Toric Code and Anyons CERN Summer Program presentation

Seongwoo Hong
Department of Physics, Pohang University of
Science and Technology (POSTECH)

자기소개
이름: 홍성우
소속: 포항공대 물리학과 3학년
MBTI: INTP-A
취미: 수영 하기, 축구 보기
응원하는 축구팀: 토트넘 핫스퍼
관심분야: 고체물리실험/이론

Introduction: anyons

Exchange rules for particles:
$|\psi\rangle^{\prime}=e^{i \phi}|\psi\rangle$,
where $\phi=\left\{\begin{array}{l}0, \text { for bosons, } \\ \pi,\end{array}\right.$ for fermions.

Introduction: anyons

Exchange rules for particles in 3D:
$|\psi\rangle^{\prime}=e^{i \phi}|\psi\rangle$,
where $\phi=\left\{\begin{array}{l}0, \text { for bosons, } \\ \pi,\end{array}\right.$ for fermions.
Exchange rules for particles in 2D:
$|\psi\rangle^{\prime}=e^{i \phi}|\psi\rangle$,
where $\phi=\left\{\begin{array}{cc}0, & \text { for bosons, } \\ \pi, & \text { for fermions, } \\ \theta, & \text { for anyons. }\end{array}\right.$

Toric code is a good toy model which shows anyonic behavior of quasiparticles.

What is Toric Code?

A 2D square lattice with a spin- $-\frac{1}{2}$ particle sitting on every edge.

Hamiltonian:

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p},
$$

where v : vertex, p : face.

Stabilizers:

$$
A_{v}=\prod_{j \in *(v)} \sigma_{x}^{j}, B_{p}=\prod_{j \in \partial(p)} \sigma_{z}^{j}
$$

where $*(v)$: sites adjacent to $v, \partial(p)$:
 sites on the boundary of p.

Properties of stabilizers $\quad H=-\sum_{v} A_{v}-\sum_{p} B_{p}$

$$
A_{v}=\prod_{j \in *(v)} \sigma_{x}^{j}, B_{p}=\prod_{j \in \partial(p)} \sigma_{z}^{j}
$$

Recall the Pauli matrices:
$\left\{\begin{array}{c}{\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma_{k},} \\ \left\{\sigma_{i}, \sigma_{j}\right\}=2 \delta_{i j} 1 .\end{array}\right.$
$\Rightarrow \sigma_{i} \sigma_{j}=\left\{\begin{array}{l}+\sigma_{j} \sigma_{i}, \text { if } i=j, \\ -\sigma_{j} \sigma_{i}, \text {, } i \neq j .\end{array}\right.$
Commutation relations of stabilizers:

$$
\left[A_{v}, A_{v^{\prime}}\right]=\left[B_{p}, B_{p^{\prime}}\right]=\left[A_{v}, B_{p}\right]=0,
$$

for any vertices v, v^{\prime} and faces p, p^{\prime}.

Properties of stabilizers

Under periodic boundary conditions: \# of spin- $\frac{1}{2}$ particles: $2 L^{2}$ \# of stabilizers: $\mathrm{N}_{\mathrm{A}}=\mathrm{N}_{\mathrm{B}}=L^{2}$
Constraints on stabilizers:

$$
\begin{aligned}
& \prod_{v} A_{v}=\prod_{j}\left(\sigma_{x}^{j}\right)^{2}=1 \\
& \prod_{p} B_{p}=\prod_{j}\left(\sigma_{z}^{j}\right)^{2}=1
\end{aligned}
$$

