

NVIDIA Updates May 2024

THIS INFORMATION IS INTENDED TO OUTLINE OUR GENERAL PRODUCT DIRECTION. MANY OF THE PRODUCTS AND FEATURES DESCRIBED HEREIN REMAIN IN VARIOUS STAGES AND WILL BE OFFERED ON A WHEN-AND-IF-AVAILABLE BASIS. THIS ROADMAP DOES NOT CONSTITUTE COMMITMENT, PROMISE, OR LEGAL OBLIGATION AND IS SUBJECT TO CHANGE AT THE SOLE DISCRETION OF NVIDIA. THE DEVELOPMENT, RELEASE, AND TIMING OF FEATURES OR FUNCTIONALITIES DESCRIBED FOR OUR PRODUCTS REMAINS AT THE SOLE DISCRETION OF NVIDIA. NVIDIA WILL HAVE NO LIABILITY FOR FAILURE TO DELIVER OR DELAY IN THE DELIVERY OF ANY OF THE PRODUCTS, FEATURES, OR FUNCTIONS SET FORTH IN THIS DOCUMENT.

Contents

AI and Science

- NVIDIA Hopper
- NVIDIA Grace & Grace Hopper
- Programming the NVIDIA Platform
- Next Generation: NVIDIA Blackwell

Al and Science

Workloads of the Modern Supercomputer

EDGE

SIM + AI

SIMULATION

DIGITAL TWIN

QUANTUM COMPUTING

	<section-header><section-header>i<table-row><image/></table-row></section-header></section-header>	EdgeHPC + AlImage: Distribution of the second of the seco
FEATURE	PRE-EXASCALE	EMER
USAGE	BATCH	INTEF
WORKLOAD	SINGLE SIMULATION/ENSEMBLES	SIMULATION/ENSE
EXPERIMENTS	OFFLINE DATA ANALYSIS FOR EXPERIMENTS	MIX OF REAL-TIMI
DIGITAL TWINS	IN-SITU VISUALIZATION	INTERACTIVE COMBINATIO
QUANTUM COMPUTING	SIMULATION	PREPAR
PROGRAMMING MODELS	FORTRAN, C++, MPI, OPENMP	STANDARD PARALLELISM SUPF PYTHON, JULI
CLOUD	GRID	BURST CAPABILITIES, FA

HPC Reinvented with Al

RGING POST EXA-SCALE

RACTIVE & DISTRIBUTED

EMBLES, AI TRAINING AND INFERENCE

IE ANALYSIS, STEERING AND OFFLINE

ON OF SIMULATION AND OBSERVATIONAL DATA

RING FOR A HYBRID MODEL

PORT IN FORTRAN, C++, MPI, OPENMP, OPENACC, IA, PYTORCH, JAX, TENSORFLOW

ASTER REFRESH CYCLE, ACCESS TO LATEST CHNOLOGY AT SCALE

NVIDIA Modulus Open-Source Platform for Developing Physics-Based Machine Learning

Training Neural Networks Using Both Data And The Governing Equations

Renewable Energy Siemens Gamesa: 4000X Faster wind turbine wake optimization

Climate Change 45,000X Faster extreme weather prediction with FourCastNet

Healthcare

Science and Engineering Teaching Kit available now.

Advancing Scientific Discovery With Modulus

Industrial HPC NETL: 10,000X Faster build of highfidelity surrogate models

NVIDIA Holoscan SDK for Building AI-Enabled Sensor Processing Applications

- workflows

Features

C++ and Python APIs for domain agnostic sensor data processing

Scalable from IGX (ARM + GPU) to DGX (x86 + A100)

Sample applications to jump-start ML/AI-enabled and Accelerated Computing sensor pipelines with <u>Holohub</u>

Al Inference with pluggable backends such as TensorRT

Apache 2 Licensed and Available on GitHub

Benefits

Simplifies sensor I/O to GPU

Simplifies the deployment of an AI model in a streaming pipeline

Provides customizable, reusable, and flexible components to build and deploy GPU-accelerated algorithms

Scale workloads with Holoscan Cloud Native

Building Digital Twin With NVIDIA Omniverse Foundational platform components

NUCLEUS

Source of truth Database & Collaboration Engine

CONNECT

Coupling Connectors

M. Jone, Liny
 SM, Jonel, Joo
 SM, metal, Joo
 SM, metal, Joo
 SM, Jone, Jaint, Gat
 SM, Joint, Cat
 SM, Joint, Joint
 SM, Joint, Joint

Application API Python-USD Toolkit

KIT

SIMULATION

Virtual Actor Rigid body dynamics Real-time CFD, FEM

RTX RENDERER

Virtual Sensor

Visible spectrum Experimental: RF, IR, ...

GenAl For Science Research and Discoveries

Biology: AlphaFold 2021

The Race for Foundation Models for Science is on

Climate : ClimaX/Stormer

Jan 2023

Materials : MatterGen

Dec 2023

📀 NVIDIA.

