Introduction to ALICE

Junlee Kim ${ }^{1}$

July 04, 2024
Summer Student Program

1. CERN

From Beomkyu

김준이 박사님,

안녕하세요. 오늘 예정대로 오후 2 시 4/3-001에서 박사님의 강연이 있습니다.
CERN-Korean summer student program (1-13 July 2024): Timetable • Indico

50 분정도로 ALICE 소개와 CERN Fellow가 될 때의 과정을 재미있게 얘기주시면 됩니다. :-) 그리고 금요일 저녁에 루지아에서 학생들과 저녁식사가 있는데 참석가능한지 물어봅니다!

김범규 드림

Junlee Kim

Introduction: Research journey

Junlee Kim

May 06, 2024
AIP meeting

- Personality: Muon https://scoollab.web.cern.ch/particle-identities

[-] Employments

PhD Student @ KR - Jeonju

Education

- Doctor of Philosophy,

Relativistic heavy ion physics,
Jeonbuk National University, AUG 2023
Thesis title: Understanding the nature of $\mathrm{f}_{0}(980)$ with ALICE at the LHC

- Master of Science, Particle physics, Korea University, FEB 2018
Thesis title: Performance of new sampling calorimeter modules in the KOTO experiment
- Bachelor of Physics in Education,

Division of science education, major of physics
Jeonbuk National University, FEB 2015

RHIC

- Up to $200 \mathrm{GeV} / A$, sPHENIX, EIC

J-PARC

- Neutrino facility, World-best kaon beam intensity

LHC

- World-best beam energy

CERN

Site and Civil Engineering
Mar Capeans

Engineering

 Katy ForazTheoretical Physics
Accelerator Systems
Information Technology Enrica Porcari

Technology
Beams
hodri Jones

Experimental Physics Manfred Krammer Christopher Hartley James Purvis Florian Sonnemann

Who are our Member States?

Today CERN has 23 Member States: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovak Republic, Spain, Sweden, Switzerland and United Kingdom.

Cyprus, Estonia and Slovenia are Associate Member States in the pre-stage to Membership. Brazil, Croatia, India, Latvia, Lithuania, Pakistan, Türkiye and Ukraine are Associate Member States.

Contribution to CERN

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& \multicolumn{3}{|c|}{Net National hcome at factor cost} \& \multicolumn{3}{|c|}{Exchange rates} \& \multirow[t]{2}{*}{Net National Income at factor cost in MCHF} \& \multirow[t]{2}{*}{2024
Full Theoretical
Contribution Contribution} \& \multirow[t]{2}{*}{$$
\begin{gathered}
2024 \\
\text { Dou } \\
\text { Contribution }
\end{gathered}
$$}

\hline \& \& \& \multicolumn{3}{|c|}{in milions in mational arreno} \& \multicolumn{3}{|l|}{national curreendes in Swiss fans} \& \& \&

\hline \multirow{23}{*}{Member States} \& Country \& Currency \& ${ }^{2019}$ \& ${ }^{2220}$ \& ${ }^{2021}$ \& 2019 \& 2020 \& 2021 \& $$
\begin{gathered}
\text { Average } \\
2019502021
\end{gathered}
$$ \& in \% \& m\%

\hline \& Austria \& EUR \& 273900 \& 275748 \& 290372 \& 1.1125 \& 1.0705 \& 1.0810 \& 304592 \& 2.24038\% \& 2.24036\%

\hline \& Begium \& EUR \& 347271 \& 334387 \& ${ }^{362958}$ \& 1.1125 \& 1.0705 \& 1.0810 \& 378878 \& 278876\% \& 2.78679\%

\hline \& Bugaria \& ben \& ${ }^{86} 550$ \& 87245 \& 101118 \& 0.5688 \& 0.5473 \& 0.5558 \& 50.958 \& 0.37481\% \& 0.37481\%

\hline \& Czech Repubic \& CZK \& 3728029 \& 3717429 \& 4052149 \& ${ }^{0.0433}$ \& 0.0405 \& 0.0422 \& 150988 \& 1.18411\% \& 1.16441\%

