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ATLAS Experiment & Trigger

e  ATLAS experiment at LHC has to deal with 40 MHz pp
collisions, in high pile-up conditions

o Large event size (~1.5MB)
o  Low rates for “interesting” physics
» Need for a robust trigger system!
e  ATLAS uses a two level trigger
o  Li: Low latency hardware trigger
o  High Level Trigger (HLT): large set of
algorithms for reconstruction / tagging /

selections

e Different reconstruction steps for each trigger object
(muons, jets, e/gamma)
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b-tagging

e  Many interesting processes produces b-jets e.g. HH— 4b or beyond SM physics

e Identifying events with b-jets in the final state at trigger level is crucial given the
overwhelming QCD background

e A typical feature of b-jets is existence of secondary vertex and displaced tracks due to long
lifetime of B hadrons
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e  b-tagging algorithms requires track reconstruction which is CPU intensive

& Bottleneck for high rate trigger reconstruction
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https://www.hep.physik.uni-siegen.de/research/atlas/atlas-flavor-tagging

Fast b-tagging at the HLT

Reject background as early as possible

Run b-tagging before Full detector acceptance tracking

— Saves CPU, enables complex reconstruction downstream

Use ML models to infer the flavour of the jet using coarser inputs

o  “Fast” tracking only, in narrow regions of interest
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Recent history of b-tagging in ATLAS

e First implementation of fast b-tagging was done using a Deep Sets architecture (DIPS)

e  Offline analysis showed the success of GNNs for flavour tagging
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https://cds.cern.ch/record/2718948/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/

GNNss for fast b-tagging
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Fast b-tagging for upgrade trigger
e  Bigrestructuring of the trigger system for HL-LHC
e  Explorations for fast b-tagging, accelerate with implementation in FPGA

o  Need to quantize weights and slightly adapt the architecture = QDIPS
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Fast b-tagging for upgrade trigger

Training with same dataset of fastDIPS

o Fully implemented and tested model on FPGA

QKeras + hls 4 ml

Reducing model size by roughly one order of magnitude at the cost of small
loss in performances
Still work in progress, many possible improvements

o  hope to achieve performances closer to fastDIPS keeping the model
small and hardware friendly
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https://indico.cern.ch/event/1395037/timetable/?view=standard#169-vitis-accelerator-backend

Conclusion

Rejecting background in trigger as early as possible is essential for data-taking nowadays and even more for
HL-LHC
o  Fast b-tagging enabled to collect di-Higgs events at a higher rate than ever before!

More performant taggers were successfully deployed in trigger, following closely offline b-tagging improvements

The success of fast b-tagging in LHC Run 3 encourages the studies for improving these strategies for HL-LHC,
e.g. leveraging hardware acceleration

10



Backup: GN2 in HLT

[' Scaled Dot-Produc &h 1 MultiHead Attention Layer

Attention

Embedder Transformer Encoder Classifier
Fully-Connected d=128 Fully-Connected
tracks [16,128] 3 Layers / 4 Attention Heads [128,64,32,3]

e  Trained with 180M jets from simulated ttbar samples and 18M from Z’ sample
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