Building a Domain Specific Gen Al model is a Multistage Process

Reference : https://www.youtube.com/watch?v=bZQun8Y4L2A

NVIDIA Hopper

NVIDIA Hopper The new engine for the world's AI infrastructure

World's Most

Advanced

Chip

Confidential Computing

NVIDIA AI Enterprise Software Suite Redeemable NVIDIA AI Enterprise 5 Year Subscription*

*Included for H100 PCIe in mainstream systems

Custom 4N TSMC Process | 80 billion transistors

SM					
				L1 Instruc	ction Cache
		L0 Ir	nstruction C	ache	
	Wa	rp Sch	neduler (32	thread/clk)	
	Di	spatcl	h Unit (32 tł	nread/clk)	
	Reg	jister	File (16,38	4 x 32-bit)	
INT32	FP32 FF	932	FP64		INT32 FP3
INT32	FP32 FF	232	FP64		INT32 FP3
INT32	FP32 FF	³² 32	FP64 FP64		INT32 FP3
INT32	FP32 FF	932	FP64		INT32 FP3
INT32	FP32 FF	3 2	FP64	1	INT32 FP3
INT32	FP32 FF	2 32	FP64		INT32 FP3
INT32	FP32 FF	32	FP64		INT32 FP3
INT22	FP32 FF	232	FP64	4" GENERATION	INT32 FP3
INT32	FP32 FF	32 232	FP64 FP64		INT32 FP3
INT32	FP32 FF	932	FP64		INT32 FP3
INT32	FP32 FF	32	FP64		INT32 FP3
INT32	FP32 FF	232	FP64		INT32 FP3
INT32	FP32 FF	232	FP64		INT32 FP3
INT32	FP32 FF	732	FP64		INT32 FP3
LD/ ST	LD/ LD/ ST ST	LD/ ST	LD/ LD/ ST ST	LD/ LD/ SFU	LD/ LD/ ST ST
		L0 Ir	nstruction C	ache	
	Wa	rp Sch	neduler (32	thread/clk)	
	Di	spatcl	h Unit (32 th	nread/clk)	
	Reg	jister	File (16,38	4 x 32-bit)	
INIT22	ED22 ED	22	ED64		
INT32	FP32 FF	32	FP64		INT32 FP3
INT32	FP32 FF	232	FP64		INT32 FP3
INT32	FP32 FF	32	FP64		INT32 FP3
INT32	FP32 FF	932	FP64		INT32 FP3
INT32	FP32 FF	232	FP64		
INT32	FP32 FF	32	FP64 FP64	TENSOR CORE	INT32 FP3
INT32	FP32 FF	32	FP64	4 th GENERATION	INT32 FP3
INT32	FP32 FF	232	FP64		INT32 FP3
INT32	FP32 FF	32	FP64		INT32 FP3
INT32	FP32 FF	232	FP64		INT32 FP3
IN 132	FP32 FF	32	FP64		INT32 FP3
INT32	FP32 FF	32	FP64		INT32 FP3
INT32	FP32 FF	232	FP64		INT32 FP3
LD/	LD/ LD/	LD/ ST	LD/ LD/	LD/ LD/ SFU	LD/ LD/
Tensor Memory Accele					
			256	KB L1 Data Cad	che / Shar
	Тех			Тех	

Inside H100 SM Architecture

- 2x faster clock-for-clock
- Supports wide range of storage and math formats
- New FP8 format support
- Accelerates sparse tensor arithmetic
- New **DPX** instruction set
- Improves programmer productivity:
 - New Thread Block Clusters
 - Turn locality into efficiency
 - New Tensor Memory Accelerator
 - Fully asynchronous data movement
- 256 KB L1 cache / Shared Memory
- More efficient data management saves up to 30% operand delivery power

New 4th Gen Tensor Core

10 years of evolution in GPU hardware

Kepler GK110 GPU (2012)

3.52 TFLOPS single 1.17 TFLOPS double

67 TFLOPS single [19x] 34 TFLOPS double [29x] 67 TFLOPS double with TC [57x]

Hopper H100 GPU (2022)

Allocate 1 bit to either range or precision

Inside 8-bit Floating Point (FP8) 2x throughput & half footprint of FP16/BF16

Support for multiple accumulator and output types

Adaptive precision

Transformed Engine

Auxiliary data

Optimal Transformer acceleration with Hopper Tensor

Transparent to DL frameworks

User can enable/disable

Selectively applies new FP8 format for highest throughput

Monitors tensor statistics and dynamically adjusts range to maintain accuracy

NVIDIA H100 Unprecedented Performance, Scalability, and Security for Every Data Center

H100

AI and HPC Performance

4PF FP8 (6X) 2PF FP16 (3X) 1PF TF32 (3X) 67TF FP64 (3.4X) 3.35TB/s (1.5X), 80GB HBM3 memory

Transformer Engine

6X faster on largest transformer models

High Utilization Efficiency and Security

7 Fully isolated & secured instances, guaranteed QoS 2nd Gen MIG | Confidential Computing

Fast, Scalable Interconnect

900 GB/s GPU-2-GPU connectivity (1.5X) up to 256 GPUs with NVLink Switch | 128GB/s PCI Gen5

LLM Training | 4096 GPUs | H100 NDR IB | A100 HDR IB | 300 Billion tokens.

