for the optimization of current machines and the design of 

future accelerators as FCC.

 Knowledge Preservation: models capture and store physics knowledge, reducing the need for 

numerical simulations to acquire the same physics insights.

MACHINE LEARNING 4 FUTURE CIRCULAR COLLIDER
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 The Dynamic Aperture (DA) is defined as the extent of the 

connected phase-space region within which the dynamics of a 

single particle remains bounded in circular accelerators

 DA is important to assess linear and non-linear optics, lattice 

imperfections, beam-beam, e-cloud, and incoherent effects!

 The dataset is based on simulation (MADX) and tracking 

(Xsuite) on LHC.

 Tracked the particles distributed in polar coordinates (44 angles 

and 0.06 𝜎 radial steps) for every machine configuration. 

 Goal is to regress the evolution of the stable region (angular DA) 

in 12 different number of turns (up to 105 turns) [Red points].

 20k sets of accelerator parameters generated by variating chromaticity, octupole current, betatron 

tunes, and magnet realizations (also called seeds) of the magnetic field errors for the 2 beams.

 Other machine variables included: anharmonicities, maximum 𝛼 and 𝛽 and phase-advance at IPs.
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 Multilayer Perceptron with 4 hidden layers with ReLU and 5% dropout.

 Trained with Reduce on Plateau for learning rate scheduler, NADAM

optimizer and Mean Absolute Error (MAE) as Loss Function.

 Test MAE = 0.34 beam 𝜎 and MAPE = 11.91 %.

 Inference of a single machine in 0.5 ms (~1 𝜇s/angular DA prediction)

Dense 
(128)
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 By leveraging dropout at inference time, we introduce diversity among the 
predictions (different angular DAs every time). This technique is known as 
Monte Carlo (MC) dropout.

 The variation in these predictions are utilized to estimate uncertainty: dropout 
at 1% between the first hidden layers and 1 std of 128 variations as error.

▪ DA and error prediction (129 inferences) in

0.75 s/machine configuration.

▪ Tracking on Xsuite takes 147s/machine configurations 

(using HT-Condor). Our model, once trained, is 

approximately 200 times faster!

Simulation 10k configs 15k configs

MADX + Xsuite * 425 h 612 h

DA Regressor ** 126h (3.4x faster) 136h (4.5x faster)

*MADX and Xsuite simulations with HT-Condor (1000 simultaneous jobs)

**Including the simulation time of an initial dataset of 5k and training time



 We want to ensure that the model can adapt to different optics configurations, which is a key advantage, especially

in scenarios where the optics are unknown to the model like in designing a new accelerator.

 We included merely 1k configurations from 2016 optics (which can be simulated in 5 days) in conjunction with the

20k from 2023, enabling the model to become predictive for 2016 as well.

 Learning solely from physics variables reduces the need for extensive retraining and provides adaptability to new

optics.

ADAPTABILITY TO DIFFERENT OPTICS CONFIGURATIONS 7

2016: Test MAE=0.26 𝜎2023: Test MAE=0.33 𝜎



 Another crucial aspect is the capability to link simulations with real 

observables, such as loss rates, to enhance the practicality and 

reliability of our models.

 We combined  theoretical calculations of beam intensity into our ML 

models. The theoretical Intensity loss for a gaussian distribution 

considering their angles:
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 Loss rates estimated by computing the derivate of the intensity loss.

 This month we performed an 8h MD to measure LHC intensity loss for

several machine configurations to compare with the predicted ones.

PREDICTION OF REAL OBSERVABLES 8



 We integrated the DNN model alongside its error estimator into an innovative

Active Learning (AL) framework.

 AL framework also enables smart sampling of simulations: by prioritising

predictions with higher errors, it efficiently determines the sequence in which

to simulate new machine configurations.
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 Interface with tracking tools is crucial for assessing chaotic dynamics whenever the estimate errors are significant

https://iopscience.iop.org/article/10.1088/1748-0221/19/04/P04004
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2016 Data set Initial train Random train Smart train

Random Test 0.26 𝜎 0.22 𝜎 0.21 𝜎

Smart Test 1.73 𝜎 1.74 𝜎 1.70 𝜎
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 To test the effectiveness of smart sampling, we compared the performance of the model when trained with two

different data sets: random search of machine configuration input and with the AL framework.

 The AL framework allows to explore machine configurations more efficiently where the model has not yet learnt the 
features of the underlying physics.

Improvement in setups with challenging predictions
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 By adding 1000 synthetic machine configurations (predicted errors < 0.1 beam 𝜎), MAE improved to 0.20 beam 𝜎

Ability to refine the model’s prediction while waiting 

for the acquisition of new simulated data.



 Improving beam dynamics simulations with ML for optimization and design of accelerators:

 Faster simulations and good predictions within uncertainty.

 Models based on physics variables offer adaptability across various optics setups, a crucial

advantage when dealing with unknown optics, such as in accelerator design.

 Incorporating accelerator tools like MAD-X and Xsuite empowers models to learn physics and

enhances the tools themselves.

 Active Learning to efficiently generate datasets containing relevant physics.

 Preserving accelerator knowledge, eliminating the need for redundant simulations.

CONCLUSION 11
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