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● Decay, showering, hadronisation
● Detector hits and response
● Energy clustering, tracks matching

Need simulations
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Bypass:

Jessica N. Howard et al.
Learning to simulate high energy particle 

collisions from unlabeled data. 2021.
Scientific Reports 12, 7567 (2022)

Guillaume Quétant et al.
Turbo-Sim: a generalised generative model 

with a physical latent space. 2021.
arXiv: 2112.10629

PIPPIN

https://doi.org/10.1038/s41598-022-10966-7
https://arxiv.org/abs/2112.10629


Top quarks study
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Focus on “partons to reco”

● Inclusive dataset:
○ 18.6M all-hadronic
○ 17.8M semi-leptonic
○   4.1M di-leptonic

● Input:
○ 6 partons (see previous slide)

● Output:
○ 0-2 leptons
○ MET
○ 2-16 jets

● Features:
○ (pT, 𝜂, 𝜑, E)

6

Energy depositions 
in detectors

Particles decay, 
Hadronisation, 
Showerisation

Proton-proton collisions
Physics process!

Matched
final state

Hypothesis test!

Reconstructed
 physics objects

Energy
depositions in

detectors

PIPPIN



PC-JeDi/Droid*

Particles Into Particles with Permutation Invariant Network (PIPPIN)
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Main characteristics:

● Permutation invariance
○ self/cross-attention

● Conditional networks

● Particle presence
○ auxiliary prediction

● Correlated outputs
○ by attention mechanism

● Stochastic generation

● Three decay channels at once

*PRD 109, 012010 (2024)

https://doi.org/10.1103/PhysRevD.109.012010


Multiplicity and presence predictions

● Very good agreement
● Slight underestimation of number of jets

○ difficulties with low populated tail
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● Reasonable prediction
● Slight overestimation in all cases

○ but not a critical quantity to model



Kinematics properties

● Very good agreement ← Target of the training
● Struggles a bit with tails and hard cut
● Diagonal well populated

○ with natural intrinsic spread
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Underlying intermediate particles

● Similar percentage of fully matched events
○ learnt different topologies w/ same proportion

● Overestimation of low masses
● Underestimation of high masses and momenta
→ Crucial correlations very well handled!
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Comparison to similar models

● Comparison on restricted dataset
○ Only semi-leptonic: 1 lepton, MET and 4 jets

● Significantly outperforms other models
● Promising generalisation capabilities
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Conclusion

● State-of-the-art partons to variable length full events generative model
○ Correct multiplicities, kinematics and correlations

● Simultaneously learnt three decay channels
○ May extend to more processes!

● Controlled conditional generation

Outlook:

● How well would it handle process variations?
● How to apply the model to the unfolding task?
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Paper to appear in a couple of days



Thanks!

13



Backup
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PIPPIN
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Training Generation



PIPPIN’s 3 subparts
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Transformer Encoder Multiplicity Predictor PIP-Droid Generator



Transformer Encoder
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Multiplicity Predictor
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PIP-Droid Generator
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Comparison of datasets
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