\hline \& Denmak \& dkk \& 1657607 \& 1700345 \& 1840587 \& 0.1480 \& 0.1435 \& 0.1454 \& 252907 \& 1.86020\% \& 1.86020\%

\hline \& Firimand \& EUR \& 154688 \& 167010 \& 175888 \& 1.1125 \& 1.0705 \& 1.0810 \& 184041 \& 1.35368\% \& 1.35358\%

\hline \& Frace \& EUR \& 1700339 \& 1576135 \& 1758069 \& 1.1125 \& 1.0705 \& 1.0810 \& 1825413 \& 13.4380\% \& 13.4339\%

\hline \& Cammeny \& EUR \& 2608213 \& 2571571 \& 2743414 \& 1.1125 \& 1.0705 \& 1.0810 \& 2873318 \& 21.13409\% \& 21.13409\%

\hline \& crece \& EUR \& 124884 \& 116816 \& 131818 \& 1.1125 \& 1.0705 \& 1.0810 \& ${ }^{135528}$ \& 0.98685\% \& 0.99685\%

\hline \& Hurgary \& Hef \& 30891733 \& 30756271 \& 34901337 \& 0.0034 \& 0.0030 \& 0.0038 \& 101570 \& 0.74780\% \& 0.74779\%

\hline \& Israel \& ${ }^{14}$ \& 1041417 \& 1065334 \& 1157009 \& ${ }^{0.2789}$ \& ${ }^{0} 2727$ \& 0.230 \& 302737 \& 2.22872\% \& 2.22872\%

\hline \& 1 laty \& EUR \& 1285902 \& 1169427 \& 1268188 \& ${ }^{1.1125}$ \& 1.075 \& 1.0810 \& 1342943 \& 9.87774\% \& 9.8774\%

\hline \& Netererands \& EUR \& 575497 \& 587325 \& ${ }_{615045}$ \& 1.1125 \& 1.0705 \& 1.0810 \& 637462 \& 4.88872\% \& 4.68872\%

\hline \& Nowney \& Nok \& 2683239 \& 2549808 \& 3170969 \& 0.1130 \& 0.1000 \& 0.1054 \& 298407 \& 2.9487\% \& 2.19487\%

\hline \& Polard \& PLN \& 1629712 \& 1730659

1
123954 \& ${ }^{1842112}$ \& ${ }^{0.25889}$ \& ${ }^{0.2410}$ \& 0.2588 \& 424987 \& ${ }^{3.12590 \% \%}$ \& 3.12590\%

\hline \& Portuga \& EUR \& 139792 \& 132364 \& 142400 \& ${ }^{1.1125}$ \& 1.0705 \& ${ }^{1.0810}$ \& 150376 \& 1.10608\% \& 1.10005\%

\hline \& Renraias \& ${ }_{\text {Row }}^{\text {RSD }}$ \& 784741
3997661 \& 772032
3981968 \& ($\begin{array}{r}863722 \\ 4569933\end{array}$ \& ${ }_{0}^{0.02344}$ \& ${ }_{0}^{0.2213}$ \& 02197
0.0982 \& $\begin{array}{r}179940 \\ 33927 \\ \hline 380\end{array}$ \& - ${ }_{\text {l }}^{\text {1.3231\% }}$ \& (1.2351\%

\hline \& Sertia \& ${ }^{\text {RSD }}$ \& ${ }^{3997681}$ \& ${ }^{39198988}$ \& 4559893 \& 0.0094 \& 0.0091 \& ${ }^{0.0092}$ \& ${ }^{38327}$ \& ${ }^{0.28819 \%}$ \& 0.20191\%

\hline \& Staxkia \& $\underset{\substack{\text { EUR } \\ \text { EUR }}}{\text { cen }}$ \& $\begin{array}{r}65918 \\ \hline 92751 \\ \hline 97\end{array}$ \& 66866
820468 \& 69399
87988 \& 1.1125 \& (10705 \& 1.0810

16810 \& $$
\begin{aligned}
& 72916 \\
& 953481
\end{aligned}
$$ \& 0.58832% \&

\hline \& Spain

Sweden \& $$
\begin{aligned}
& \text { EUR } \\
& \text { SEK }
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
927451 \\
3319774
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
820048 \\
33959
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
879188 \\
3679294
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 1.1125 \\
& 0.1051
\end{aligned}
$$
\] \& 1.0775