\# of independent stabilizers:

$$
N_{A}+N_{B}-2=2\left(L^{2}-1\right)
$$

The ground states

$$
n_{n}^{n}-\sum_{n}^{m_{0}}
$$

Hamiltonian: $H=-\sum_{v} A_{v}-\sum_{p} B_{p}$.
\Rightarrow If \exists a state $|\psi\rangle$ such that
$\left\{\begin{array}{l}A_{v}|\psi\rangle=+|\psi\rangle \\ B_{p}|\psi\rangle=+|\psi\rangle\end{array}\right.$, for all v, p,
then $|\psi\rangle$ must be a ground state.
Suppose such state $\left|\psi_{G S}\right\rangle$ exists.
$\Rightarrow E_{G S}\left|\psi_{G S}\right\rangle=H\left|\psi_{G S}\right\rangle=-2 L^{2}\left|\psi_{G S}\right\rangle$.
Guess the degeneracy of such ground states: $2^{2 L^{2}-2\left(L^{2}-1\right)}=4$.

The ground states

The ground state degeneracy is related to the topological property of the system.
For torus, we have two non-contractive loops, which is related to fourfold ground states.

The excited states

To obtain the excited states, we start from the ground state $\left|\psi_{G S}\right\rangle$.

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

The excited states

To obtain the excited states, we start from the ground state $\left|\psi_{G S}\right\rangle$.
Consider $\sigma_{Z}^{j}\left|\psi_{G S}\right\rangle$.

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

The excited states

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

To obtain the excited states, we start from the ground state $\left|\psi_{G S}\right\rangle$.
Consider $\sigma_{Z}^{j}\left|\psi_{G S}\right\rangle$.
$B_{p} \sigma_{z}^{j}=\prod_{i \in \partial(p)} \sigma_{z}^{i} \cdot \sigma_{z}^{j}=\sigma_{z}^{j} B_{p}$,

The excited states

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

To obtain the excited states, we start from the ground state $\left|\psi_{G S}\right\rangle$.
Consider $\sigma_{Z}^{j}\left|\psi_{G S}\right\rangle$.

$B_{p} \sigma_{Z}^{j}=\prod_{i \in \partial(p)} \sigma_{Z}^{i} \cdot \sigma_{z}^{j}=\sigma_{Z}^{j} B_{p}$,

$A_{v} \sigma_{z}^{j}=\prod_{i \in *(v)} \sigma_{x}^{i} \cdot \sigma_{z}^{j}=\left\{\begin{array}{l}-\sigma_{z}^{j} A_{v}, \text { if } j \in *(v), \\ +\sigma_{z}^{j} A_{v}, \text { if } j \notin *(v) .\end{array}\right.$

The excited states

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

To obtain the excited states, we start from the ground state $\left\langle\psi_{G S}\right\rangle$.
Consider $\sigma_{Z}^{j}\left|\psi_{G S}\right\rangle$.

$B_{p} \sigma_{z}^{j}=\prod_{i \in \partial(p)} \sigma_{z}^{i} \cdot \sigma_{z}^{j}=\sigma_{z}^{j} B_{p}$,

$A_{v} \sigma_{z}^{j}=\prod_{i \in *(v)} \sigma_{x}^{i} \cdot \sigma_{z}^{j}=\left\{\begin{array}{l}-\sigma_{z}^{j} A_{v}, \text { if } j \in *(v), \\ +\sigma_{z}^{j} A_{v}, \text { if } j \notin *(v)\end{array}\right.$
$\Rightarrow \mathrm{H} \sigma_{z}^{j}\left|\psi_{G S}\right\rangle=\left(-2 \mathrm{~L}^{2}+2\right) \sigma_{z}^{j}\left|\psi_{G S}\right\rangle$.
We denote these two excitation modes by "electric defect" e.

The excited states

Similarly, consider $\sigma_{x}^{j^{\prime}}\left|\psi_{G S}\right\rangle$.

The excited states

Similarly, consider $\sigma_{x}^{j^{\prime}}\left|\psi_{G S}\right\rangle$.
$A_{v} \sigma_{x}^{j^{\prime}}=\prod_{i \in *(v)} \sigma_{x}^{i} \cdot \sigma_{x}^{j^{\prime}}=\sigma_{x}^{j^{\prime}} A_{v}$,

The excited states

Similarly, consider $\sigma_{x}^{j^{\prime}}\left|\psi_{G S}\right\rangle$.

