CURTAINS ⁺

Weakly Supervised Methods for new physics searches CHIPP 2024 Annual Meeting, Geneva

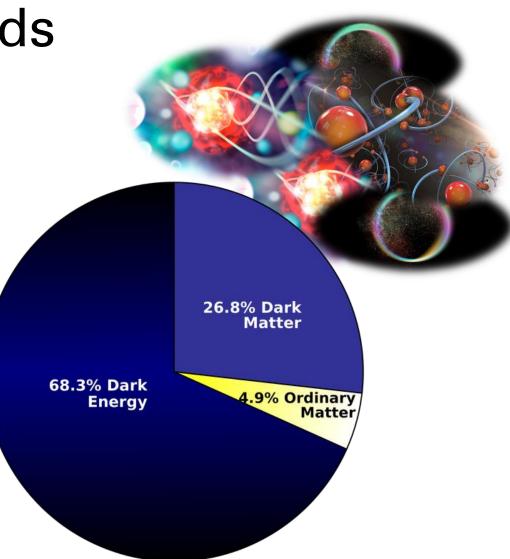
Deb, Sam Klein, Johnny Raine, Tobias Golling

² Weakly Supervised Methods

~25 % of matter content is unknown ~ Many models

Supervised searches most optimal, but not feasible.

No labels in real life ~ but something close.



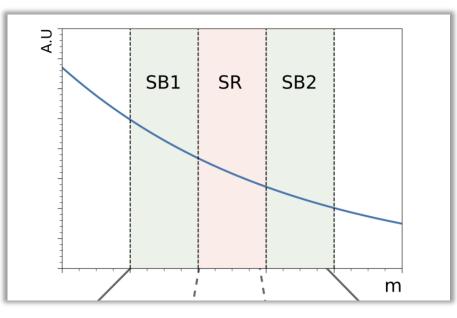
Weakly Supervised Methods

- Supervised searches most optimal, but not feasible.
- No labels in real life ~ but something close.
- Signal Regions (SR), Sidebands (SB) ~ different fraction of signals.
- CWoLa principle Optimal classifier for two different admixtures is the optimal classifier between the two classes.

Strategy:

3

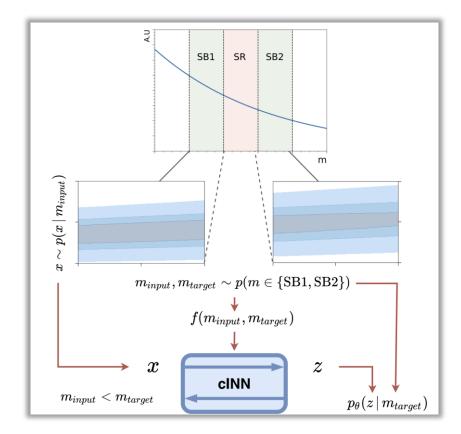
- 1. Construct background enriched templates in SR
- 2. CWoLa



Signal region (SR) and Sidebands (SB) around a hypothetical resonance in m.

CURTAINS 2203.09470 2305.04646

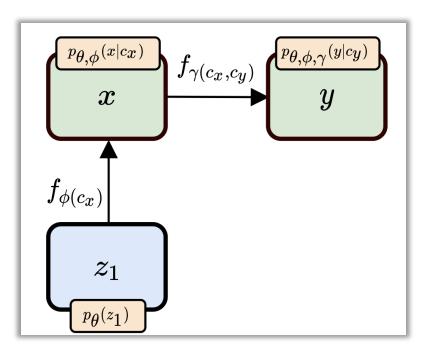
- Transform SB data to SR under exact likelihood
 - Using Flows for Flows
- Background enriched template in the SR



Schema for curtains, data from sidebands are passed through cINN in a forward or inverse pass depending on input and target m

FLOWS FOR FLOWS

- Transform SB data to SR under exact likelihood
- Train a normalizing flow SB⇔SB
 - $p_{\theta\phi\gamma}(y | c_x, c_y) = p_{\theta\phi}(x | c_x, c_y) \cdot \det |J_{f_{\gamma}}(x | c_x, c_y)| \rightarrow \text{Top Flow}$
 - $p_{\theta\phi}(x|c_x, c_y) = \pi_{\theta}(z) \cdot det \left| J_{f_{\phi}}(x|c_x) \right| \rightarrow \text{Base Flow}$
- Template → Sample masses from SR and transform SB into SR.