NVIDIA L40S Unparalleled AI and Graphics Performance for the Data Center

NVIDIA L40S GPU

Ada Lovelace Architecture Features

New Streaming Multiprocessor 4th-Gen Tensor Cores 3rd-Gen RT Cores

Gen-Al, LLM Training, & Inference

Transformer Engine - FP8 1.5 petaFLOPS Tensor Performance

OVX Reference Architecture

Powerful AI and Graphics Performance at Scale NVIDIA AI Enterprise I Omniverse Enterprise Powered by L40S GPUS

GPU Portfolio: NVIDIA Hopper™ and Ada Lovelace Architectures

	GPU	Networking
oute	GH200	QTM2 SPTM4
Comp	H100	QTM2 SPTM4
Compute	L40S	QTM1 SPTM3
Graphics /	L40	SPTM3
Small Form Factor Compute/Graphics	L4	SPTM3

Price-performance comparison relative across each entire workload column. This chart should be used in conjunction with measured data for targeted workloads.

QTM1 Quantum-1 IB switch plus BlueField2 DPUs or ConnectX-6/6 DX SmartNICs SPTM3 Spectrum-3 ethernet switch plus Bluefield2 DPUs or ConnectX-6 /6 Dx SmartNICs SPTM4 Spectrum-4 ethernet switch plus Bluefield3 DPUs or ConnectX-7 SmartNICs QTM2 Quantum-2 IB switch plus BlueField3 DPUs or ConnectX-7 SmartNICs

		<u>ද</u> ද	
Virtual Workstation	Virtual Desktop (VDI)	Al Video	Far Edge Acceleration

NVIDIA Grace & Grace Hopper

NVIDIA Grace CPU Superchip

Breakthrough Performance and Efficiency for the Modern Data Center

High Performance Power Efficient Cores

144 flagship Arm Neoverse V2 Cores with SVE2 4x128b SIMD per core

Fast On-Chip Fabric

3.2 TB/s of bisection bandwidth connects CPU cores, NVLink-C2C, memory, and system IO

High-Bandwidth Low-Power Memory

Up to 960GB of data center enhanced LPDDR5X Memory that delivers up to 1TB/s of memory bandwidth

Fast and Flexible CPU IO

Up to 8x PCIe Gen5 x16 interface. PCIe Gen 5 up to 128GB/s 2X more bandwidth compared to PCIe Gen 4

Full NVIDIA Software Stack

Al, Omniverse

Continued Innovation

Grace-Next

144 Arm Neoverse V2 Cores | 228MB L3 Cache 3.2 TB/s NVIDIA Scalable Coherency Fabric | 960GB LPDDR5X

Front-End

Goal	Low-Cost Cores (Availability drives TCO)	Balance TCO and Performance	High-Performance (Perf. is the numerator on TCO)
Example Workloads	Proxies, Load Balancers, Web Frontend, Service Endpoints	DB Servers, Analytics, Video & Image Processing, Application Servers, CI/CD, game servers	Simulation, high-end analytics, traditional ML.
Design Point	Cores & vCPUs per watt	Balanced fabric, integer, memory BW, and FP performance and perf. per watt.	High memory BW, high FP performance
Criteria	Cost of Persistence: rent cores for laaS 24x7 at low cost	Cost of Peak compute: best TCO to achieve a defined maximum goal.	Cost of Job: best overall compute throughput per \$.

Data Center CPU Landscape The Future is Data Center Power Limited

Traditional, PaaS & **Consumer Internet**

Grace CPU

HPC & Technical

Grace

Server Base System Architecture (SBSA) Base Boot Requirements (BBR)

- Standard set of platform requirements and recommendations to enable off-the-shelf OS support
- SBBR recipe support from BBR
- Allows OS and system SW to expect consistency across different SOCs
 - Standard Private Peripheral Interrupt (PPI) assignments
 - Standard UART
 - PCIe ECAM, ITS for MSI(-X)

drm SystemReady

GRACE IS A COMPUTE & DATA MOVEMENT ARCHITECTURE NVIDIA Scalable Coherency Fabric (SCF) and distributed cache design

- Up to 512GB of LPDDR5X memory
 - 32 channels
 - Up to 546 GB/s of memory BW
 - Competitive power/perf
- NVIDIA Scalable Coherency Fabric
 - 3,225.6 GB/s bi-section BW
 - 117MB of distributed L3 cache
 - Scalable to 72+ cores per die
 - Background data movement via Cache Switch Network
- Supports up to 4-die coherency over Coherent NVLINK

Example possible fabric topology for illustrative purposes

Grace Simplifies System Design and Workload Optimization

Grace Server Grace C2 Superchip **OEM-Provided Motherboard** Socket O Die 1 900 GB/s C2C n 1 n2 x86 Package Voltage 500 GB/s Regulation LPDDR5X DDR5 12 Channels **Grace C2 Superchip Package** 64 lanes 64 lanes PCIe Gen 5 PCIe Gen 5 PCle Peripherals

2 NUMA Nodes

2 Compute Dies

500 Watts (CPU + MEM)

900 GB/s n-to-n

Reduces NUMA Bottlenecks

Conventional 2-Socket Server Example: 2x AMD Genoa, Native NPS=4

Data Center levsingle-node lab measured Grace Superchip vs x86 flagship 2-socket data center systems (AMD EPYC 9654 and Intel Xeon 8480+). Seismic Data Proc: SPECFEM3D four_material_simple_model CFD: OpenFOAM Motorbike | Large v2212 Climate: NEMO Gyre_Pisces v4.2.0 Weather: ICON QUBICC 80 km resolution Weather: WRF CONUS12km NVIDIA Grace Superchip performance based on measurements. Results subject to change.