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

$$
A_{v} \sigma_{x}^{j^{\prime}}=\prod_{i \in *(v)} \sigma_{x}^{i} \cdot \sigma_{x}^{j^{\prime}} \underset{(}{=\sigma_{x}^{j^{\prime}} A_{v}, \quad} \quad+\text { + }+1
$$

$$
B_{p} \sigma_{x}^{j^{\prime}}=\prod_{i \in \partial(p)} \sigma_{z}^{i} \cdot \sigma_{x}^{j^{\prime}}=\left\{\begin{array}{l}
-\sigma_{x}^{j^{\prime}} B_{p}, \text { if } j^{\prime} \in \partial(v) \\
+\sigma_{x}^{j^{\prime}} B_{p}, \text { if } j^{\prime} \notin \partial(v)
\end{array}\right.
$$

The excited states

Similarly, consider $\sigma_{x}^{j^{\prime}}\left|\psi_{G S}\right\rangle$.

$B_{p} \sigma_{x}^{j^{\prime}}=\prod_{i \in \partial(p)} \sigma_{z}^{i} \cdot \sigma_{x}^{j^{\prime}}=\left\{\begin{array}{l}-\sigma_{x}^{j^{\prime}} B_{p}, \text { if } j^{\prime} \in \partial(v), \\ +\sigma_{x}^{j^{\prime}} B_{p}, \text { if } j^{\prime} \notin \partial(v) .\end{array}\right.$

$\Rightarrow \mathrm{H} \sigma_{z}^{j^{\prime}}\left|\psi_{G S}\right\rangle=\left(-2 \mathrm{~L}^{2}+2\right) \sigma_{z}^{j^{\prime}}\left|\psi_{G S}\right\rangle$.
${ }^{H}=-\sum_{v} A_{0}-\sum_{\eta}^{\varepsilon_{B}}$

We denote these two excitation modes by "magnetic vortex" m.

The excited states

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

σ_{z}^{j} : creator of two "electric defect" e at both vertices adjacent to the site j.

The excited states

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

σ_{z}^{j} : creator of two "electric defect" e at both vertices adjacent to the site j.
Now, consider acting σ_{z} operators on
 adjacent edges:

The excited states

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

σ_{z}^{j} : creator of two "electric defect" e at both vertices adjacent to the site j.
Now, consider acting σ_{z} operators on
 adjacent edges:
$A_{v^{\prime}}$ which originally anti-commuted now commute with $\sigma_{z}^{j} \sigma_{z}^{j^{\prime}}$.

The excited states

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

σ_{z}^{j} : creator of two "electric defect" e at both vertices adjacent to the site j.
Now, consider acting σ_{z} operators on adjacent edges:
since only two stabilizers A_{v} on the end of the operator-acting edges does not commute with $\sigma_{z}^{j} \sigma_{z}^{j^{\prime}}$, we still have the same excitation by 2 .

The excited states

Define a string operator:

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

$S_{z}(C)=\prod_{j \in C} \sigma_{z}^{j}$ for a path C.
$\Rightarrow S_{z}(C)\left|\psi_{G S}\right\rangle$: excited state with 2 electric defect at the end of the path C.

The excited states

Define a string operator:

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

$S_{z}(C)=\prod_{j \in C} \sigma_{z}^{j}$ for a path C.
$\Rightarrow S_{z}(C)\left|\psi_{G S}\right\rangle$: excited state with 2 electric defect at the end of the path C.
 By acting a string operator, we can generate or move electric defects e.

The excited states

Define a string operator:

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

$S_{z}(C)=\prod_{j \in C} \sigma_{z}^{j}$ for a path C.
$\Rightarrow S_{z}(C)\left|\psi_{G S}\right\rangle$: excited state with 2 electric defect at the end of the path C .