Flows for Flows schematic

CURTAINS FOR DIJETS

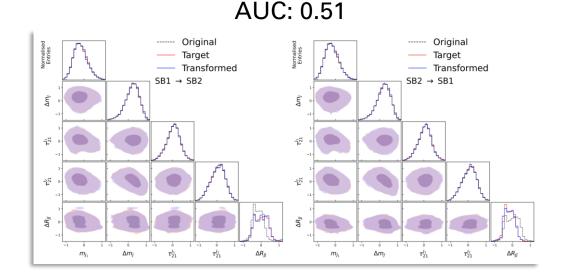
- Public benchmark dataset: LHCO dijet (Zenodo)
- Background: QCD dijets ~ 1M
- Signal: W' (3.5TeV) → X (.5TeV) (qq) Y (.1TeV) (qq) ~ 100k
- R=1.0 Jets, pT > 1.2 TeV
- Features used:
 - Mj1, Mj1-Mj2, τ 21, τ 32, dR

TEMPLATE FIDELITY

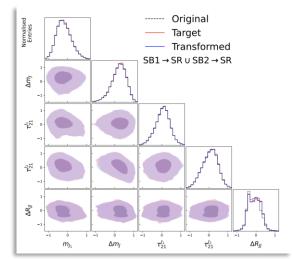
• Train a classifier between generated template and Data.

7

- If template is good → Classifier should have a nearly random selection → AUC 0.5
 - SB1, SB2 templates look nearly perfect with AUC 0.51
 - SR template AUC of 0.50
- A good template is crucial for downstream anomaly detection!
 - Bad template might kill sensitivity to weak signals.

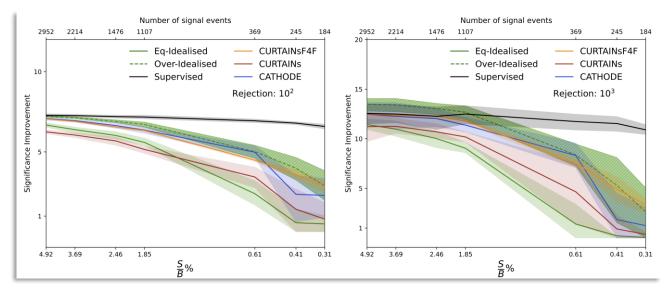


AUC: 0.501



SIGNAL SENSITIVITY

- Dope the data with n signal events
 - SIC = $\frac{\epsilon_{\rm S}}{\sqrt{(\epsilon_{\rm B})}}$
 - CURTAINsF4F (orange) sensitive to signal even at quite low signal presence.
 - Can find evidence of a signal when initial $\frac{s}{\sqrt{b}} = 0.7$
 - Idealised and Supervised lines for comparison.



SIC at two different working points as a function of doping

CURTAINS IN EXPERIMENTAL HEP

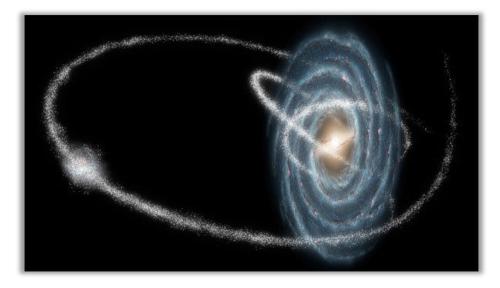
- Data driven method ~ few assumptions about potential signal.
 - Resonant in some feature ~invariant mass
- Deployed in ATLAS for a model agnostic search ongoing.