NVIDIA Grace CPU Doubles HPC Data Center Throughput

Breakthrough Performance and Efficiency

NVIDIA GH200 Grace Hopper Superchip

Built for the New Era of Accelerated Computing and **Generative Al**

Most versatile compute Best performance across CPU, GPU or memory intensive applications

Easy to deploy and scale out

1 CPU:1 GPU node simple to manage and schedule for for HPC, enterprise, and cloud

Best Perf/TCO for diverse workloads Maximize data center utilization and power efficiency

Continued Innovation

Grace and Hopper-Next in 2024

900GB/s NVLink-C2C | 576GB High-Speed Memory 4 PF AI Perf | 72 Arm Cores

Two Memory Systems, Each Optimized For Its Processor

CPU memory system is optimized for **low latency** and **deep cache hierarchy**

Run **latency-sensitive** code on the CPU, e.g. a linked list

NVLINK-C2C

High Speed Chip to Chip Interconnect

- Used to create the Grace Hopper, and Grace Superchips
 - Native atomics, including standard C++ atomic support
 - **Enables coherency**
- Up to 900 GB/s of raw bidirectional BW
 - Same BW as GPU to GPU NVLINK on Hopper
- Low power interface 1.3 pJ/bit
 - More than 5x more power efficient than PCIe
- Unified Memory with shared page tables
 - Shared CPU and GPU virtual address space (AST)

NVIDIA GH200 Optimizing Power and Performance at Data Center Scale Higher Performance for Less Power

GH200 Performance On Different Workloads

NVIDIA GH200 Grace Hopper Superchip Processor For The Era of Accelerated Computing And Generative AI

- Combined 576 GB of fast memory

GH200 with HBM3

Available nowq

GH200 with HBM3e

Available late Q2 2024

NVLink Dual GH200 System unveiled at SIGGRAPH2023 -- https://nvidianews.nvidia.com/news/gh200-grace-hopper-superchip-with-hbm3e-memory

144 Core Grace CPU | 8 PFLOPS Hopper GPU 288 GB HBM3e | 10 TB/s | 900 GB/s NVLink-C2C

- Simple to deploy MGX-compatible design
- Combined 1.2 TB fast memory
- 3.5x capacity and 3x bandwidth vs H100
- Full NVIDIA Compute Stack

NVLink Dual GH200 System

Available late Q2 2024

NVLink Dual GH200 System One OS image, double CPU & GPU performance

NVIDIA Quad GH200 Node architecture for scalable dense supercomputing

Programming the NVIDIA Platform

ACCELERATED STANDARD LANGUAGES

ISO C++, ISO Fortran

```
std::transform(par, x, x+n, y, y,
    [=](float x, float y) { return y +
a*x; }
);
```

```
do concurrent (i = 1:n)
  y(i) = y(i) + a*x(i)
enddo
```

```
import cunumeric as np
```

```
def saxpy(a, x, y):
   y[:] += a*x
```

•••

Core

Math

Programming the NVIDIA platform CPU, GPU, and Network

5	INCREMENTAL PORTABLE OPTIMIZATIO OpenACC, OpenMP
	<pre>#pragma acc data copy(x,y) { std::transform(par, x, x+n, y, y, [=](float x, float y) { return y + a*x; }); }</pre>
	<pre>#pragma omp target data map(x,y) { std::transform(par, x, x+n, y, y, [=](float x, float y){ return y + a*x; }); }</pre>

ACCELERATION LIBRARIES

Communication

Data Analytics

Choosing A Programming Model There can be only *more than* one.

tandard Languages	Compiler Directives	CUDA Languages
Strong cross- blatform support. Single source code for multiple blatforms. Reduced learning curve.	 High cross-platform support. Single source code for multiple platforms. Reduced learning curve. Additional programmer control. 	 Exposes full GPU capabilities. Trades portability for performance. Distinct GPU/CPU code paths. Full programmer control.
		Programmer Contro

By design these approaches are interoperable so developers can choose the right balance for their needs.

CUDA Toolkit 12

NVIDIA[®] CUDA[®] Toolkit (CTK) provides what you need to create high performance GPUaccelerated applications.

Develop, optimize, and deploy GPU-accelerated applications on embedded systems to Cloudbased platforms and HPC supercomputers.

Included in the toolkit:

- GPU-accelerated libraries
- Debugging and optimization tools
- C/C++ compilers
- Runtime library

Also, supports Fortran and Python parallel language constructs.

