Deep Learning for LHC Physicsand Beyond!

Seongsu Lee

2024 CERN Summer Student Program Department of Physics Education, Seoul National University

Seongsu Lee

4th grade in SNU
Major in Physics Education, Biology, and CSE
MBTI: INFP

Interests

- Brain sciences
- Artificial intelligence
- High-order ideas in Sciences

Interests

Machine Learning & Deep Learning

Artificial Intelligence

Any technique that enables computers to mimic human intelligence. It includes machine learning

Machine Learning

A subset of AI that includes techniques that enable machines to improve at tasks with experience. It includes *deep learning*

Deep Learning

A subset of machine learning based on neural networks that permit a machine to train itself to perform a task.

Why Deep Learning Matters

- Accelerator control
- Data acquisition
- Event triggering
- Anomaly detection
- New physics scouting
- Event reconstruction
- Event generalization
- Detector simulation
- LHC grid control
- Signal extraction
- Background rejection
- ...etc.

Most of the processes are involved in ML/DL!

Why Deep Learning Matters (cont'd)

Why Deep Learning Matters (cont'd)

(Jet classification)

Use Proper DL Algorithms for Each Task!

- E.g.
 - CNN (Convolutional Neural Network) for jet classification
 - : Calorimetry in detectors \approx Image data
 - <u>https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012103/meta</u>
 - GNN (Graph Neural Network) for tracking
 - : GNN for geometrical structure
 - <u>https://arxiv.org/abs/2106.01832</u>

The Advantages of DL in Particle Physics

- Needles in a haystack!
- <u>Faster</u>; do not suffer from the *curse of dimensionality*
 - Rule-based algorithms always go with time complexity problems
 - Simply propagating into the MLP is way more fast
- Enormous size of data
 - \rightarrow free from data augmentation problem

The Advantages of DL in Particle Physics

The Advantages of DL in Particle Physics

How To Use DL in Particle Physics?

Are there any specialized approaches in this field?

Just Make It Deeper!

- Dr. Junghwan Goh

Why Deeper?

Why Deeper?: High-Dimensional Feature Space

Deep Learning Example: Higgs Signal

- Accelerator control
- Data acquisition
- Event triggering
- Anomaly detection
- New physics scouting
- Event reconstruction
- Event generalization
- Detector simulation
- LHC grid control
- Signal extraction
- Background rejection
- ...etc.

Deep Learning Example: Higgs Signal

• Signal data vs background data classification (event selection) $\sqrt{s} = 7 \text{ TeV}, L = 5.1 \text{ fb}^{-1}$ /s = 8 TeV, L = 5.3 fb⁻¹ CMS Events / 3 GeV Data $K_D > 0.5$ 16 Ζγ*, Ζ 14 Events m_H=125 Ge) 3 12 10 Λ ⁰m_{4ℓ} (GeV) 120 140 8 6 4 2 100 80 120 160 140 180

m₄ (GeV)

Deep Learning Example: Higgs Signal

- My own hands-on deep learning work!
- <u>https://colab.research.google.com/drive/1uQWFq_y4g9vZTml-MMkNpBt75ymff2lk?usp=sharing</u>

What Deep Learning Cannot Do

- Some generalization tasks
 - OOD (Out Of Distribution) problems; similar to extrapolation
- Reasoning
 - Transparency is important in social applications, but also in scientific analysis
 - Deep learning models have been known as **black-boxes**
 - They cannot construct any general principles, they only exploit them

Maybe They can Do?

(personal opinion)

eXplainable Al

- My main research field
- "WHY did the ML model say this?"
 - Providing reliability in serious tasks
 - Key object for fine-tuning
 - Can learn how the machines think

eXplainable AI for Principle Discovery

Known model of nuclear physics (in CERN, ISOLDE is at its forefront)
 Semi-Empirical Mass Formula (SEMF, Weizsäcker formula)

eXplainable AI for Principle Discovery

• PCA on the model's internal values \rightarrow Each component resembles the SEMF formula

Hands-on example

- This data is <u>signal</u> because...
 - DER_pt_tot = 1.20σ (total momentum)
 - DER_met_phi_centrality = 1.29σ
 - met stands for 'missing transverse energy'
 - Phi: angle φ
 - Centrality \propto 1/event distance from center
 - PRI_met_sumet = -0.72σ (scalar sum of met)
- Someone may compare to other data and extract the intuition about Higgs detection

o -0.16

-0.00

~ -0.07

m -0.14

<u>ں</u> -0.21

o -0.45

-0.73

∞ -0.00

o -0.10

<mark>១ -</mark>0.45

പ്പ -0.22

m -0.00

₫ -0.01

ഹ് -0.26

ഴ -0.31

다 -0.21

∞ -0.01

ഉ -0.71

<mark>ର -0.14</mark>

-0.01

0 (False)

∃ -0

References

• Professor Junghwan Goh, your majesty

- Guest, Dan, Kyle Cranmer, and Daniel Whiteson. "Deep learning and its application to LHC physics." *Annual Review of Nuclear and Particle Science* 68.1 (2018): 161-181.
- Jean-Roch Vlimant. "ML Overview in CMS, HEP, and beyond." CMS JetMET Workshop (Lecture note).
- <u>https://www.kaggle.com/c/higgs-boson/overview</u>
- <u>https://github.com/sugatagh/Higgs-Boson-Event-Detection</u>
- Baldi, Pierre, Peter Sadowski, and Daniel Whiteson. "Searching for exotic particles in high-energy physics with deep learning." *Nature communications* 5.1 (2014): 4308.
- <u>https://scholar.harvard.edu/shahin/research</u>
- Chatrchyan, Serguei, et al. "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC." *Physics Letters B* 716.1 (2012): 30-61.
- Kitouni, Ouail, et al. "From Neurons to Neutrons: A Case Study in Interpretability." *arXiv preprint arXiv:2405.17425* (2024).
- <u>https://en.wikipedia.org/wiki/Semi-empirical_mass_formula</u>

What I expected to find here at CERN

- Scientific inspirations
- Catching up the concepts of physics frontiers
- Improvements in English
- Feeling of anticipation to further visit the halls of Academe

What I found during the program

- Scientific inspirations
- Catching up the concepts of physics frontiers O (\triangle)
- Improvements in English @
- Feeling of anticipation to further visit the halls of Academe
- Good fateful connections, and unforgettable memories

Thank you!