0

0 \& $$
\begin{aligned}
& 1.0610 \\
& 0.1066
\end{aligned}
$$ \& 953481

$\quad 352597$ \& | 7.01313\% |
| :--- |
| 2.66701\% | \& | 7.01313% |
| :--- |
| 266701% |

\hline \& Swzertand \& CiF \& 507864 \& 493717 \& 526892 \& 1.0000 \& ${ }^{1} 10000$ \& 1.0000 \& 510091 \& 3.75187\% \& 3.75187\%

\hline \& Urited Kirgatom \& cap \& 1842190 \& 1594419 \& 1713215 \& 1.2883 \& 12009 \& 1.2575 \& 2052198 \& 15.0452\% \& 15.9445\%

\hline \multicolumn{3}{|l|}{Total Member States} \& \& \& \& \& \& \& 13995655 \& 100.000\% \& 100.0000\%

\hline \multirow[t]{3}{*}{Associate Member States
in the pre-stage to Merrbershig Merbership} \& Cypros \& EUR \& 16661 \& 15445 \& 17471 \& 1.1125 \& 1.0705 \& 1.0810 \& 18128 \& 0.13333\% \& 0.09133\%

\hline \& Estria \& EUR \& 18997 \& 19192 \& ${ }^{21637}$ \& 1.1125 \& 1.0705 \& 1.0810 \& ${ }^{21889}$ \& 0.15953\% \& 0.11955\%

\hline \& Strentia \& EUR \& 32467 \& 33285 \& ${ }_{36} 189$ \& 1.1125 \& 1.0705 \& 1.0810 \& 36950 \& 0.27182\% \& 0.19028\%

\hline \multicolumn{3}{|l|}{Total Associate Member States in the pre-stage to Membership} \& \& \& \& \& \& \& 76773 \& 0.5647\% \& 0.4013\%

\hline \multirow{7}{*}{Associal Member Seles} \& Crasta \& EUR \& 35611 \& ${ }^{34663}$ \& ${ }^{39} 128$ \& 1.1125 \& 1.0005 \& 1.0810 \& ${ }^{39673}$ \& 0.29181\% \& 0.02918\%

\hline \& Inda \& INR \& 144314138 \& 143299736 \& 172137728 \& 0.0139 \& 0.0124 \& 0.0123 \& 1970363 \& 14.48259\% \& 1.44988\%

\hline \& Lexia \& EUR \& 19629 \& 19818 \& 22249 \& 1.1125 \& 1.0705 \& 1.0810 \& 22368 \& 0.18452\% \& 0.018485\%

\hline \& Liltuania \& EUR \& 35647 \& 37173 \& 41452 \& 1.1125 \& 1.0705 \& 1.0810 \& 41420 \& ${ }^{0.30665 \%}$ \& 0.0304\%

\hline \& Pakistan \& PKR \& ${ }^{31495797}$ \& 34405119 \& 40595931 \& 0.0073 \& 0.0062 \& ${ }^{0.0057}$ \& ${ }^{224602}$ \& 1.65201\% \& 0.16520\%

\hline \& Turkiye \& TRY \& 3099619 \& ${ }^{3653410}$ \& 5272805 \& 0.1751 \& 0.139 \& 0.1056 \& 538805 \& 3.0023\% \& 0.39042\%

\hline \& Ukraine \& UnH \& 2959128 \& 3056491 \& 3964974 \& 0.0385 \& 0.044 \& 0.0035 \& 116338 \& 0.85686\% \& 0.0855\%

\hline \multicolumn{3}{|l|}{Total Associate Member States} \& \& \& \& \& \& \& 2945550 \& 21.6655\% \& 2.160\%