Learn more about the <u>CUDA Toolkit</u> and <u>Nsight</u> **Developer Tools** on our DevZone.

CUDA Toolkit Develop, Optimize and Deploy GPU-Accelerated Applications

Accelerated Computing Software Engine

CUDA 12 introduces support for:

- Hopper and Ada Lovelace architectures
- Arm server processors
- Lazy Module and Kernel Loading
- New developer tools for Python and multi-GPU and multi-node (MGMN) clusters

NVIDIA **Hopper** architecture support includes:

- Next gen Tensor Cores and Transformer Engine
- Next gen Multi-Instance GPU (MIG)
- Mixed precision modes
- Advanced memory management
- Hi-speed NVLink Switch system

• HPC SDK 23.11:

- Unified memory support for stdpar, OpenACC, and CUDA C++/Fortran
- NVTX improvements for stdpar codes
 - Now you can see your stdpar in NSight: improved tools support, developer experience, performance optimizations
- C-Fortran Interface
 - Better multi-paradigm interoperability for mixed C, C++, and Fortran codes
 - F2008 MPI bindings for nvfortran
- C++20 Coroutines for CPU
 - Future GPU support will enable alternative async models for stdpar
- Support for Grace Hopper in all bundled components • Compilers, Math Libraries, Networking, Tools.
- HPC-X is the default MPI implementation optimized for NV platform
- Grace(/Arm) performance (-tp=neoverse-v2) • Re-engineered vectorizer, intrinsics, system math library
 - functions

HPC SDK Updates Grace Hopper, unified memory, and more

• HPC SDK 24.3:

- Grace CPUs

• HPC SDK 24.5:

- New NVPL integrations
- Ubuntu 24.04 support

- C++ stdpar improvements
- Fortran stdpar improvements
- OpenACC improvements
- CUDA Fortran
- OpenMP Target Offload
- Unified Functions

 Improved compile speed for nvc++ • Up to 1.15x - 2x faster for some workloads Unified memory support for OpenMP Target Offload Integrated NVIDIA Performance Library (NVPL) for

• CUDA Fortran `unified` attribute

Improved memory model CLI for HPC Compilers

Unified Memory

Introducing cuNumeric and Legate

- NVIDIA cuNumeric is a Legate library aspiring to be a drop-in replacement for NumPy
- Legate is an abstraction layer running over a runtime system providing multi-GPU and multi-node (MGMN) computing
- Helps developers leverage power of large CPU and GPU clusters by running the same code that runs on laptops
- Learn more about cuNumeric and Legate from the **Accelerating Python Applications** with cuNumeric and Legate TechBlog post.

cuNumeric and Legate **Accelerating Python Applications at Scale**

Democratizing Scientific Computing for Python

- Develop and test programs on small datasets on a laptop or workstation
- Scale up to larger datasets deployed on 1000's of GPUs in the cloud, or on a supercomputer -- without code changes
- Key benefits of the cuNumeric library on Legate:
 - Transparently accelerates and scales existing NumPy workflows
 - Scales to up to 1000's of GPUs optimally
 - Requires zero code changes
 - Is freely available. Get started on **<u>GitHub</u>** or Conda

cuFFTMp

2D and 3D FFTs **Decompositions**: Slab (1D), Pencil (2D)

cuSOLVERMp

Factorization, Symmetric Eigensolver

	Communica	tion Librar
	HP	C-X
		1PI
UCX	SHMEM	SHA
	NVSH	IMEM
	NC	CCL

X86 + ARM support

Multi GPU Multi Node APIs Scalable and Grace Hopper Support

DGX H100 8 GPUs

256 Grace Hopper Superchips | **1EFLOPS** AI Performance | **144TB** unified fast memory **36** L2 NVLink switches | **900 GB/s** GPU-to-GPU bandwidth | 128 TB/s bisection bandwidth

DGX GH200

Infiniband Between Nodes

NVIDIA HPC SDK

Available at developer.nvidia.com/hpc-sdk, on NGC, via Spack, and in the Cloud

Develop for the NVIDIA Platform: GPU, CPU and Interconnect Libraries | Accelerated C++ and Fortran | Directives | CUDA x86_64 | Arm 6 Releases Per Year | Freely Available

Grace Software Ecosystem is Built on Standards + NVIDIA's Ecosystem Grace brings the full NVIDIA software stack to Arm

Portable, Optimized, Accelerated Executable

NVIDIA Platform State-of-the-art language standards (stdpar, etc.)

Arm Software Ecosystem (Armv8 SBSA) The most common CPU architecture on planet Earth

Optimized Executable

Optimized OSS or Vendor Software (Armv9) General compute commercial success (cloud, HPC, edge...)

