
Measurement of event shapes in minimum bias 
events from pp collisions at 13 TeV

ML workshop in CHIPP 2024 Annual meeting 

Weijie Jin, Kyle Cormier, Florencia Canelli

1



Event shape observables in proton-proton collisions
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Event shape observables: 
Variables describing the “shapes ” of the events 
→  Functions of the momentum of the final state particles

Jet-like Isotropic
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We focus on charged particles ← precise reconstruction of tracks
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We focus on charged particles ← precise reconstruction of tracks
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Observables for measurement: 
From charged particles  > 0.5 GeV, < 2.4 
• Charged particle multiplicity 
• Invariant mass of charged particles 

• Sphericity (+ transverse) 
• Thrust (+transverse) 
• Broadening 
• Isotropy

pT |η |

We focus on charged particles ← precise reconstruction of tracks



Machine-learning-based unfolding
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Unfold with a machine-learning-based algorithm: Multifold*

* https://arxiv.org/abs/1911.09107, https://arxiv.org/abs/2105.04448

Event shapes  
of detector-level objects

Event shapes of particles

Multifold

→ theoretical interpretation, generator tuning …

University of Zürich Weijie Jin

arrays of multiplicity, sphericity, thrust … 
of tracks

arrays of multiplicity, sphericity, thrust … 
of charged particles

simultaneously unfold of 8 observables

https://arxiv.org/abs/1911.09107
https://arxiv.org/abs/2105.04448


Unbinned multi-dimensional unfolding and uncertainty estimation
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← A typical binary classifier to distinguish two sets
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← A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions →  
(likelihood ratio)

← We can use the classification scores to weight MC to data, and 
nominal sample to systematic variations

Event-wise unfolding → the result independent of binning 
The actual unfolding in iterations: 
• Step 1: weight MC to data, at detector level 
• Step 2: pull back the weights to particle(truth) level 
• Extra 2 steps added to deal with the selection efficiency and signal acceptance
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← A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions →  
(likelihood ratio)

← We can use the classification scores to weight MC to data, and 
nominal sample to systematic variations

Event-wise uncertainty template → unbinned unfolding uncertainty & covariance

Event-wise unfolding → the result independent of binning 
The actual unfolding in iterations: 
• Step 1: weight MC to data, at detector level 
• Step 2: pull back the weights to particle(truth) level 
• Extra 2 steps added to deal with the selection efficiency and signal acceptance

University of Zürich Weijie Jin



University of Zürich Weijie Jin
5

Example: Mismodelling of observables used directly in unfolding (bias from unfolding prior) 
→ Uncertainty estimated from modelling differences between nominal and alternative MC 

Derive the templates by weighting nominal MC to alternative MC at the particle-level 
→ output: weighted nominal MC events 

• same particle-level distribution as alternative MC 
• keeps the gen. → reco. migration of the nominal MC

Uncertainty template construction with ML-based weighting
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Example: Mismodelling of observables used directly in unfolding (bias from unfolding prior) 
→ Uncertainty estimated from modelling differences between nominal and alternative MC 

Derive the templates by weighting nominal MC to alternative MC at the particle-level 
→ output: weighted nominal MC events 

• same particle-level distribution as alternative MC 
• keeps the gen. → reco. migration of the nominal MC

Weight Pythia A3P to CP1

Example: 
particle-level broadening 
before & after weighting

Nominal MC

After reweighting at the gen-level

Uncertainty template construction with ML-based weighting
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Uncertainty template construction with ML-based weighting
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Example: Track reconstruction efficiency uncertainty  
• Step1: Randomly drop 2.1%(1%) tracks with pT<20 GeV (>20 GeV) in nominal MC* 
• Step2: weight the nominal MC to Step1 output at particle- and detector-level

* The uncertainty of track reco. eff. is given by D* analysis: https://cds.cern.ch/record/2810814/

https://cds.cern.ch/record/2810814/
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Unbinned uncertainty estimation
ML-based reweighting → Uncertainty templates as sets of weights on nominal MC 
→ Continuous nuisance parameters can be assigned to the event-weights 
→ Uncertainty covariance can be estimated from toy experiments 

- Unfold with “bootstraps” of MC with variations of nuisance parameters → Syst. Unc + Covariance 
- Unfold with “bootstraps” of resampled data → Stat. Unc. + Covariance

Uncertainties+Covariance on the  
event-wise unfolded data
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Example: correlation of the syst. unc. of sphericity

CMS-PAS-SMP-23-008
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https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-23-008.