 By acting a string operator, we can generate or move electric defects e.

The excited states

Define a string operator:

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

$S_{z}(C)=\prod_{j \in C} \sigma_{z}^{j}$ for a path C.
$\Rightarrow S_{z}(C)\left|\psi_{G S}\right\rangle$: excited state with 2 electric defect at the end of the path C .

$+$ By acting a string operator, we can generate or move electric defects e.

The excited states

$$
n_{n}-\sum_{n}-\sum_{n}
$$

Similarly, we can define the string
 operator for σ_{x}^{j} as following:
$S_{x}\left(C^{\prime}\right)=\prod_{j \in C} \sigma_{x}^{j}$ for a path C^{\prime} on the dual lattice.

Then, $S_{x}\left(C^{\prime}\right)\left|\psi_{G S}\right\rangle$ is an excited state with 2 electric defect at the end of C^{\prime}.
By acting a string operator, we can generate or move magnetic vortexes m.

The excited states

$$
n-\sum_{n}^{n}-\sum_{n}^{n_{n}}
$$

Similarly, we can define the string
 operator for σ_{x}^{j} as following:
$S_{x}\left(C^{\prime}\right)=\prod_{j \in C} \sigma_{x}^{j}$ for a path C^{\prime} on the dual lattice.

Then, $S_{x}\left(C^{\prime}\right)\left|\psi_{G S}\right\rangle$ is an excited state with 2 electric defect at the end of C^{\prime}.
By acting a string operator, we can generate or move magnetic vortexes m.

The excited states

Similarly, we can define the string
 operator for σ_{x}^{j} as following:
$S_{x}\left(C^{\prime}\right)=\prod_{j \in C} \sigma_{x}^{j}$ for a path C^{\prime} on the dual lattice.

Then, $S_{x}\left(C^{\prime}\right)\left|\psi_{G S}\right\rangle$ is an excited state with 2 electric defect at the end of C^{\prime}.
By acting a string operator, we can generate or move magnetic vortexes m.

The excited states

$$
n=-\sum_{n}^{n}-\sum_{n}^{n}
$$

Similarly, we can define the string
 operator for σ_{x}^{j} as following:
$S_{x}\left(C^{\prime}\right)=\prod_{j \in C} \sigma_{x}^{j}$ for a path C^{\prime} on the dual lattice.

Then, $S_{x}\left(C^{\prime}\right)\left|\psi_{G S}\right\rangle$ is an excited state with 2 electric defect at the end of C^{\prime}.
By acting a string operator, we can generate or move magnetic vortexes m.

The excited states

$$
n-\sum_{n}^{n}-\sum_{n}^{n_{n}}
$$

Similarly, we can define the string
 operator for σ_{x}^{j} as following:
$S_{x}\left(C^{\prime}\right)=\prod_{j \in C} \sigma_{x}^{j}$ for a path C^{\prime} on the dual lattice.

Then, $S_{x}\left(C^{\prime}\right)\left|\psi_{G S}\right\rangle$ is an excited state with 2 electric defect at the end of C^{\prime}.
By acting a string operator, we can generate or move magnetic vortexes m.

The excited states

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

Similarly, we can define the string
 operator for σ_{x}^{j} as following:
$S_{x}\left(C^{\prime}\right)=\prod_{j \in C} \sigma_{x}^{j}$ for a path C^{\prime} on the dual lattice.

Then, $S_{x}\left(C^{\prime}\right)\left|\psi_{G S}\right\rangle$ is an excited state with 2 electric defect at the end of C^{\prime}.
By acting a string operator, we can generate or move magnetic vortexes m.

Quasiparticle excitation
 $H=-\sum_{v} A_{v}-\sum_{p} B_{p}$

So, what are these excitations?
Consider the initial state:
$\left|\psi_{\text {initial }}\right\rangle=S_{z}\left(C_{2}\right) S_{x}\left(C_{1}\right)\left|\psi_{G S}\right\rangle$.

