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Introduction: anyons
Exchange rules for particles:

𝜓 ′ = 𝑒𝑖𝜙|𝜓⟩,

where 𝜙 = ቊ
0, for bosons,
𝜋, for fermions.



Introduction: anyons
Exchange rules for particles in 3D:

𝜓 ′ = 𝑒𝑖𝜙|𝜓⟩,

where 𝜙 = ቊ
0, for bosons,
𝜋, for fermions.

Exchange rules for particles in 2D:

𝜓 ′ = 𝑒𝑖𝜙|𝜓⟩,

where 𝜙 = ቐ
0, for bosons,
𝜋, for fermions,
𝜃, for an𝑦𝑜𝑛𝑠.

Toric code is a good toy model which shows anyonic behavior of 
quasiparticles.

Leinaas, J. M. and J. Myrheim (1977). "On the theory of identical particles." Il Nuovo Cimento B (1971-1996) 37(1): 1-23.



What is Toric Code?

A 2D square lattice with a spin-
1

2
particle sitting on every edge.

Hamiltonian:

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝 ,

where 𝑣: vertex, 𝑝: face.

Stabilizers: 

𝐴𝑣 = ෑ

𝑗∈∗ 𝑣

𝜎𝑥
𝑗
, 𝐵𝑝 = ෑ

𝑗∈𝜕 𝑝

𝜎𝑧
𝑗

where ∗ 𝑣 : sites adjacent to 𝑣, 𝜕 𝑝 : 
sites on the boundary of p.
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Properties of stabilizers

𝐴𝑣 = ෑ

𝑗∈∗ 𝑣

𝜎𝑥
𝑗
, 𝐵𝑝 = ෑ

𝑗∈𝜕 𝑝

𝜎𝑧
𝑗

Recall the Pauli matrices:

ቐ
𝜎𝑖 , 𝜎𝑗 = 2𝑖𝜖𝑖𝑗𝑘𝜎𝑘 ,

𝜎𝑖 , 𝜎𝑗 = 2𝛿𝑖𝑗1.

⟹ 𝜎𝑖𝜎𝑗 = ൝
+𝜎𝑗𝜎𝑖 , if 𝑖 = 𝑗,

−𝜎𝑗𝜎𝑖 , if 𝑖 ≠ 𝑗.

Commutation relations of stabilizers:
𝐴𝑣 , 𝐴𝑣′ = 𝐵𝑝, 𝐵𝑝′ = 𝐴𝑣 , 𝐵𝑝 = 0,

for any vertices 𝑣, 𝑣′ and faces 𝑝, 𝑝′.

Eigenvalues: ±1 for all 𝐴𝑣, 𝐵𝑝.
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𝐻 = −
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𝐴𝑣 −
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𝐵𝑝
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Properties of stabilizers

L

L

Under periodic boundary conditions:

# of spin-
1

2
particles: 2𝐿2

# of stabilizers: NA = NB = 𝐿2

Constraints on stabilizers:

ෑ

𝑣

𝐴𝑣 =ෑ

𝑗

𝜎𝑥
𝑗 2

= 1,

ෑ

𝑝

𝐵𝑝 =ෑ

𝑗

𝜎𝑧
𝑗 2

= 1.

# of independent stabilizers:
𝑁𝐴 +𝑁𝐵 − 2 = 2 𝐿2 − 1
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𝐻 = −

𝑣

𝐴𝑣 −
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𝐵𝑝
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The ground states

L

L

Hamiltonian: 𝐻 = −σ𝑣𝐴𝑣 − σ𝑝𝐵𝑝.

⟹ If ∃ a state 𝜓 such that

൝
𝐴𝑣 𝜓 = + 𝜓

𝐵𝑝 𝜓 = + 𝜓
, for all v, p,

then 𝜓 must be a ground state.

Suppose such state 𝜓𝐺𝑆 exists.