Unfolding results

Simultaneously unfold all the variables for 
ML-based weighting
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Customise binning and variable choices are 
supported with the event-wise unfolded data

Unfolding results as weighted MC events

CMS-PAS-SMP-23-008

University of Zürich Weijie Jin

Example: 2D visualisation of transverse 
sphericity in charged particle multiplicity slices

Methods based on binned histograms:  
Add another dimension in binning 
→ require higher statistics 
→ more computation in simulation and unfolding

Add a variable to the unfolding:

This method: 
Add a feature in the ML training and evaluation 
→ much easier to scale up the dimensions

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-23-008.


Unfolding results

Simultaneously unfold all the variables for 
ML-based weighting
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More isotropic data than MC: 
→ We provide the unfolded results for theoretical interpretation

Customise binning and variable choices are 
supported with the event-wise unfolded data

Unfolding results as weighted MC events

CMS-PAS-SMP-23-008

University of Zürich Weijie Jin
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Summary
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Customise binning and variable choices are 
supported with the event-wise unfolded data

We have applied a novel ML-based unfolding algorithm (Multifold) to CMS analysis 

• Simultaneous unfolding of 8 event shape observables 
• Unfold at per-event level
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Summary
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Customise binning and variable choices are 
supported with the event-wise unfolded data

The way to improve the usability of unfolded results 
• Publish the unbinned results on event-level 
• Publish the weight sets from toy experiments 
   → Unc. + Covariance

Unbinned fit for theoretical interpretation  
Unbinned generator tuning 
(Or any binning chosen by the user)

We have applied a novel ML-based unfolding algorithm (Multifold) to CMS analysis 

• Simultaneous unfolding of 8 event shape observables 
• Unfold at per-event level

Uncertainties+Covariance on the results

+
ML-based uncertainty template construction 
and uncertainty estimation at per-event level 
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Backup
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Estimation of statistical uncertainty
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Statistical uncertainty from data 

Estimation method: pseudo-experiments 

• Assign the data events with weights ~ Poisson(1)  
→ Alternative data samples (bootstraps) with statistical fluctuations 

• Unfold these “bootstrap” data samples  
→ a set of MC weights for each bootstrap 

• Standard deviations of these unfolding results  
→ unfolding stat. unc. 

• Covariance of the histograms of these results  
→ covariance of the unfolding stat. unc.

Unfold resampled data to estimate the effects on unfolding
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Estimation of systematic uncertainty
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Binned unfolding:  
• Systematic templates as alternative MC histograms 
• Nuisance parameters quantify the deviation from nominal MC to systematic template histograms

Extrapolate to unbinned unfolding: 
• Systematic templates as alternative weights on nominal MC events (nominal: 

weight=1) 
• Nuisance parameters quantify the deviation from the nominal weight 1 to the 

alternative weights

Aim in systematic uncertainty estimation: 
• Construct the templates as weights on nominal MC events 
• Continuous nuisance parameters applied on the weights 
→ continuous deviation from nominal MC to systematic templates 
→ enables uncertainty estimation with pseudo-experiments (unfolding with “bootstrap” MC)
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Systematic uncertainty estimation based on unbinned reweighting

4. Mismodelling of other observables which may change detector response 
Derive the templates with two-step weighting
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Systematic uncertainty estimation based on unbinned reweighting
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• Step 1: weight the alternative MC to nominal MC at the particle-level 
→ output: weighted alternative MC 

• with migration function of alternative MC 
• particle-level distributions of nominal MC
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Systematic uncertainty estimation based on unbinned reweighting
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Systematic uncertainty estimation based on unbinned reweighting

4. Mismodelling of other observables which may change detector response 
Derive the templates with two-step weighting

• Step 1: weight the alternative MC to nominal MC at the particle-level 
→ output: weighted alternative MC 

• with migration function of alternative MC 
• particle-level distributions of nominal MC

• Step 2: weight the nominal MC to the Step 1 output at particle- and detector-level 
→ output: weighted nominal MC 

• with migration function of alternative MC 
• particle-level distributions of nominal MC
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Validation of the unfolding
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Validation: unfold the pseudo-data from Pythia A14 tune

15

Alternative MC from Pythia A14, CP5 and CUETP8M1 tunes → pseudo-data

Unfold the pseudo-data with nominal MC and the systematic templates → Test the closure

χ2/χ2(0th iteration) between the 
unfolded histograms & pseudo-
data truth

Particle-level 
MC, unfold, and pseudo-data truth 
transverse thrust at iteration 2

Unfolding with nominal 
MC and its systematic 
variations

Pseudodata truth Nominal MC
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Validation: unfold the pseudo-data from Pythia A14 tune