\hline
\end{tabular}

- 1,000 MCHF to be associated member states

CERN-ALICE

ALICE CERN Team Structure

Team Coordination TL: L. Musa DTL: W. Riegler RC: M. Castoldi EA: N. Gouriou	EP/AID Detectors \& Systems GL: A. Di Mauro DGL: V. Chibante 29 FTE (")	EP/AID/DA SL: V. Chibante
		EP/AID/DC SL: A. Augustinus
		EP/AID/DT SL: A. Di Mauro
	EP/AIO Manag. \& Eng. Support GL: LM DGL: W. Riegler 15 FTE (*)	TC team: W. Riegler
	EP/AIP	EP/AIP/GTP SL: L. Betev
	GL: A. Morsch DGL: P. Hristov	EP/AIP/PAP SL: J.F. Grosse-Oetringhaus
	38 FTE (*)	EP/AIP/SDS SL: P. Hristov

Activities

Development \& Support of O²/FLP system

Development \& Support of new DCS
ITS2, R\&D for ITS3 and ALICE3, Beam Instrumentation

Technical Coordination
 Resource Management

Distributed computing system
Development \& support of O $^{2 / P D P}$

Physics Data Analysis, R\&D for ALICE3 Development Analysis Framework

O²/PDP Simulation, Calibr., Reconstr.
Development \& support of $\mathbf{O}^{2 / P D P}$
(*) MPE + Doctoral + Technical, December 2023

- Doctoral Student Program projects: https://careers.cern/doct-projects
- One Ph.D. student from non-member states in ALICE (Maria Paula)

Job search

Dear Junlee,
Thank you for your interest in the postdoctoral position in the Heavy-lon group at Yale and for your patience as we conducted interviews. We appreciate you taking the time and effort to apply and interview.
After careful consideration, we decided to move forward with other candidates. We received many strong applications for this position, including yourself, which made the decision very difficult. We were very impressed with your qualifications and research and believe you have a bright future in academia and research.
Thank you once again for your interest in our group. We wish you the best of luck in your future endeavors and Postdoc search.
Best regards,
Laura
Laura Havener, Ph.D
Assistant Professor
Yale University
she/her/hers

- Light Flavor
- pp: multiplicity dependent production of $\mathrm{f}_{0}(980)$ \Rightarrow paper proposal: accepted
- $\mathrm{p}-\mathrm{Pb}$: "Observation of abnormal suppression of $\mathrm{f}_{0}(980)$
production in $\mathrm{p}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ " \Rightarrow paper submitted to PLB (arXiv:2311.11786)
- $\mathrm{Pb}-\mathrm{Pb}$: preparation for Run3, code development etc $\Rightarrow v_{2}$ for $\mathrm{f}_{0}(980)$ was measured
\Rightarrow more statistics is required to access high p_{T} region
\Rightarrow Event plane and jet-axis dependent $\mathrm{f}_{0}(980)$ production in $\mathrm{Pb}-\mathrm{Pb}$ for v_{2} in Run3: ongoing

○ Flow

- A few requests from ARC and PWG: done
- paper review ongoing: done
"Multiplicity and event-scale dependent flow and jet
fragmentation in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$ and
in $\mathrm{p}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}^{\prime \prime}$
\Rightarrow paper submitted to JHEP (arXiv:2308.16591)
- Jet
- Jet shape from two-particle correlations \Rightarrow paper proposal: accepted
- Service work: done
- Luminosity measurement with PNU using LHC22q data
- Luminosity: Running tasks for LHC23 data in HL

O Development on the event plane determination in Run3
O SHINCHON project: ongoing

Dear Kim,

The selection committee for Research Fellowship : Experimental Physics took place recently. We would like to inform you that your application is still under consideration and we will get back you as soon as possible regarding the outcome.

We thank you for your patience.
Best regards,
CERN Talent Acquisition Team

Dear Kim,

The selection committee for Research Fellowship : Experimental Physics took place recently. We would like to inform you that your application is still under consideration and we will get back you as soon as possible regarding the outcome.

We thank you for your patience.
Best regards,

CERN Talent Acquisition Team

Dear Kim ,
We are pleased to confirm your selection on the position of Research Fellowship : Experimental Physics at CERN and you will soon receive an email from our Registration services (edh.system@cern.ch) tonight for you to provide necessary information in preparation for the administration of your contract.

Please make sure you upload a copy of your CV in the EDH document.
Your appointment in the EP Department will start on 1st March 2023.
Once you have confirmed me the start date and sent me the necessary documents and I will send you your contract (please note that you are expected to choose the experiment you would to join within 3 weeks after the start date of your contract).