Quasinarticie excitation
 ${ }^{H}=-\sum_{v} A_{0}-\sum_{\eta}^{\varepsilon_{n}}$

So, what are these excitations?

Consider the initial state:
$\left|\psi_{\text {initial }}\right\rangle=S_{z}\left(C_{2}\right) S_{x}\left(C_{1}\right)\left|\psi_{G S}\right\rangle$.

With string operators, a magnetic vortex is moved around an electric defect.

Quasinarticie excitation
 ${ }^{H=-\sum_{v} A_{0}-\sum_{\eta}^{\varepsilon_{r}}}$

So, what are these excitations?

Consider the initial state:
$\left|\psi_{\text {initial }}\right\rangle=S_{z}\left(C_{2}\right) S_{x}\left(C_{1}\right)\left|\psi_{G S}\right\rangle$.
With string operators, a magnetic vortex is moved around an electric defect.

Quasinarticie excitation
 ${ }^{H}=-\sum_{v} A_{0}-\sum_{\eta}^{\varepsilon_{B}}$

So, what are these excitations?

Consider the initial state:
$\left|\psi_{\text {initial }}\right\rangle=S_{z}\left(C_{2}\right) S_{x}\left(C_{1}\right)\left|\psi_{G S}\right\rangle$.
With string operators, a magnetic vortex is moved around an electric defect.

Quasiparticle excitation
 $$
H=-\sum_{n} a_{0}-\sum_{p_{0}}^{b_{0}}
$$

So, what are these excitations?

Consider the initial state:
$\left|\psi_{\text {initial }}\right\rangle=S_{Z}\left(C_{2}\right) S_{x}\left(C_{1}\right)\left|\psi_{G S}\right\rangle$.
With string operators, a magnetic vortex is moved around an electric defect.
Final state:

$$
\begin{aligned}
& \left|\psi_{\text {final }}\right\rangle=S_{x}\left(C^{\prime}\right)\left|\psi_{\text {initial }}\right\rangle \\
& =S_{x}\left(C^{\prime}\right) S_{Z}\left(C_{2}\right) S_{x}\left(C_{1}\right)\left|\psi_{G S}\right\rangle \\
& =-S_{Z}\left(C_{2}\right) S_{x}\left(C^{\prime}\right) S_{x}\left(C_{1}\right)\left|\psi_{G S}\right\rangle \\
& =-S_{Z}\left(C_{2}\right) S_{x}\left(C_{1}\right)\left(S_{x}\left(C^{\prime}\right)\left|\psi_{G S}\right\rangle\right) \\
& =-\left|\boldsymbol{\psi}_{\text {initial }}\right\rangle
\end{aligned}
$$

Braidings: exchange of quasiparticles

Under the rotation of " m " around " e ", $\left|\psi_{\text {final }}\right\rangle=-\left|\psi_{\text {initial }}\right\rangle$.

Topologically, rotating a particle around the other is equivalent to double exchanges of their position.

Exchange leads to $R_{e m}=e^{\frac{i \pi}{2}}$ of phase change.
$\Rightarrow\left(R_{e m}\right)^{2}=e^{i \pi}=-1$ for a whole rotation.

Anyonic statistics

Phase factor due to exchange:

$$
R_{e m}=e^{\frac{i \pi}{2}}
$$

which is neither bosonic nor fermionic.
Thus, we can conclude that these are quasiparticles which follow statistics completely different from the ones of ordinary particles.

We call those quasiparticles as Anyon.

Conclusion

Toric Code system has excitation states following anyonic statistics: exchange of particles leads to phase change by $e^{\frac{i \pi}{2}}$.

These anyons can be used to store quantum information: braidings of anyonic particles store the record of event that they $\mathrm{E} \uparrow$ Excited states exchanged their positions.

The degenerate ground states of the Toric Code themselves can be used as qubits.