P C C C C mance

Advancing the State-of-the-Art in Compilers NVIDIA invests in open source and commercial compilers for NVIDIA Grace

NVIDIA HPC Compilers

- Focused on application performance and programmer productivity
- High velocity, constant innovation
- Freely available with commercial support option

LLVM and Clang

- NVIDIA provides builds of Clang for Grace
 - <u>https://developer.nvidia.com/grace/clang</u>
- Drop-in replacement for mainline Clang
- 100% of Clang enhancements for Grace are contributed to mainline LLVM

• GCC

- NVIDIA contributes to mainline GCC to support Grace
- Working with all major Linux distros to improve availability of Grace optimizations in GCC

NVIDIA Performance Libraries (NVPL) Optimized math libraries for NVIDIA CPUs

- Easily port applications to NVIDIA's Arm CPUs
- Drop-in replacement for any math library implementing standard interfaces (e.g. Netlib, FFTW)
- New interfaces for high-performance libraries

Grace CPU, 72 threads

Debuggers and Profilers for GH200 and Grace CPU Superchip Full capability on Grace-Hopper

NVIDIA Nsight has full feature-parity on GH200

• Anything you can do with Nsight tools on x86+Hopper, you can do on GH200 with the same workflow

GH200 has hundreds of performance counters (PMUs)

• Computational intensity, bandwidth, instruction mix...

Generally, all major debugging and profiling tools for x86+Hopper are available on GH200

• Similar capabilities are provided by other tools on Grace

😣 🗖 🗊 NVIDIA Nsigi	ht	Systems 201	9.6.0)		
<u>File View Tools H</u> elp						
Project Explorer	ĸ	Project 13	× re	eport1.qdrep	×	report
report15.qdrep	•	The star			1	
report16.qdrep			e viev	v •]	
report17.qdrep				1	s	+828
report23.qdrep		, cro(12)				
report22.qdrep		 Threads 	(8)			
report21.qdrep						
report8.qdrep		▼ ✔ [216	12] S	mokel 🝷		
report5.qdrep					11	1111
		OS ru	ntime	libraries		Cr
profile.qdrep		0010		- Indianeo		2
profile.qdrep						
roport5 adrop		NVTX		😣 🖨 🗊 NVIDIA	Nsigh	it Systen
report1 adrep				<u>File View T</u> ools	<u>H</u> elp	
report18 adrep		CUDA		Project Explorer	X	Projec
report19.gdrep		CODA	API	report15.qdr	ер	Т 📑 Т
report1.adrep		Profile	er ove	report17.qdr	ep	
report2.gdrep				report23.qdr	rep	→ CP
report7.gdrep		▼ V [216	22] s	report21.qdr	rep	• 7
report16.qdrep		05 50	otione	report5.qdre	p	
report20.qdrep		USTU	nume	profile.qdrep		
report21.qdrep		→ ✔ [216	21] s	profile.qdrep)	
report12.qdrep				report5.qdrep	p	
📄 dhl8.qdrep			_	report1.qdre	p	
report20.qdrep		Detters Un		report19.qdr	ep rep	
profile_140819		Bottom-Up	view	report1.qdre	p	
report1.qdrep		Filter	65,	report2.quie	p	
report1.qdrep			-	report16.qdr	rep rep	
profile_0_3545		Symbol Nar	ne	report21.qdr	ер	
profile_0_4441		IDONACCI > 0x7fa7db	int) d2o0f	dhl8.adrep	ер	
report12.qdrep		▶ 0x7fa7db	d2e9i	report20.qdr	ер	
nmsv3.qdrep		▶ 0x7fa7db	d78e	report1.qdre	19 p	
profile_0_3232		► 0xfffffff8	10362	report1.qdre	p	
reports.qurep		▶ 0xfffffff8	1806	profile_0_33	41	
zu.nss.quiep		▶ 0x7fa7db	d2e9f	report12.qdr	ep	
report2.gdrep		▶ 0x7fa7db	bde7f	profile_0_32	32	
report3.gdrep		▶ 0x7fa7db	d2e9f	report9.qdre	p D	
report4.gdrep		► 0x7fa7db	bde71	report1.qdre	p	
report5.gdrep		► 0x7fa7db	azegi bdo7f	report2.qdre	p p	
report6.qdrep	•	V UX/Ia/UD	buen	report4.qdre	p	Botto
			_	report5.qdre	p p	TF
				report7.qdre	p n	Symt Fibr
				nsys_profile.	qd	► 0x7
				Report 165		► 0x7
				Report 1023		> 0xf
				pennant_sed	lov	► 0x7
				report1.qdst	rm	► 0x7
				first.qdrep	p	► 0x7
				second.qdre	p '	r (1