Should you require a visa (non-EU citizens) - Please note that the procedure can take up to 3 months, depending on the consulate. We recommend you to discuss this aspect with your future supervisor when defining your contract start date. You should contact our VISA service (visa.hr@cern.ch) 3 months before your start date.
You can find some interesting information about housing in France and in Geneva by clicking on the underlined keywords.
Specific information concerning your contract can be found at this link.
Your contract will start on the first calendar day of a month. Should your contract starting date fall on a Saturday or Sunday, or public holiday, your first working day will be the first working day thereafter
Should you need further information, please do not hesitate to contact us. We look forward to welcoming you!
Best regards,
Virginie
CERN Talent Acquisition Team

Life@CERN

- + Exciting physics topic

Fundamental force

FOUR FUNDAMENTAL FORCES

STRONG INTERACTION

Standard model: our understanding on the universe

> *no gravity yet

Standard Model of Elementary Particles

- Three generations of quarks and leptons
- Gauge bosons mediating interactions
- Photon: electromagnetic interaction
- W and Z bosons: weak interaction
- Gluon: strong interaction
- Higgs boson $\rightarrow \mathrm{W}$ and Z boson mass

Photon: neutral electric charge Gluon: color charges

Quantum ChromoDynamics

Baryon chemical potential

- Running coupling constant exhibiting "quark confinement" ($Q \approx \Lambda_{\mathrm{QCD}}$) and "asymptotic freedom" ($Q \gg \Lambda_{\mathrm{QCD}}$) originates from self-interactions of gluons.
- The environment of high temperature and density, in which ordinary matters deconfine, is expected to form Quark-Gluon Plasma. \rightarrow Experimental reproduction with relativistic heavy ion collisions

The early universe

- The evolution history of "Little Bangs" has much similarity with the Big Bang that created our universe.

Relativistic heavy ion collisions

- Hard probes from initial hard scatterings with high Q^{2}
- Geometry of initial collision and its evolution signifying QGP as near-perfect fluid
- Freeze-outs: final-state particle distributions

Collectivity

- Initial collision geometry is determined by the impact parameter of heavy ions $\left(\varepsilon_{2}\right)$.
- The evolution of QGP due to the pressure gradient (k)
- Final-state anisotropic particle distribution $\left(v_{2}\right)$

- Kinetic freeze-out: All elastic interactions between hadron cease.
- Hadron gas: Stage between chemical and kinetic freeze-outs, where the density of hadrons is high enough to (pseudo-)elastically interact with each other, modifying their momenta.
- Regeneration: Combining the hadrons into a resonance at the early stage of the hadron gas
- Rescattering: Modifying the momenta of the decay products of the resonance, resulting in failure of the reconstruction of the invariant mass of the resonance (dominantly observed)

ALCE detector

Detector	Tasks
V0 (2)	Triggering Centrality Event plane
ZDC (18)	Centrality
ITS (1)	Tracking Vertexing
TPC (3)	Tracking PID
TOF (5)	PID

- Multilayered configuration for the high acceptance by capturing produced particles in each event
- High momentum resolution to reconstruct 2,000 particles in the same event

ALCE 2 detector

Upgrade during Long shutdown 2

Detector	Run 3
TPC	GEM
ITS	7 layers
	Resolution
FIT	Trigger
MFT	Forward

- Continuous data taking with "Timestamp" $\rightarrow \times 30$ in $\mathrm{Pb}-\mathrm{Pb}$ and $\times 800$ in pp
(1) ACORDE | ALCE Cossic Rays Detector
(2) AD $\mid A L C E D$ Diffacive Detector
(3) DCal| Dijet Calorineter
(4) EMCal| Electromagnetic Calorimeeter
(5) HMPID $\begin{aligned} & \text { High Momentum Paricide } \\ & \text { ienififation Defetctor }\end{aligned}$
(6) $|T S-I B|$ iner Tracking System - Inere Barrel
(7) ITS-OB \| Ines Tracking System-OAter Barel
(8) MCH $/$ Muon Trading Chambers
(9) MFT/M Mon Forward Tracker
(10) MID/Muon Identifier
(11) PHOS / CPV \mid Photon Spectrometer
(12) TOF I Tme of figh
(13) $T 0+A \mid$ treero $+A$
(14) $\mathrm{T} O+\mathrm{C} \mid$ Tzeero +C
(15) $\operatorname{TPC} \mid$ Time Projection Chamber
(10) TRD | Transition Radiation Detector
(17) $\mathrm{v} 0+\mathrm{I}$ Veroo + Detector
(13) $\mathrm{zDC} \mid$ Zero Degree Calorimetor

