Introduction to ALICE

Junlee Kim^1

July 04, 2024 Summer Student Program

1. CERN

Summer Student Program 《 □ › 《 @ › 《 볼 › 《 볼 › 볼 · ' 오 · 오 · ·

김준이 박사님,

안녕하세요. 오늘 예정대로 오후 2시 4/3-001에서 박사님의 강연이 있습니다. <u>CERN-Korean summer student program (1-13 July 2024): Timetable · Indico</u>

50분정도로 ALICE 소개와 CERN Fellow가 될 때의 과정을 재미있게 얘기주시면 됩니다. :-) 그리고 금요일 저녁에 루지아에서 학생들과 저녁식사가 있는데 참석가능한지 물어봅니다!

김범규 드림

Junlee Kim

Junlee Kim

🖶 Employments

Postdoc @ CH - Geneva CERN	MNO
■ 2024-04-01	m 2026-03-31
Postdoc @ KR - Jeonju	MNO
■ 2023-08-23	2024-03-31
PhD Student @ KR - Jeonju	
■ 2018-01-12	₩ 2023-08-22

• Personality: Muon https://scoollab.web.cern.ch/particle-identities

Education

• Doctor of Philosophy,

Relativistic heavy ion physics, Jeonbuk National University, AUG 2023 Thesis title: Understanding the nature of $f_0(980)$ with ALICE at the LHC

• Master of Science,

Particle physics, Korea University, FEB 2018 Thesis title: Performance of new sampling calorimeter modules in the KOTO experiment

• Bachelor of Physics in Education, Division of science education, major of physics Jeonbuk National University, FEB 2015

RHIC

• Up to 200 GeV/A, sPHENIX, EIC

Junlee Kim

J-PARC

• Neutrino facility, World-best kaon beam intensity

LHC

• World-best beam energy Junlee Kim

Site and Civil Engineering	Mar Capeans
Engineering	Katy Foraz
Theoretical Physics	Gian Francesco Giudice
Accelerator Systems	Brennan Goddard
Information Technology	Enrica Porcari
Technology	José Miguel Jiménez
Beams	Rhodri Jones
Experimental Physics	Manfred Krammer
Industry, Procurement and Knowledge Transfer	Christopher Hartley
Human Resources	James Purvis
Finance and Administrative Processes	Florian Sonnemann

э.

Who are our Member States?

Today CERN has 23 Member States: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovak Republic, Spain, Sweden, Switzerland and United Kingdom.

Cyprus, Estonia and Slovenia are Associate Member States in the pre-stage to Membership. Brazil, Croatia, India, Latvia, Lithuania, Pakistan, Türkiye and Ukraine are Associate Member States.