2.gdrep 🗙 repo	ort3.gdrep 🗙 sp-dwarf.gd	drep 🗙 sp-lk	pr.gdrep 🗙 sp-fp.adrep	×			
			I I I I I		0 1× 0	A 15 mm	
						15 message	25
ns +830n	ms 1s 832.32ms	+834ms	+836ms +83	8ms -	-840ms +842	ms +844ms	
			1				
			â				
ocific C			1		7		
becine S	ampies sample	ing point					
- 2010 6 0	Call sta	ack at 1.832s :					
\$ 2019.6.0						-	
13 🗙 report1.qdrep 🗙	<pre>report2.qdrep X report3.qdrep ></pre>	sp-dwarf.qdrep	sp-lbr.qdrep 🗙 sp-fp.qdrep 🗙				
neline View 👻	+820ms +825ms	+830ms +83	35ms +840ms +845ms	2 1x +850ms	+855ms +860ms	nes la	
J (12)		1050113 10					
eads (8)							
[21612] Smoke1 🝷			1				
C5 runtime libraries							
							-
м лх	fra frame [16.765 m	ns]	frame [18.050 ms]	rend	frame [15.166 ms]	•	
	cudaMemcpy		cudaMemcpy		cudaMemcpy		
riphier overnead	ls 853.096ms -34.893 ms Filter by Selection						
0 runtime librarias	Filter and Zoom in	500000000000000000000000000000000000000	pthread cond timedwait			5	
	Zoom in	Ĺ				arget-linux-x64/smo	
[[1010][N393]	Undo Zoom (23)						
[1618] CUPTI worker t 🗸	Reset Zoom					s .	
[21621] smokeParticles +	180606681000000000000000000000000000000		000000000000000000000000000000000000000		000000000000000000000000000000000000000	s	
21617] [NSys Comms] 🗸						1	
21619] smokeParticles +							
[21620] smokeParticles -							
	▲				Þ		
m-Up View 👻 Process [21	.612] smokeParticles (1 of 8 threads)	_					
ter 99.70 % (64,827 sa	amples) of data is shown due to applied fi	ilters.	dula Nama		Search		
nacci(int) fa7dbd2e9f6		63.23 /ho	ome/rknight/test/190920/NsightSystems-l pr/lib/x86_64-linux-anu/libcuda.so_418_67	inux-public-2019.6.0.1	06-dbae87d/target-linux-x64/smol		
fa7dbd2e9ff fa7dbd78e69		1.07 /us	r/lib/x86_64-linux-gnu/libcuda.so.418.67 r/lib/x86_64-linux-gnu/libcuda.so.418.67				
ffffff810362d9 ffffff81806e50		0.70 [ke 0.67 [ke	ernel.kallsyms]				
fa7dbd2e9f0 fa7dbbde7fa		0.66 /us 0.61 /us	r/lib/x86_64-linux-gnu/libcuda.so.418.67 r/lib/x86_64-linux-gnu/libcuda.so.418.67				
fa7dbd2e9f8 fa7dbbde7f0		0.60 /us 0.59 /us	r/lib/x86_64-linux-gnu/libcuda.so.418.67 r/lib/x86_64-linux-gnu/libcuda.so.418.67				
fa7dbd2a0f4		0.55 /uc	r/lib/v06_64_linux_anu/libcuda_co_410_67		l l		
					\$		

The Grace Hopper Advantage Full CUDA support with additional Grace memory extensions

System Allocated						
GPU can access memory allocated from malloc(), mmap(), etc.						
CPU Memory	GPU Memory					
App Data GPU access to malloc()	App Data					
memory						

Access possible with explicit call to cudaHostRegister() at PCle speeds Requires HMM patch in Linux Kernel

cudaHostRegister() not needed; access at NVLink C2C speeds

CUDA Explicit Memory Allocators

Maximum **portable** performance Out-of-the-box

No programming model changes! \rightarrow No new APIs

- \rightarrow No changes to existing APIs
- \rightarrow No source code changes

Unified Memory

- Available on *most* platforms supported by CUDA 12.x: GH, P9+V100, PCIe x86 & Arm, etc.
- Same Unified Memory Programming Model for all platforms
 - "memory accesses just work" + "hints".
- Unified Memory Hints
 - *Hints* only impact performance, not results.
 - **cudaMemAdvise** hints: PreferredLocation, AccessedBy.
 - cudaMemPrefetch hints: prefetch to NUMA node.
 - Work with all memory, e.g., including malloc.

Mem

System-allo (malloc, mma

CUDA manage (cudaMalloc)

CUDA device (cudaMalloc)

CUDA host r (cudaMallocl

cudaMemAdvise(ptr, nbytes, advice, device);

Advices P

Devices GPU id CPU

cudaMemPrefetchASync(ptr, nbytes, destination);

Destinations GPU id CPU

ory	Placement	Access- based Migration	Accessible Fro	
			CPU	GPU
ocated ap)	First-touch			
ged Managed)	(GPU CPU)			
e memory)	GPU	×	X	
memory Host)	CPU	X		

...and many others: interprocess, virtual, fabric, ...

CUDA Unified Memory Hints

ly

between the two explicit copy is needed

Other memory remains separate.

- Only dynamically allocated data are shared between CPU and GPU

migrated or accessed in-place.

- This mode may or may not also utilise CUDA Managed Memory

NVHPC Compilers GPU Memory Model

Abstraction over HW simplifying GPU programming

• Separate - CPU and GPU have distinct memories when data are shared

• Managed (-gpu=managed) - CPU and GPU have a single address space for dynamically-allocated data, data is migrated automatically on-demand.