Chemical freeze-out

- Chemical freeze-out: all inelastic interactions stop, no deconfined partons.
- Relative particle composition predicted by statistical thermal model with the assumptions that
- Thermal and chemical equilibrium
- Conservation of charges such as electric charge, strangeness, and so on.
- Fits to the experimental data of $\mathrm{d} N / \mathrm{dy}$ for different particles result in baryon chemical potential $\left(\mu_{\mathrm{b}}\right)$, freeze-out temperature (T), and the volume (V) of QGP.
- Overestimation of $\mathrm{K}^{* 0}$ due to:
- Additional modifications of yields after chemical freeze-out
- Particle yield ratios of resonances (short-lived) to the ground particle (long-lived) having the same quark composition
- Decreasing trend of $\rho^{0} / \pi, \mathrm{K}^{* 0} / \mathrm{K}$, and $\Lambda(1520) / \Lambda$ from small to large systems
- $\tau_{\rho}=1.3 \mathrm{fm} / c$

$$
\begin{aligned}
& \tau_{\mathrm{K}^{*}}=4.2 \mathrm{fm} / c \\
& \tau_{\Lambda^{*}}=12.6 \mathrm{fm} / c
\end{aligned}
$$

- No suppression for Ξ^{*} / Ξ and ϕ / K
- $\tau_{\Xi *}=22 \mathrm{fm} / \mathrm{c}$ $\tau_{\phi}=46.2 \mathrm{fm} / \mathrm{c}$
- Resonances with short lifetime are much suppressed in the hadron gas.
- Qualitative agreement with UrQMD afterbunner
light scalar mesons

$$
\begin{aligned}
& u \rightarrow d \bar{s} \\
& \bar{u} \rightarrow d s
\end{aligned}
$$

(a)

(b)

PRD 15 (1977) 267

- Quantum state of 0^{++}, which is chiral partner of 0^{-+}
- Chiral partner of π ?
- $m_{a_{0}}<m_{\kappa}<m_{\mathrm{f}_{0}}$ expected with $q \bar{q}$ config.
- $m_{\sigma}<m_{\kappa}<m_{\mathrm{f}_{0}}, m_{a_{0}}$ expected with tetraquark config.
- Consistent with experiments
- $\mathrm{f}_{0}(980)$ mass solely well described in PHYSICS REPORTS

States	I	S	Mass $\left(\mathrm{MeV} / c^{2}\right)$
$a_{0}(\leftrightarrow \pi)$	1	0	990
$\kappa(\leftrightarrow \mathrm{~K})$	$1 / 2$	± 1	$630-730$
f_{0}	0	0	990
σ	0	0	$400-550$

p_{T}-integrated yield (double) ratio to charged pions
PLB 853 (2024) 138665

- Decreasing particle yield ratio of $f_{0}(980)$ to the charged pion with increasing multiplicity.
- Dominant rescattering effects
- CSM overestimates yield ratio of the $\mathrm{K}^{* 0}$ to charged pion due to the no consideration of interactions between the hadron gas and the decay products of $\mathrm{K}^{* 0}$.
- CSM calculations overestimate the ratio of $\mathrm{f}_{0}(980)$ to the charged pion yields because of no rescattering effects.
- Decreasing particle yield ratio of $\mathrm{f}_{0}(980)$ to $\mathrm{K}^{*}(892)^{0}$ with increasing
- Both particles are expected to experience rescatterings
- One strange component for $\mathrm{K}^{*}(892)^{0}$
- Strangeness enhancement for $\mathrm{K}^{*}(892)^{0}$ in small systems
- Ratio well described with assumed branching ratio across different multiplicity classes

https://alice-publications.web.cern.ch/node/10931

Anisotropic flow

PRL 122172301 (2019)

- Expansion power increases with increasing multiplicity, which is proportional to the volume of QGP.
- Relativistic hydrodynamic calculations support the fluidity of QGP.