CURTAINS IN THE SKY

0

STELLAR STREAMS

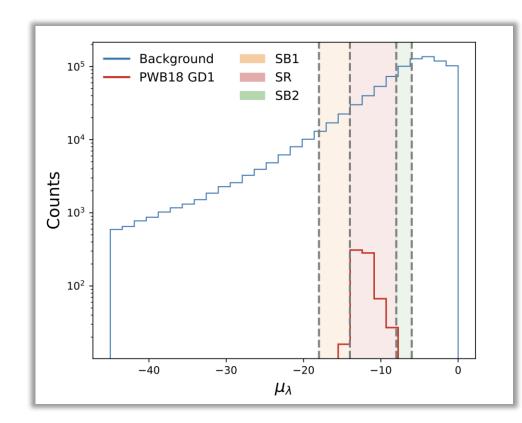
- Tidally stripped remnants of a dwarf galaxy
- Excellent probe for:
 - Galaxy merger history, formation
 - Galaxy mass, potential
 - Dark Matter Subhalos Mass Function
 - Density perturbations along the stream indicate subhalo flyby
 - Nature of DM ~compact, self interacting?
- Typically O(100)-O(1000) stars in a stream
- Know about 40* streams in the Milky Way
 - Expensive searches
 - Mostly model dependent ~ Assume MW potential, Chemical composition
 - Can we do this in a model agnostic way?



Artist rendition of stellar streams overserved from the Milky Way Galaxy

PROBLEM PARALLELS

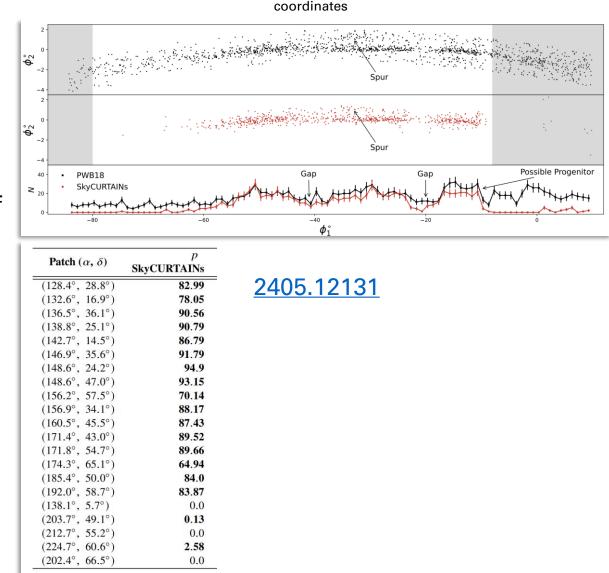
- Stellar Stream search is essentially an overdensity search in a feature space
- Group of stars moving congruently ~ produce overdensities in proper motion
- Features:
 - Proper motion in the sky
 - Position in the sky
 - Color of the star
 - Luminosity of the star
- Gaia Survey: > 1.8 billion sources catalogued in the Milky Way Galaxy
- Benchmark CURTAINs!



Distribution of proper motion of bg sources and members of a known stream GD-1

THE GD-1 STREAM

- Well known, narrow, large stream in the galaxy.
- CURTAINs finds GD1 in different patches of the sky with a very high purity.
- Recovers the density perturbations within the stream.
 - Without any prior model dependence!

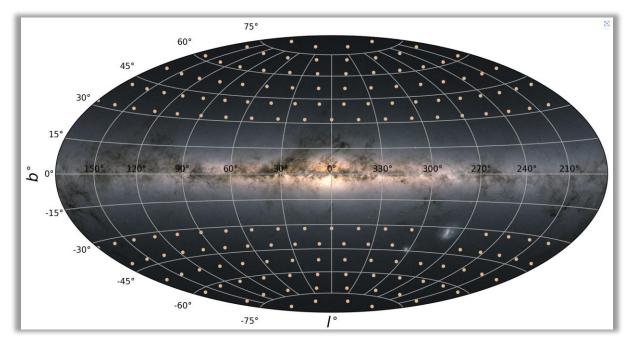


SkyC Recovered GD1 stream in stream aligned

Purity of GD1 recovered per patch

A FULL SKY SCAN

- Currently being deployed on GDR3 data of more than 1.8 billion sources.
 - Each dot represents the center of a 15-degree circular patch ~ 154 patches
- Expect to recover known streams
- Discover and catalogue new streams



Molleweide projection of the Milky Way Galaxy and the patch centers for the search

OUTLOOK

- Data driven methods powerful, versatile ~ Applicable across different domains
- Abstracting problems ~ Your problem may have been solved two doors down the office!