15

Alternative MC from Pythia A14, CP5 and CUETP8M1 tunes → pseudo-data

Unfold the pseudo-data with nominal MC and the systematic templates → Test the closure

Example: Unfold the Pythia A14 sample  
(plots of other observables, reco-level plots, efficiency and acceptance in backup)

χ2/χ2(0th iteration) between the 
unfolded histograms & pseudo-
data truth

Particle-level 
MC, unfold, and pseudo-data truth 
transverse thrust at iteration 2

Unfolding with nominal 
MC and its systematic 
variations

Pseudodata truth Nominal MC
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Validation: unfold the pseudo-data from Pythia CP5 tune
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Alternative MC from Pythia A14, CP5 and CUETP8M1 tunes → pseudo-data

Unfold the pseudo-data with nominal MC and the systematic templates → Test the closure

χ2/χ2(0th iteration) between the 
unfolded histograms & pseudo-
data truth

Particle-level 
MC, unfold, and pseudo-data truth 
broadening at iteration 2

Detector-level 
MC, refold, and pseudo-data 
broadening at iteration 2
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Validation: unfold the pseudo-data from Pythia CP5 tune
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Alternative MC from Pythia A14, CP5 and CUETP8M1 tunes → pseudo-data

Unfold the pseudo-data with nominal MC and the systematic templates → Test the closure

Example: Unfold the Pythia CP5 sample

χ2/χ2(0th iteration) between the 
unfolded histograms & pseudo-
data truth

Particle-level 
MC, unfold, and pseudo-data truth 
broadening at iteration 2

Detector-level 
MC, refold, and pseudo-data 
broadening at iteration 2
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Validation: unfold the pseudo-data with other systematic templates
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Particle-level 
MC, unfold, and pseudo-data truth

Systematic templates derived from  
EPOS, Pythia A14, Pythia CUETP8M1

Systematic templates derived from  
EPOS, Pythia CP1, Herwig CH3

Broadening 
unfold v.s. truth

Transverse sphericity 
unfold v.s. truth

Robustness test of MC choices for 
systematic templates 
• The unfolding from alternative systematic 

templates also recovers the truth 
• Uncertainties from gen-bias & migration 

functions are at a similar levelTransverse sphericity 
uncertainty decomposition
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Example: Unfold the Pythia CP5 sample Particle-level 
MC, unfold, and pseudo-data truth

Systematic templates derived from  
EPOS, Pythia A14, Pythia CUETP8M1

Systematic templates derived from  
EPOS, Pythia CP1, Herwig CH3

Broadening 
unfold v.s. truth

Transverse sphericity 
unfold v.s. truth

Robustness test of MC choices for 
systematic templates 
• The unfolding from alternative systematic 

templates also recovers the truth 
• Uncertainties from gen-bias & migration 

functions are at a similar levelTransverse sphericity 
uncertainty decomposition
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Validation: unfold the pseudo-data

Test the unfolding on 2D distributions

Nominal MC
Unfolding results 
with nominal MC & sys. var. 

2D test also shows closure between unfolding results and the pseudo-data truth 
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Validation: unfold the pseudo-data

Example: Unfold the Pythia CUETP8M1 sample, transverse sphericity in slices of Nch

Test the unfolding on 2D distributions

Nominal MC
Unfolding results 
with nominal MC & sys. var. 

2D test also shows closure between unfolding results and the pseudo-data truth 
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Validation: bottom-line test
Information loss during unfolding  
→ the distinction between the unfolded results & MC truth < the distinction between (pseudo-)data & smeared MC 
→ bottom-line test: the χ2 between unfolded results (bias & MC stat. unc.) & MC truth  

< the χ2 between (pseudo-)data & smeared MC

Example: χ2 (unfold&gen-MC) / χ2 (data&smeared MC) when unfolding CUEPT8M1 pseudo-data

χ2 ratios of 1D histograms χ2 ratios of 2D histograms 
(event shape obs. in Nch slices)

Ideal case: χ2 ratios ~ 1 

information loss or 
conservative unc. estimation 
→ χ2 ratios < 1
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Validation: bias and coverage test

Bias test:  
Bias of the unfolding results compared to 
pseudo-data truth

Coverage test: 
How often does the unfold cover the pseudo-data?

Box-plot: 0.25, 0.5 and 0.75 quantile of 50 toys Average coverage and its 68.2% confidence interval

Example: unfolding CUETP8M1 pseudo-data  
Transverse sphericity distribution at iteration 2

Unfold pseudo-data with toy experiments of uncertainty variations