References

- Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.
- Kitaev, A. Y. (1997). "Quantum computations: algorithms and error correction." Russian Mathematical Surveys 52(6): 1191.
- Leinaas, J. M. and J. Myrheim (1977). "On the theory of identical particles." II Nuovo Cimento B (1971-1996) 37(1): 1-23.
- Valenti, A., E. van Nieuwenburg, S. Huber and E. Greplova (2019). "Hamiltonian learning for quantum error correction." Physical Review Research 1(3): 033092.

Toric Code and Anyons Q\&A Session

Seongwoo Hong
Department of Physics, Pohang University of Science and Technology (POSTECH)

Appendix. Ground state degeneracy

For a closed path C, then $S_{z}(C)$ commutes with every stabilizer.
$\Rightarrow S_{z}(C)\left|\psi_{G S}\right\rangle$: ground state for a closed path C.

Appendix. Ground state degeneracy

For a closed path C, then $S_{z}(C)$ commutes with every stabilizer.
$\Rightarrow S_{z}(C)\left|\psi_{G S}\right\rangle$: ground state for a closed path C .
Similarly, for a closed path C^{\prime} defined on the dual lattice, $S_{x}\left(C^{\prime}\right)$ commutes with every stabilizer.
$\Rightarrow S_{x}\left(C^{\prime}\right)\left|\psi_{G S}\right\rangle$: ground state for a closed path C^{\prime}.

Appendix. Ground state degeneracy

We assumed that $\left|\psi_{G S}\right\rangle$ such that
 $\left\{\begin{array}{l}A_{v}\left|\psi_{G S}\right\rangle=+\left|\psi_{G S}\right\rangle \\ B_{p}\left|\psi_{G S}\right\rangle=+\left|\psi_{G S}\right\rangle\end{array}\right.$, for all v, p, exists, and speculated that there would be 4fold degeneracy.

However, it appears that there exists infinite-fold degeneracy for each possible form of closed loop: for any closed loop C in lattice or C^{\prime} in
 dual lattice, $S_{z}(C)\left|\psi_{G S}\right\rangle$ and $S_{x}\left(C^{\prime}\right)\left|\psi_{G S}\right\rangle$ are also ground states.

Appendix. Ground state degeneracy

Then, what is wrong with our logics? In fact, $S_{z}(C)\left|\psi_{G S}\right\rangle$ and $S_{x}\left(C^{\prime}\right)\left|\psi_{G S}\right\rangle$ all stands for the same state.
We claim that there exists exactly 4fold degenerate ground states.

Appendix. Ground state degeneracy

Claim 1: $|\psi\rangle=\prod_{v}\left(1+A_{v}\right)|0\rangle$, where $|0\rangle$ is a tensor product of upspin state for each site, is a ground state.

$$
\begin{aligned}
& B_{p}|\psi\rangle=\left(\prod_{v^{\prime}}\left(1+A_{v^{\prime}}\right)\right) B_{p}|0\rangle=|\psi\rangle, \\
& A_{v}|\psi\rangle=A_{v} \prod_{v^{\prime}}\left(1+A_{v^{\prime}}\right)|0\rangle \\
& =\prod_{v^{\prime}} C_{v^{\prime}}|0\rangle, \text { where } C_{v^{\prime}}=\left\{\begin{array}{l}
1+A_{v^{\prime}}, \quad \text { if } v^{\prime} \neq v, \\
A_{v}\left(1+A_{v}\right), \text { if } v^{\prime}=v,
\end{array}=1+A_{v^{\prime}}, \text { for any } v^{\prime}\right. \\
& =|\psi\rangle . \\
& \Rightarrow \mathrm{H}|\psi\rangle=-2 L^{2}|\psi\rangle .
\end{aligned}
$$

Thus, we may take $\left|\psi_{G S}\right\rangle=c|\psi\rangle$ for proper normalization const. c.