BACKUP

× • 0

FLOWS FOR FLOWS

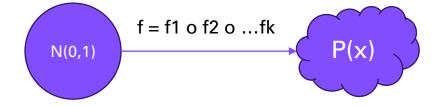
 $\boldsymbol{\times}$

0

NORMALISING FLOWS

• Map a known distribution to an arbitrary distribution through change of variables

•
$$p_{\theta\phi}(x|c_x,c_y) = \pi_{\theta}(z) \cdot det \left| J_{f\phi}(x|c_x) \right|$$



FLOWS FOR FLOWS

- To map between two arbitrary distributions under exact likelihood employ the change of variables formula.
 - $p_{\theta\phi\gamma}(y \mid c_x, c_y) = p_{\theta\phi}(x \mid c_x, c_y) \cdot \det \left| J_{f_{\gamma}(x \mid c_x, c_y)} \right|$
- But we do not know $p(x) \rightarrow$ learn it with another flow!

CURTAINS DIJET

X

0

TRAINING

- Mix SB1,SB2 conditionally learn to transform random pairs of data.
 - Condition on some function of mjj1, mjj2.
- First train BaseFlow for ~100 epochs.
- Freeze BaseFlow, train TopFlow~10 epochs.
- *EfficientMode :* When scanning multiple SR train one BaseFlow, use it everywhere.

[†] Timing is for the nominal side-bands, this would vary as the signal region changes due to total	
number of training events.	

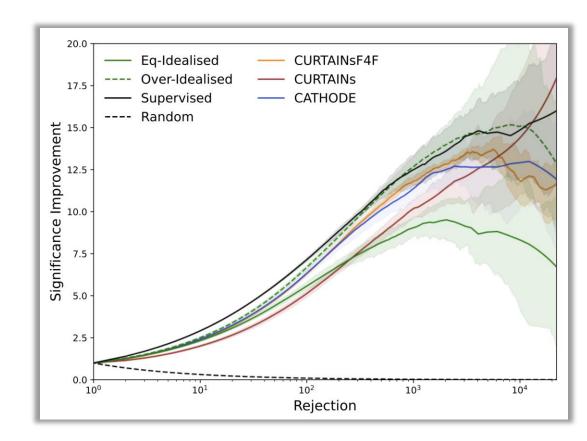
	Time / epoch [s]	N epochs	Total time [min]			
	Default					
Base	32.4^\dagger	100	54			
Top flow	31.5^\dagger	100	53			
	C	ne Signal Region	107			
	(Extrapolated [†]) T	1070				
	Efficient					
Base	104.2	100	174			
Top flow	21.3^\dagger	20	7			
	One Signal Region 181					
	(Extrapolated [†]) T	244				
(Extrapolated [†]) 125 Signal Region 1049						

TEMPLATE GENERATION

- Context generation in SR is done with fitting a PDF in SB and then sampling in SR.
 - ATLAS 3 parameter function $f(x) = p_1(1-x)^{p_2}(x)^{p_3}$
- Can generate a template in any Window, provided context can be provided.

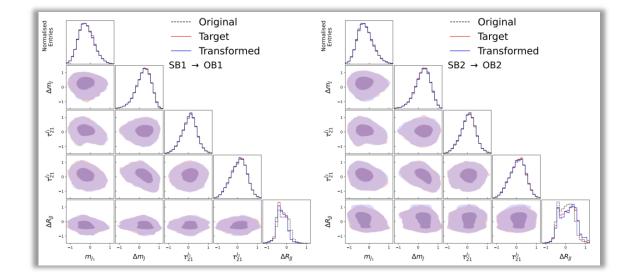
CWOLA

- Template vs SR Data in 5-Fold setup.
- MLP 32x3 for 20 epochs (overfits otherwise).
 - Tuned to get 0.5 AUC in zero doping case, good separability in 3000 doping case.