			Net National Income at factor cost			E	Exchange rates		Net National Income at factor cost in MCHF	2024 Full Theoretical Contribution	2024 Due Contribution
			in milli	in millions in national currency national currencies in Swiss fro		s francs					
	Country	Currency	2019	2020	2021	2019	2020	2021	Average 2019 to 2021	in %	in %
	Austria	EUR	273 900	275 748	290 372	1.1125	1.0705	1.0810	304 592	2.24036%	2.24036%
	Belgium	EUR	347 271	334 387	362 958	1.1125	1.0705	1.0810	378 878	2.78676%	2.786767
	Bulgaria	BGN	86 560	87 245	101 118	0.5688	0.5473	0.5528	50 958	0.37481%	0.374819
	Czech Nepublic	C2K	3 728 029	3 717 429	4 062 149	0.0433	0.0405	0.0422	160 5858	1.18411%	1.184119
	Dermark	DKK	1 657 607	1 700 345	1 840 587	0.1490	0.1436	0.1454	252 907	1.86020%	1.86020
	Finand	EUR	104 688	167 010	175 888	1.1125	1.0705	1.0810	184 041	1.35368%	1.353981
	France	EUR	1 700 339	1 576 135	1 758 069	1.1125	1.0705	1.0810	1 826 413	13.43380%	13.433907
	Germany	EUR	2 006 213	2 571 571	2743414	1.1125	1.0705	1.0810	2 8/3 318	21.13409%	21.134091
	Langence -	LUN	10 891 733	30 755 271	34 901 337	0.0004	0.0000	0.0030	100 028	0.3900375	0.747087
Member States	Fungary	1.5	1 041 417	1.085.224	1 157 001	0.2788	0.0030	0.2830	101 070	2.236735	2.236735
	link	ELR	1 205 902	1 109 427	1 200 100	1.1125	1.0705	1.0810	1 342 943	9.82774%	9.87774
	Netherlands	ELR	575 497	567 325	615 045	1.1125	1.0705	1.0810	637 462	4 68672%	4 68872
	Norway	NOK	2 683 239	2 549 803	3 170 969	0.1130	0.1000	0.1064	216 407	2.19487%	2.19487
	Point	PLN	1 629 712	1 730 659	1 842 112	0.2588	0.2410	0.2368	424 987	3.12590%	3.12590
	Portugal	EUR	139 792	132 354	142 400	1.1125	1.0705	1.0810	150 376	1.10608%	1,10605
	Romania	RON	764 741	772 032	863 722	0.2344	0.2213	0.2197	179 940	1.32351%	1.32351
	Serbia	RSD	3 897 661	3 981 968	4 559 893	0.0094	0.0091	0.0092	38 327	0.28191%	0.28191
	Stovekia	EUR	65 818	65 803	69 359	1.1125	1.0705	1.0810	72 916	0.53632%	0.53632
	Spain	EUR	927 451	820 468	879 188	1.1125	1.0705	1.0810	953 481	7.01313%	7.01313
	Sweden	SEK	3 319 774	3 395 321	3 679 294	0.1051	0.1022	0.1056	362 597	2.66701%	2.66701
	Switzerland	CHE	507 864	493 717	528 692	1.0000	1.0000	1.0000	510 091	3.75187%	3.75187
	United Kingdom	GBP	1 642 190	1 594 419	1 713 215	1.2683	1.2039	1.2575	2 052 198	15.09452%	15.094521
Total Member States								13 595 655	100.0000%	100.00003	
ssociate Member States	Cyprus	EUR	16 661	15 845	17.471	1.1125	1.0705	1.0810	18 128	0.13333%	0.091331
in the pre-stage to	Estoria	EUR	18 997	19 192	21 637	1.1125	1.0705	1.0810	21 689	0.15953%	0.11965
Membership	Slovenia	EUR	32.467	33 285	36 189	1.1125	1.0705	1.0810	36 956	0.27182%	0.19028
Total Associate Member States in the pre-stage to Membership									76 773	0.5647%	0.40133
	Groatia	EUR	35 611	34 663	39 128	1.1125	1.0705	1.0810	39 673	0.29181%	0.02918
	India	INR	544 314 138	143 299 736	172 137 728	0.0139	0.0124	0.0123	1 970 363	14.49259%	1.44926
Associate Member States	Labia	EUR	19 629	19 818	22 249	1.1125	1.0705	1.0810	22 368	0.16452%	0.01645
	Lifsuania	ELR	35 647	37 173	41 452	1.1125	1.0705	1.0810	41 420	0.30665%	0.03047
	Pakistan	PKR	31 485 797	34 405 119	40 585 931	0.0073	0.0082	0.0057	224 602	1.65201%	0.16520
	Türkiye	TRY	3 099 619	3 653 410	5 272 805	0.1751	0.1349	0.1056	530 805	3.90423%	0.39042
	Likeraine.	LIMH	2 859 128	3 055 491	3 964 974	0.0385	0.0048	0.0335	116 335	0.855685	0.00557
		0.41	2 339 129			37/365	2.0346		110 330	0.000007	
Fotal Associate Member	States							2 945 566	21.0655%	2.16661	

• 1,000 MCHF to be associated member states

Junlee Kim

ALICE CERN Team Structure

(*) MPE + Doctoral + Technical, December 2023

Activities

- Doctoral Student Program projects: https://careers.cern/doct-projects
- One Ph.D. student from non-member states in ALICE (Maria Paula)

Junlee Kim

Job search

Dear Junlee,

Thank you for your interest in the postdoctoral position in the Heavy-lon group at <mark>Yale</mark> and for your patience as we conducted interviews. We appreciate you taking the time and effort to apply and interview.

After careful consideration, we decided to move forward with other candidates. We received many strong applications for this position, including yourself, which made the decision very difficult. We were very impressed with your qualifications and research and believe you have a bright future in academia and research.

