

Measurement of event shapes in minimum bias events from pp collisions at 13 TeV

ML workshop in CHIPP 2024 Annual meeting

Weijie Jin, Kyle Cormier, Florencia Canelli

Event shape observables in proton-proton collisions

Event shape observables in proton-proton collisions

0.2

 S_{T}^{tracks}

0.4

0.6

(high purity, pt>0.5 GeV)

0.8

Event shape observables in proton-proton collisions

Jet-like

An example: transverse sphericity

Observables for measurement:

From charged particles $p_T > 0.5$ GeV, $|\eta| < 2.4$

- Charged particle multiplicity
- Invariant mass of charged particles
- Sphericity (+ transverse)
- Thrust (+transverse)
- Broadening
- Isotropy

Machine-learning-based unfolding

Unfold with a machine-learning-based algorithm: Multifold*

Event shapes of detector-level objects

arrays of multiplicity, sphericity, thrust ... of **tracks**

simultaneously unfold of 8 observables

Multifold

 \rightarrow theoretical interpretation, generator tuning ...

* <u>https://arxiv.org/abs/1911.09107</u>, <u>https://arxiv.org/abs/2105.04448</u>

Event shapes of particles

arrays of multiplicity, sphericity, thrust ... of **charged particles**

← A typical binary classifier to distinguish two sets

 \leftarrow A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions \rightarrow (likelihood ratio)

← A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions \rightarrow (likelihood ratio)

← We can use the classification scores to weight MC to data, and nominal sample to systematic variations

← A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions \rightarrow (likelihood ratio)

← We can use the classification scores to weight MC to data and nominal sample to systematic variations

Event-wise unfolding \rightarrow the result independent of binning

The actual unfolding in iterations:

- Step 1: weight MC to data, at detector level
- Step 2: pull back the weights to particle(truth) level
- J. Extra 2 steps added to deal with the selection efficiency and signal acceptance

 \leftarrow A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions \rightarrow (likelihood ratio)

← We can use the classification scores to weight MC to data and nominal sample to systematic variations

Event-wise unfolding \rightarrow the result independent of binning

The actual unfolding in iterations:

- Step 1: weight MC to data, at detector level
 - Step 2: pull back the weights to particle(truth) level
 - Extra 2 steps added to deal with the selection efficiency and signal acceptance

Event-wise uncertainty template \rightarrow unbinned unfolding uncertainty & covariance

University of Zürich

Example: **Mismodelling of observables used directly in unfolding** (bias from unfolding prior) \rightarrow Uncertainty estimated from modelling differences between **nominal** and **alternative MC**

Derive the templates by **weighting nominal MC** to **alternative MC** at the **particle-level**

- → output: weighted nominal MC events
 - same particle-level distribution as alternative MC
 - keeps the gen. \rightarrow reco. migration of the nominal MC

Example: **Mismodelling of observables used directly in unfolding** (bias from unfolding prior) \rightarrow Uncertainty estimated from modelling differences between **nominal** and **alternative MC**

Derive the templates by **weighting nominal MC** to **alternative MC** at the **particle-level**

- → output: weighted nominal MC events
 - same particle-level distribution as alternative MC
 - keeps the gen. \rightarrow reco. migration of the nominal MC

University of Zürich

Example: Track reconstruction efficiency uncertainty

- Step1: Randomly drop 2.1%(1%) tracks with pT<20 GeV (>20 GeV) in nominal MC*
- Step2: weight the nominal MC to Step1 output at particle- and detector-level

* The uncertainty of track reco. eff. is given by D* analysis: <u>https://cds.cern.ch/record/2810814/</u> University of Zürich Weijie Jin

Example: Track reconstruction efficiency uncertainty

- Step1: Randomly drop 2.1%(1%) tracks with pT<20 GeV (>20 GeV) in nominal MC*
- Step2: weight the nominal MC to Step1 output at particle- and detector-level

* The uncertainty of track reco. eff. is given by D* analysis: <u>https://cds.cern.ch/record/2810814/</u> University of Zürich Weijie Jin

Unbinned uncertainty estimation

ML-based reweighting \rightarrow Uncertainty templates as sets of weights on nominal MC

- → Continuous nuisance parameters can be assigned to the event-weights
- \rightarrow Uncertainty covariance can be estimated from toy experiments
 - Unfold with "bootstraps" of MC with variations of nuisance parameters → Syst. Unc + Covariance
 - Unfold with "bootstraps" of resampled data -> Stat. Unc. + Covariance

Example: correlation of the syst. unc. of sphericity

University of Zürich

Unfolding results

Unfolding results as weighted MC events

Unfolding results

Unfolding results as weighted MC events

University of Zürich

Summary

We have applied a novel **ML-based unfolding algorithm** (Multifold) to CMS analysis