Stack and global variables outside of parallel algorithm code Can't be accessed in parallel algorithm

• **Unified** (-gpu=unified) - CPU and GPU have single address space which allows accessing all data locations from both processors, data may be

• All CPU data are accessible from the GPU utilizing full CUDA Unified Memory (with ATS/HMM)

Next gen: NVIDIA Blackwell

Image Classification

Transformer

Large Language Models (Transformer)

Labeled Datasets

Unlabeled Datasets

The Next Era of Generative AI

Large Language Models (Transformer)

Realtime <50ms latency

Parameters >10T

Sequence Length >32K input

Google Gemini

🔿 Meta NLLB

Production GenAl Inference

AI SUPERCHIP 208B Transistors

2nd GEN TRANSFORMER ENGINE FP4/FP6 Tensor Core

Announcing NVIDIA Blackwell The Engine of the New Industrial Revolution

5th GENERATION NVLINK Scales to 576 GPUs

RAS ENGINE 100% In-System Self-Test

- Built to Democratize Trillion-Parameter Al
- 20 PetaFLOPS of AI performance on a single GPU
- 4X Training | 30X Inference | 25X Energy Efficiency & TCO
- Expanding AI Datacenter Scale to beyond 100K GPUs

SECURE AI Full Performance Encryption & TEE

DECOMPRESSION ENGINE 800 GB/s

10 PetaFLOPS FP8 | 20 PetaFLOPS FP4 192GB HBM3e | 8 TB/sec HBM Bandwidth | 1.8TB/s NVLink

New Class of Al Superchip The Two Largest Dies Possible—Unified as One GPU

- 2 reticle-limited dies operate as One Unified CUDA GPU
- NV-HBI 10TB/s High Bandwidth Interface
- Full performance. No compromises
- Reticle-sized Die 2

2nd Generation Transformer Engine

Accelerating Throughput with Intelligent 4-Bit Precision

Enabling FP4 AI Inference

2x Compute

- 2x Bandwidth
- 2x Model Size

Next Generation Models Communication Bottleneck

<u>Mixture of Expert Models</u>

GPT MoE1.8T Parameters

HDR InfiniBand 100 GByte/s

15 GPUs Sending to 1 GPU

Announcing Fifth Generation NVLink and NVLink Switch Chip Efficient Scaling for Trillion Parameter Models

Sharp v4 plus FP8

- 7.2 TB/s Full all-to-all Bidirectional Bandwidth
- 3.6 TF In-Network Compute
- Expanding NVLink up to 576 GPU NVLink Domain
- 18X Faster than Today's Multi-Node Interconnect

GB200 NVL72 Compute and Interconnect Nodes Building Blocks for the GB200 NVL72 Rack

GB200 SUPERCHIP

40 PETAFLOPS FP4 AI INFERENCE 20 PETAFLOPS FP8 AI TRAINING 864GB FAST MEMORY

GB200 SUPERCHIP COMPUTE TRAY

2x GB200 80 PETAFLOPS FP4 AI INFERENCE 40 PETAFLOPS FP8 AI TRAINING 1728 GB FAST MEMORY 1U Liquid Cooled 18 Per Rack

NVLINK SWITCH TRAY

2x NVLINK SWITCH CHIP 14.4 TB/s Total Bandwidth SHARPv4 FP64/32/16/8 1U Liquid Cooled 9 Per Rack

				•
			1	
			jil.	
		Ţ.		
	I			
			<u>[]]</u> .	
			<u>I</u>	
			m	BERNIN LALL ST
			1244	
			m	
			مليد	trate
		in ti		
			تطبيد	Re Clanding
		D		
				Re UIU
				Crasting and Street
			nn.	
			IJŢ	
	-			

Announcing GB200 NVL72 Delivers New Unit of Compute

Training FP8 Inference FP4 NVL Model Size Multi-Node All-to-All Multi-Node All-Reduce

GB200 NVL72

36 GRACE CPUs 72 BLACKWELL GPUs Fully Connected NVLink Switch Rack

> 720 PFLOPs 1,440 PFLOPs 27T params 130 TB/s 260 TB/s

Blackwell for Every Generative Al Use Case Delivering the New Era of Performance for Every Data Center

GB200 NVL72

Compute for Trillion Parameter Scale AI Maximum Performance and Lowest TCO

HGX B200 Best Performance and TCO for HGX Platform

HGX B100 Drop-in Upgrade for Existing Hopper Infrastructure

GB200 NVL72 Enabling Trillion Parameter Al 30x Realtime Mixture of Experts Inference, 25X Improved Energy Efficiency

Projected performance subject to change Token-to-token latency (TTL) = 50 milliseconds (ms) real time GPT-3 175B: First token latency (FTL) 2s; input sequence length = 2,048, output sequence length = 128, 4 HGX H100 air-cooled 400GB IB Network vs 2 GB200 Superchips liquid-cooled NVLink; per GPU performance comparison, GPT-MoE-1.8T: FTL = 5s; input sequence length = 32,768, output sequence length = 1,024, 8 HGX H100 air-cooled 400GB IB Network vs 18 GB200 Superchips liquid-cooled NVL36; per GPU performance comparison

30X Higher Throughput **25X** Energy Efficiency **25X** Lower TCO

30X

GPT Mixture of Experts 1.8T Params

GB200

Spectrum-X800

Blackwell Ecosystem Coming Later 2024

Quantum-X800

GB200 NVL72

HGX B200

HGX B100