Thank you once again for your interest in our group. We wish you the best of luck in your future endeavors and Postdoc search.

Best regards,

Laura

Laura Havener, Ph.D Assistant Professor <mark>Yale</mark> University she/her/hers

- Light Flavor
 - pp: multiplicity dependent production of f₀(980)
 - \Rightarrow paper proposal: accepted
 - p-Pb: "Observation of abnormal suppression of $f_0(980)$ production in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV"
 - \Rightarrow paper submitted to PLB (arXiv:2311.11786)
 - Pb–Pb: preparation for Run3, code development etc $\Rightarrow v_2$ for $f_0(980)$ was measured
 - \Rightarrow more statistics is required to access high $p_{\rm T}$ region
 - ⇒ Event plane and jet-axis dependent $f_0(980)$ production in Pb–Pb for v_2 in Run3: ongoing

- Flow
 - A few requests from ARC and PWG: done
 - paper review ongoing: done
 - "Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at $\sqrt{s} = 13$ TeV and in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV"
 - \Rightarrow paper submitted to JHEP (arXiv:2308.16591)
- 🔿 Jet
 - Jet shape from two-particle correlations
 ⇒ paper proposal: accepted
- O Service work: done
 - Luminosity measurement with PNU using LHC22q data
- Luminosity: Running tasks for LHC23 data in HL
- Development on the event plane determination in Run3
- SHINCHON project: ongoing

Dear Kim,

The selection committee for Research Fellowship : Experimental Physics took place recently. We would like to inform you that your application is still under consideration and we will get back you as soon as possible regarding the outcome.

We thank you for your patience.

Best regards,

CERN Talent Acquisition Team

Dear Kim,

The selection committee for Research Fellowship : Experimental Physics took place recently. We would like to inform you that your application is still under consideration and we will get back you as soon as possible regarding the outcome.

We thank you for your patience.

Best regards,

CERN Talent Acquisition Team

Dear Kim,

We are pleased to confirm your selection on the position of Research Fellowship : Experimental Physics at CERN and you will soon receive an email from our Registration services (edh.system@cern.ch) tonight for you to provide necessary information in preparation for the administration of your contract.

Please make sure you upload a copy of your CV in the EDH document.

Your appointment in the EP Department will start on 1st March 2023.

Once you have confirmed me the start date and sent me the necessary documents and I will send you your contract (please note that you are expected to choose the experiment you would to join within 3 weeks after the start date of your contract).

Should you require a visa (non-EU citizens) - Please note that the procedure can take up to 3 months, depending on the consulate. We recommend you to discuss this aspect with your future supervisor when defining your contract start date. You should contact our VISA service

(visa.hr@cern.ch) 3 months before your start date.

You can find some interesting information about housing in France and in Geneva by clicking on the underlined keywords.

Specific information concerning your contract can be found at this link.

Your contract will start on the first calendar day of a month. Should your contract starting date fall on a Saturday or Sunday, or public holiday, your

first working day will be the first working day thereafter.

Should you need further information, please do not hesitate to contact us. We look forward to welcoming you!

Best regards,

Virginie

CERN Talent Acquisition Team

Junlee Kim

 $\bullet~+$ Exciting physics topic

Fundamental force

Standard model: our understanding on the universe

- Three generations of quarks and leptons
- Gauge bosons mediating interactions
 - Photon: electromagnetic interaction
 - W and Z bosons: weak interaction
 - Gluon: strong interaction
- \bullet Higgs boson \rightarrow W and Z boson mass

Photon: neutral electric charge Gluon: color charges

*no gravity yet

Standard Model of Elementary Particles

Quantum ChromoDynamics

- Running coupling constant exhibiting "quark confinement" ($Q \approx \Lambda_{\rm QCD}$) and "asymptotic freedom" ($Q \gg \Lambda_{\rm QCD}$) originates from self-interactions of gluons.
- The environment of high temperature and density, in which ordinary matters deconfine, is expected to form Quark-Gluon Plasma. \rightarrow Experimental reproduction with relativistic heavy ion collisions

Junlee Kim

The early universe

• The evolution history of "Little Bangs" has much similarity with the Big Bang that created our universe.