VALIDATION

- SR blinded, check performance in other control regions.
- AUC for OB1, OB2 <= 0.52



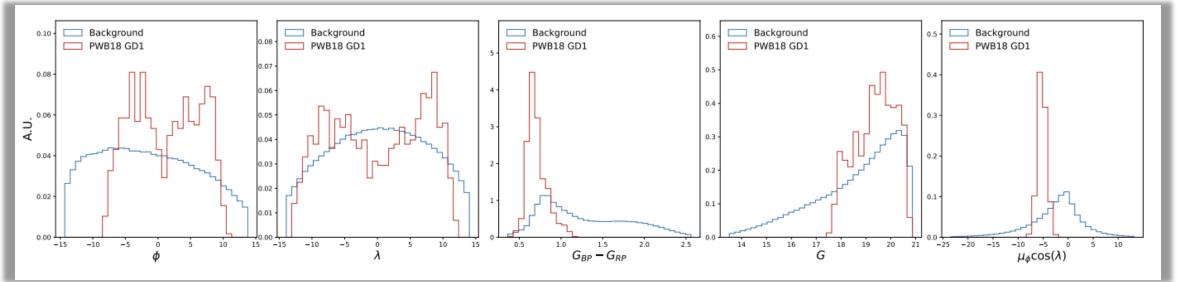
SKYCURTAINS

0

GAIA SURVEY

- Most precise 3D map of the Milky Way Galaxy from the L2 point.
- Astro and photometric observations of nearly 2 billion sources.
- Positions of objects as faint as magnitude 20, and those < 15, accuracy upto 24 microarcsec.
- Expected to function until 2025

FEATURE SPACE



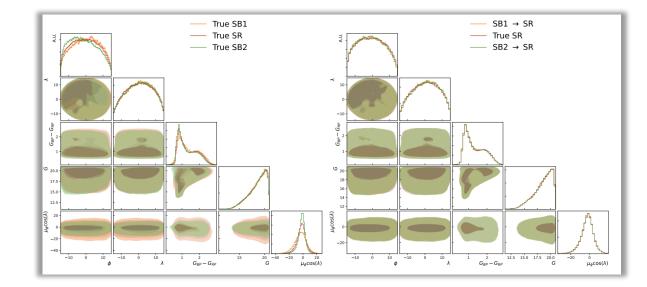
- Longitude, latitude local to patch
- Color = GBP GRP
- Magnitude = G
- Proper motion across the sky

FIDUCIAL CUTS

- Proper motion > 2 mas/yr reject too distant stars
- Magnitude < 20.2 Gaia has a non-completeness fainter than this
- Color in (0.5, 1.2) select out stars with similar metallicity.

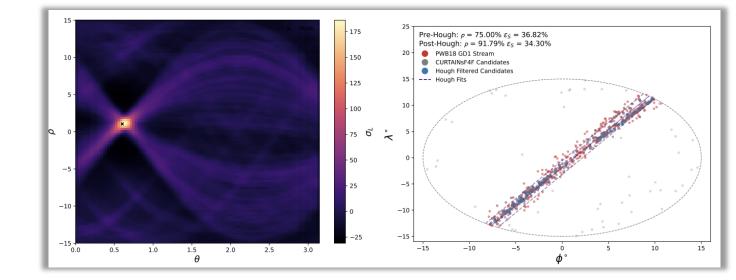
TEMPLATE FIDELITY

- AUC ~ 0.51
- Decent for downstream CWoLa



HOUGH FILTERS

- $\rho = \phi' \cos \theta \lambda' \sin \theta$
- Line candidates in image space ~ points in parameter space.
- Finding line = finding overdensity in parameter space.



Hough space for curtains candidates (left), hough filtered candidates in blue (right)