PRL 116132302 (2016)

Searching for the origin of collectivity

- Constraints on the impact parameter in pp collisions with hard probes to engineer the impact parameter
- No significance so far owing to poor statistical uncertainties

Event plane determination

- Flow coefficients can be extracted using the reaction plane of ψ_{n}
- $v_{n}=\left\langle\cos \left[n\left(\varphi-\psi_{n}\right)\right]\right\rangle$
- Not possible to access ψ_{n} in experiment.
- Alternatively, the event plane $\left(\Psi_{n}\right)$ is reconstructed for n-th modulations using the Q-vector
- $Q_{n, x}=\sum_{i} \omega_{i} \cos \left(n \varphi_{i}\right)$ and $Q_{n, y}=\sum_{i} \omega_{i} \sin \left(n \varphi_{i}\right)$
- ω_{i} : weight factor of each component, detector amplitude or $p_{\mathrm{T}}\left(v_{n} \propto p_{\mathrm{T}}\right)$
- Gain equalization for FIT
- $\Psi_{n}=(1 / n) \arctan \left(Q_{n, y} / Q_{n, x}\right)$
- $v_{n}^{\text {obs }}=\left\langle\cos \left[n\left(\varphi-\Psi_{n}\right)\right]\right\rangle$
- The resolution of the event plane can be calculated with 3-sub event method
- $\mathcal{R}_{n}=\left\langle\cos \left(n\left(\Psi_{n}^{A}-\psi_{n}\right)\right)\right\rangle \approx \sqrt{\frac{\left\langle\cos \left(n\left(\Psi_{n}^{A}-\Psi_{n}^{B}\right)\right)\right\rangle\left\langle\cos \left(n\left(\Psi_{n}^{A}-\Psi_{n}^{C}\right)\right)\right\rangle}{\left\langle\cos \left(n\left(\Psi_{n}^{B}-\Psi_{n}^{C}\right)\right)\right\rangle}}$
- Individual booking for $\left\langle\cos \left(n\left(\Psi_{n}^{A}-\Psi_{n}^{B}\right)\right)\right\rangle,\left\langle\cos \left(n\left(\Psi_{n}^{A}-\Psi_{n}^{C}\right)\right)\right\rangle$, and $\left\langle\cos \left(n\left(\Psi_{n}^{B}-\Psi_{n}^{C}\right)\right)\right\rangle$.
- $v_{n}^{\text {cor }}=v_{n}^{\mathrm{obs}} / \mathcal{R}_{n}$

- LHC23_zzh_pass3

- The gain for each channel has been equalized.
- Scatter plot of $Q_{n, x}$ and $Q_{n, y}$ would be symmetric and centered around the origin.
- Flatness of the event plane distribution
- In reality, $\left(Q_{n, x}, Q_{n, y}\right)$ distribution is not centered and elongated.
- Recentering corrects the center position
- Twist corrects the possible rotation
- Rescaling corrects the possible deformation
- ω_{i}, weight factor: detector amplitude

Event plane distribution

Event plane resolution

Event plane in pp?

- Additional shift correction applied (Phys.Rev.C56:3254-3264,1997)
- Small event plane resolution when correlating forward and backward detectors.
- FT0A-FV0A results in resolution of 30%

Longitudinal polarization along the beam axis

Large Orbital Angular Momentum

- Non-isotropic initial geometry causes vorticity of the medium.
- The vorticity can be accessed with particle polarization.
- The longitudinal polarization is modulating in the azimuthal angle relative to the reaction plane.
\rightarrow Local Polarization

Polarization measurement in Run 3

－The polarization increases with decreasing centrality \rightarrow dependence on ϵ_{2}
－No significance p_{T} dependence of the polarization
－Comparable with each other，uncertainty to be more precise with improved Λ efficiency

Summary

Congratulation on your onboarding@CERN

- Join all programs as many as possible!

Quark-Gluon Plasma: interesting research topic

- Properties of near-perfect fluidity
- Modification of particle distributions

There are still a lot of missing points

- Welcoming you to join this game