Relativistic heavy ion collisions

- $\bullet\,$ Hard probes from initial hard scatterings with high Q^2
- Geometry of initial collision and its evolution signifying QGP as near-perfect fluid
- Freeze-outs: final-state particle distributions

Junlee Kim

Collectivity

- Initial collision geometry is determined by the impact parameter of heavy ions (ε_2).
- The evolution of QGP due to the pressure gradient (k)
- Final-state anisotropic particle distribution (v_2)

Hadron gas to kinetic freeze-out

- Kinetic freeze-out: All elastic interactions between hadron cease.
- Hadron gas: Stage between chemical and kinetic freeze-outs, where the density of hadrons is high enough to (pseudo-)elastically interact with each other, modifying their momenta.
 - Regeneration: Combining the hadrons into a resonance at the early stage of the hadron gas
 - Rescattering: Modifying the momenta of the decay products of the resonance, resulting in failure of the reconstruction of the invariant mass of the resonance (dominantly observed)

ALCE detector

Detector	Tasks
	Triggering
V0(2)	Centrality
	Event plane
ZDC (18)	Centrality
ITE(1)	Tracking
115(1)	Vertexing
TPC (3)	Tracking
	PID
TOF (5)	PID

- Multilayered configuration for the high acceptance by capturing produced particles in each event
- High momentum resolution to reconstruct 2,000 particles in the same event

ALCE 2 detector

 $\bullet\,$ Continuous data taking with "Timestamp" $\rightarrow \times 30$ in Pb–Pb and $\times 800$ in pp

∃ nar

Chemical freeze-out

- Chemical freeze-out: all inelastic interactions stop, no deconfined partons.
- Relative particle composition predicted by statistical thermal model with the assumptions that
 - Thermal and chemical equilibrium
 - Conservation of charges such as electric charge, strangeness, and so on.
- Fits to the experimental data of dN/dy for different particles result in baryon chemical potential (μ_b), freeze-out temperature (T), and the volume (V) of QGP.
- $\bullet\,$ Overestimation of ${\rm K}^{*0}$ due to:
 - Additional modifications of yields after chemical freeze-out

26/39

Junlee Kim

Resonances in the hadron gas

- Particle yield ratios of resonances (short-lived) to the ground particle (long-lived) having the same quark composition
- Decreasing trend of ρ^0/π , K^{*0}/K, and $\Lambda(1520)/\Lambda$ from small to large systems
 - $\tau_{\rho} = 1.3 \text{ fm}/c$ $\tau_{\mathrm{K}^*} = 4.2 \text{ fm}/c$ $\tau_{\Lambda^*} = 12.6 \text{ fm}/c$
- No suppression for Ξ^*/Ξ and $\phi/{\rm K}$
 - $\tau_{\Xi^*} = 22 \text{ fm}/c$ $\tau_{\phi} = 46.2 \text{ fm}/c$
- Resonances with short lifetime are much suppressed in the hadron gas.
 - Qualitative agreement with UrQMD afterbunner

Junlee Kim

 $\overline{u} \to ds$

• Quantum state of 0^{++} , which is chiral partner of 0^{-+}

- Chiral partner of π ?
- $m_{a_0} < m_{\kappa} < m_{f_0}$ expected with $q\bar{q}$ config.
- $m_{\sigma} < m_{\kappa} < m_{f_0}, m_{a_0}$ expected with tetraquark config.
 - Consistent with experiments
 - $f_0(980)$ mass solely well described in PHYSICS REPORTS 127. No. 1(1985) 1-97

States	Ι	S	Mass (MeV/c^2)
$a_0 \ (\leftrightarrow \pi)$	1	0	990
$\kappa \ (\leftrightarrow \mathrm{K})$	1/2	± 1	630–730
f_0	0	0	990
σ	0	0	400 - 550

Summer Student Program イロト イラト イヨト イヨト ヨー のへへ

$p_{\rm T}$ -integrated yield (double) ratio to charged pions

- Decreasing particle yield ratio of $f_0(980)$ to the charged pion with increasing multiplicity.
 - Dominant rescattering effects
- CSM overestimates yield ratio of the K^{*0} to charged pion due to the no consideration of interactions between the hadron gas and the decay products of K^{*0}.
- CSM calculations overestimate the ratio of $f_0(980)$ to the charged pion yields because of no rescattering effects.