- Simultaneous unfolding of 8 event shape observables
- Unfold at per-event level

Customise binning and variable choices are supported with the event-wise unfolded data

Summary

We have applied a novel **ML-based unfolding algorithm** (Multifold) to CMS analysis

- Simultaneous unfolding of 8 event shape observables
- Unfold at **per-event** level

Customise binning and variable choices are supported with the event-wise unfolded data

÷

ML-based uncertainty template construction and uncertainty estimation at per-event level

Uncertainties+Covariance on the results

Summary

We have applied a novel **ML-based unfolding algorithm** (Multifold) to CMS analysis

- Simultaneous unfolding of 8 event shape observables
- Unfold at per-event level

ML-based uncertainty template construction and uncertainty estimation at per-event level Customise binning and variable choices are supported with the event-wise unfolded data

÷

Uncertainties+Covariance on the results

The way to improve the usability of **unfolded results**

- Publish the **unbinned** results on **event-level**
- Publish the weight sets from toy experiments
 → Unc. + Covariance

Unbinned fit for theoretical interpretation Unbinned generator tuning (Or any binning chosen by the user)

Estimation of statistical uncertainty

Statistical uncertainty from data

Estimation method: pseudo-experiments

Unfold resampled data to estimate the effects on unfolding

- Assign the data events with weights ~ Poisson(1)
 → Alternative data samples (bootstraps) with statistical fluctuations
- Unfold these "bootstrap" data samples
 → a set of MC weights for each bootstrap
- Standard deviations of these unfolding results
 → unfolding stat. unc.
- Covariance of the histograms of these results
 - \rightarrow covariance of the unfolding stat. unc.

University of Zürich

Estimation of systematic uncertainty

Binned unfolding:

- Systematic templates as alternative MC histograms
- Nuisance parameters quantify the deviation from nominal MC to systematic template histograms

Extrapolate to unbinned unfolding:

- Systematic templates as alternative weights on nominal MC events (nominal: weight=1)
- Nuisance parameters quantify the deviation from the nominal weight 1 to the alternative weights

Aim in systematic uncertainty estimation:

- Construct the templates as weights on nominal MC events
- Continuous nuisance parameters applied on the weights
 - \rightarrow continuous deviation from nominal MC to systematic templates
 - \rightarrow enables uncertainty estimation with pseudo-experiments (unfolding with "bootstrap" MC)

4. **Mismodelling of other observables which may change detector response** Derive the templates with two-step weighting

4. Mismodelling of other observables which may change detector response

Derive the templates with two-step weighting

- Step 1: weight the alternative MC to nominal MC at the particle-level
 - \rightarrow output: weighted alternative MC
 - with migration function of alternative MC
 - particle-level distributions of nominal MC

4. Mismodelling of other observables which may change detector response

Derive the templates with two-step weighting

- Step 1: weight the alternative MC to nominal MC at the particle-level
 - \rightarrow output: weighted alternative MC
 - with migration function of alternative MC
 - particle-level distributions of nominal MC
- Step 2: weight the nominal MC to the Step 1 output at particle- and detector-level
 - \rightarrow output: weighted nominal MC
 - with migration function of alternative MC
 - particle-level distributions of nominal MC

4. Mismodelling of other observables which may change detector response

Derive the templates with two-step weighting

- Step 1: weight the alternative MC to nominal MC at the particle-level
 - → output: weighted alternative MC
 - with migration function of alternative MC
 - particle-level distributions of nominal MC
- Step 2: weight the nominal MC to the Step 1 output at particle- and detector-level
 - \rightarrow output: weighted nominal MC
 - with migration function of alternative MC
 - particle-level distributions of nominal MC

Example: Gen \rightarrow reco migration of spherocity

University of Zürich

Validation of the unfolding

Validation: unfold the pseudo-data from Pythia A14 tune

Alternative MC from Pythia A14, CP5 and CUETP8M1 tunes → pseudo-data

Unfold the **pseudo-data** with **nominal MC** and the **systematic templates** \rightarrow Test the closure

Validation: unfold the pseudo-data from Pythia A14 tune

Alternative MC from Pythia A14, CP5 and CUETP8M1 tunes \rightarrow pseudo-data

Unfold the **pseudo-data** with **nominal MC** and the **systematic templates** \rightarrow Test the closure

Example: Unfold the Pythia A14 sample (plots of other observables, reco-level plots, efficiency and acceptance in backup)