Appendix. Ground state degeneracy

Definition.
We define Z_{i} as a string operator on the non-contractible loop $C_{Z_{i}}$:
$Z_{i}=S_{z}\left(C_{Z_{i}}\right)=\prod_{j \in C_{Z_{i}}} \sigma_{Z}^{j}$, for $i=1,2$.
Similarly, define X_{i} on the noncontractible loop $C_{X_{i}}$ in dual lattice:

$$
X_{i}=S_{x}\left(C_{X_{i}}\right)=\prod_{j \in C_{X_{i}}} \sigma_{x}^{j}, \text { for } i=1,2
$$

Appendix. Ground state degeneracy

Definition.

We define Z_{i} as a string operator on the non-contractible loop $C_{Z_{i}}$:
$Z_{i}=S_{z}\left(C_{Z_{i}}\right)=\prod_{j \in C_{Z_{i}}} \sigma_{Z}^{j}$, for $i=1,2$.
Similarly, define X_{i} on the noncontractible loop $C_{X_{i}}$ in dual lattice:
$X_{i}=S_{x}\left(C_{X_{i}}\right)=\prod_{j \in C_{X_{i}}} \sigma_{x}^{j}$, for $i=1,2$.

Appendix. Ground state degeneracy

$Z_{i}=\prod_{j \in C_{Z_{i}}} \sigma_{z}^{j}, X_{i}=\prod_{j \in C_{X_{i}}} \sigma_{x}^{j}$.
Commutation relations:
$\left[Z_{1}, Z_{2}\right]=\left[X_{1}, X_{2}\right]=0$,
$\left[Z_{1}, X_{2}\right]=\left[Z_{2}, X_{1}\right]=0$,
$Z_{1} X_{1}=-X_{1} Z_{1}, Z_{2} X_{2}=-X_{2} Z_{2}$,
$Z_{1}^{2}=Z_{2}^{2}=X_{1}^{2}=X_{2}^{2}=1$.

Appendix. Ground state degeneracy

Claim 2: Take $|a, b\rangle=\frac{1+a Z_{1}}{2} \frac{1+b Z_{2}}{2}\left|\psi_{G S}\right\rangle$ for $a, b= \pm 1$. Then, $|a, b\rangle$ composes 4fold degenerate ground states.

$\left[A_{v}, Z_{i}\right]=\left[\prod_{j \in *(v)} \sigma_{x}^{j}, \prod_{j \in C_{Z_{i}}} \sigma_{z}^{j}\right]=0$,

$\left[B_{p}, Z_{i}\right]=\left[\prod_{j \in \partial(p)} \sigma_{z}^{j}, \prod_{j \in C_{Z_{i}}} \sigma_{z}^{j}\right]=0$.
$\therefore A_{v}|a, b\rangle=A_{v} \frac{1+a Z_{1}}{2} \frac{1+b z_{2}}{2}\left|\psi_{G S}\right\rangle=|a, b\rangle$,

(
$B_{p}|a, b\rangle=B_{p} \frac{1+a Z_{1}}{2} \frac{1+b Z_{2}}{2}\left|\psi_{G S}\right\rangle=|a, b\rangle$.

Remarks for Appendix

1. Toric Code system has four-fold degenerate ground states given by $|a, b\rangle=$
$c \frac{1+a Z_{1}}{2} \frac{1+b Z_{2}}{2} \Pi_{v}\left(1+A_{v}\right)|\uparrow \uparrow \uparrow \cdots\rangle$ for $a, b= \pm 1$.
2. Its degeneracy is based on the system's topological property: if it were not for torus, say for 2D square lattice, the system has nondegenerate ground state, since every loop can be represented as a product of stabilizers. (i.e., every loop is contractible.)
3. Based on the four degenerate ground states, we can construct 2 qubits and thus can be used in the field of quantum computation.

E \uparrow Excited states

Gap
\downarrow
Ground states