PLB 853 (2024) 138665

$p_{\rm T}$ -integrated yield ratio to K^{*}(892)⁰

- Decreasing particle yield ratio of $f_0(980)$ to $K^*(892)^0$ with increasing
 - Both particles are expected to experience rescatterings
- One strange component for $K^*(892)^0$
 - Strangeness enhancement for $K^*(892)^0$ in small systems
- Ratio well described with assumed branching ratio across different multiplicity classes

https://alice-publications.web.cern.ch/node/10931

Anisotropic flow

- Expansion power increases with increasing multiplicity, which is proportional to the volume of QGP.
- Relativistic hydrodynamic calculations support the fluidity of QGP.

Searching for the origin of collectivity

- Constraints on the impact parameter in pp collisions with hard probes to engineer the impact parameter
- No significance so far owing to poor statistical uncertainties

Event plane determination

- Flow coefficients can be extracted using the reaction plane of ψ_n
 - $v_n = \langle \cos \left[n(\varphi \psi_n) \right] \rangle$
 - Not possible to access ψ_n in experiment.
- Alternatively, the event plane (Ψ_n) is reconstructed for *n*-th modulations using the *Q*-vector
 - $Q_{n,x} = \sum_i \omega_i \cos(n\varphi_i)$ and $Q_{n,y} = \sum_i \omega_i \sin(n\varphi_i)$
 - ω_i : weight factor of each component, detector amplitude or $p_{\rm T}$ $(v_n \propto p_{\rm T})$
 - Gain equalization for FIT

•
$$\Psi_n = (1/n) \arctan \left(Q_{n,y} / Q_{n,x} \right)$$

•
$$v_n^{\text{obs}} = \langle \cos\left[n(\varphi - \Psi_n)\right] \rangle$$

• The resolution of the event plane can be calculated with 3-sub event method

•
$$\mathcal{R}_n = \langle \cos(n(\Psi_n^A - \psi_n)) \rangle \approx \sqrt{\frac{\langle \cos(n(\Psi_n^A - \Psi_n^B)) \rangle \langle \cos(n(\Psi_n^A - \Psi_n^C)) \rangle}{\langle \cos(n(\Psi_n^B - \Psi_n^C)) \rangle}}$$

• Individual booking for $\langle \cos(n(\Psi_n^A - \Psi_n^B)) \rangle$, $\langle \cos(n(\Psi_n^A - \Psi_n^C)) \rangle$, and $\langle \cos(n(\Psi_n^B - \Psi_n^C)) \rangle$.
• $v_n^{\text{cor}} = v_n^{\text{obs}} / \mathcal{R}_n$

- LHC23_zzh_pass3
- The gain for each channel has been equalized.
- Scatter plot of $Q_{n,x}$ and $Q_{n,y}$ would be symmetric and centered around the origin.
 - Flatness of the event plane distribution
- In reality, $(Q_{n,x}, Q_{n,y})$ distribution is not centered and elongated.
 - Recentering corrects the center position
 - $\bullet~{\bf Twist}$ corrects the possible rotation
 - $\bullet~ {\bf Rescaling}$ corrects the possible deformation
- ω_i , weight factor: detector amplitude

Event plane distribution

35/39

Event plane resolution

Event plane in pp?

- Additional shift correction applied (Phys.Rev.C56:3254-3264,1997)
- Small event plane resolution when correlating forward and backward detectors.
- $\bullet\,$ FT0A–FV0A results in resolution of 30%

31

Longitudinal polarization along the beam axis

• The longitudinal polarization is modulating in the azimuthal angle relative to the reaction plane. \rightarrow Local Polarization

Junlee Kim

Polarization measurement in Run 3

- The polarization increases with decreasing centrality \rightarrow dependence on ϵ_2
- \bullet No significance $p_{\rm T}$ dependence of the polarization
- $\bullet\,$ Comparable with each other, uncertainty to be more precise with improved Λ efficiency

Junlee Kim

Summary

Congratulation on your onboarding@CERN

• Join all programs as many as possible!

Quark-Gluon Plasma: interesting research topic

- Properties of near-perfect fluidity
- Modification of particle distributions

There are still a lot of missing points

• Welcoming you to join this game