Validation: unfold the pseudo-data from Pythia CP5 tune

Particle-level

broadening at iteration 2

Weijie Jin

Alternative MC from Pythia A14, CP5 and CUETP8M1 tunes \rightarrow pseudo-data

Unfold the **pseudo-data** with **nominal MC** and the **systematic templates** \rightarrow Test the closure

University of Zürich

Detector-level MC, unfold, and pseudo-data truth MC, refold, and pseudo-data broadening at iteration 2

16

Validation: unfold the pseudo-data from Pythia CP5 tune

Alternative MC from Pythia A14, CP5 and CUETP8M1 tunes → pseudo-data

Unfold the **pseudo-data** with **nominal MC** and the **systematic templates** \rightarrow Test the closure

Example: Unfold the Pythia CP5 sample

σ/dB_{track} nominal refold MC: A3P EPOS gen. EPOS mig. CP1 gen. CP1 mig. CH3 gen. CH3 mig. track reco. unc. pseudodata: CP5 data Refold 0.05 0.20 0.25 0.30 0.35 0.40 0.00 0.10 0.15 **B**_{tracks}

2018 (13 TeV)

1e8CMS Simulation Preliminary

Particle-level MC, unfold, and pseudo-data truth broadening at iteration 2 Weijie Jin

Detector-level **MC**, **refold**, and **pseudo-data** broadening at iteration 2 16

Validation: unfold the pseudo-data with other systematic templates

Particle-level **MC**, **unfold**, and **pseudo-data truth**

Systematic templates derived from EPOS, **Pythia CP1, Herwig CH3**

Systematic templates derived from EPOS, **Pythia A14, Pythia CUETP8M1**

Robustness test of MC choices for systematic templates

- The unfolding from alternative systematic templates also recovers the truth
- Uncertainties from gen-bias & migration functions are at a similar level

Broadening unfold v.s. truth

Transverse sphericity **unfold** v.s. **truth**

Transverse sphericity uncertainty decomposition

University of Zürich

Validation: unfold the pseudo-data with other systematic templates

Particle-level **MC**, **unfold**, and **pseudo-data truth**

Systematic templates derived from EPOS, **Pythia CP1, Herwig CH3**

Systematic templates derived from EPOS, **Pythia A14, Pythia CUETP8M1**

Robustness test of MC choices for systematic templates

- The unfolding from alternative systematic templates also recovers the truth
- Uncertainties from gen-bias & migration functions are at a similar level

Broadening unfold v.s. truth

Transverse sphericity **unfold** v.s. **truth**

Transverse sphericity uncertainty decomposition

University of Zürich

Validation: unfold the pseudo-data

Test the unfolding on 2D distributions

2D test also shows closure between unfolding results and the pseudo-data truth

University of Zürich

Validation: unfold the pseudo-data

Test the unfolding on 2D distributions

Example: Unfold the Pythia CUETP8M1 sample, transverse sphericity in slices of N_{ch}

2D test also shows closure between unfolding results and the pseudo-data truth

University of Zürich

Validation: bottom-line test

Information loss during unfolding

- → the distinction between the unfolded results & MC truth < the distinction between (pseudo-)data & smeared MC
- \rightarrow bottom-line test: the χ^2 between unfolded results (bias & MC stat. unc.) & MC truth

< the **x**² between (pseudo-)data & smeared MC

Example: χ^2 (unfold&gen-MC) / χ^2 (data&smeared MC) when unfolding CUEPT8M1 pseudo-data

2018 (13 TeV) 2018 (13 TeV) **CMS** Simulation Preliminary **CMS** Simulation Preliminary X²(unfold&genMC) X²(data&smearedMC) C0 50 50 50 50 thrust thrust transverse sphericity transverse sphericity transverse_thrust transverse_thrust broadening broadening isotropy isotropy Ideal case: χ^2 ratios ~ 1 mass mass 0.4 nparticle sphericity 0.6 chjet_deltaphi sphericity information loss or 0.3 conservative unc. estimation 0.4 \rightarrow **x**² ratios < 1 0.2 0.2 0.1 0.0 0.0L 2 3 2 3 4 4 Iteration Iteration χ^2 ratios of 2D histograms χ^2 ratios of 1D histograms (event shape obs. in Nch slices) University of Zürich Weijie Jin

Validation: bias and coverage test

Unfold pseudo-data with toy experiments of uncertainty variations

Bias test:

Bias of the unfolding results compared to pseudo-data truth

Box-plot: 0.25, 0.5 and 0.75 quantile of 50 toys

Example: unfolding CUETP8M1 pseudo-data Transverse sphericity distribution at iteration 2 Coverage test:

How often does the unfold cover the pseudo-data?

Average coverage and its 68.2% confidence interval