⟹ 𝐸𝐺𝑆 𝜓𝐺𝑆 = 𝐻 𝜓𝐺𝑆 = −2𝐿2 𝜓𝐺𝑆 .

Guess the degeneracy of such ground 

states: 22𝐿
2−2 𝐿2−1 = 4.

x

x
x

x

z

z

z

z
𝐴𝑣

𝐵𝑝𝑝

𝑣

𝐻 = −
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The ground states

The ground state degeneracy is related to the topological property of 
the system.

For torus, we have two non-contractive loops, which is related to four-
fold ground states.

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.



The excited states
To obtain the excited states, we start from 
the ground state 𝜓𝐺𝑆 .

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝
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The excited states
To obtain the excited states, we start from 
the ground state 𝜓𝐺𝑆 .

Consider 𝜎𝑧
𝑗
𝜓𝐺𝑆 .

𝜎𝑧
𝑗

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝
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The excited states
To obtain the excited states, we start from 
the ground state 𝜓𝐺𝑆 .

Consider 𝜎𝑧
𝑗
𝜓𝐺𝑆 .

𝐵𝑝𝜎𝑧
𝑗
= ς𝑖∈𝜕 𝑝 𝜎𝑧

𝑖 ⋅ 𝜎𝑧
𝑗
= 𝜎𝑧

𝑗
𝐵𝑝,

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝

𝐵𝑝′𝑝′
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The excited states
To obtain the excited states, we start from 
the ground state 𝜓𝐺𝑆 .

Consider 𝜎𝑧
𝑗
𝜓𝐺𝑆 .

𝐵𝑝𝜎𝑧
𝑗
= ς𝑖∈𝜕 𝑝 𝜎𝑧

𝑖 ⋅ 𝜎𝑧
𝑗
= 𝜎𝑧

𝑗
𝐵𝑝,

𝐴𝑣𝜎𝑧
𝑗
= ς𝑖∈∗ 𝑣 𝜎𝑥

𝑖 ⋅ 𝜎𝑧
𝑗
= ቐ

−𝜎𝑧
𝑗
𝐴𝑣, if 𝑗 ∈∗ 𝑣 ,

+𝜎𝑧
𝑗
𝐴𝑣 , if 𝑗 ∉∗ 𝑣 . 𝜎𝑧

𝑗

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝

𝐴𝑣
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𝐴𝑣′
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Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.



The excited states
To obtain the excited states, we start from 
the ground state 𝜓𝐺𝑆 .

Consider 𝜎𝑧
𝑗
𝜓𝐺𝑆 .

𝐵𝑝𝜎𝑧
𝑗
= ς𝑖∈𝜕 𝑝 𝜎𝑧

𝑖 ⋅ 𝜎𝑧
𝑗
= 𝜎𝑧

𝑗
𝐵𝑝,

𝐴𝑣𝜎𝑧
𝑗
= ς𝑖∈∗ 𝑣 𝜎𝑥

𝑖 ⋅ 𝜎𝑧
𝑗
= ቐ

−𝜎𝑧
𝑗
𝐴𝑣, if 𝑗 ∈∗ 𝑣 ,

+𝜎𝑧
𝑗
𝐴𝑣 , if 𝑗 ∉∗ 𝑣 .

⟹ H𝜎𝑧
𝑗
𝜓𝐺𝑆 = −2L2 + 2 𝜎𝑧

𝑗
𝜓𝐺𝑆 .

We denote these two excitation modes by 
“electric defect” e.

𝜎𝑧
𝑗

e e

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝
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The excited states

Similarly, consider 𝜎𝑥
𝑗′
𝜓𝐺𝑆 .

𝜎x
𝑗′

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝
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The excited states

Similarly, consider 𝜎𝑥
𝑗′
𝜓𝐺𝑆 .

𝐴𝑣𝜎𝑥
𝑗′
= ς𝑖∈∗ 𝑣 𝜎𝑥

𝑖 ⋅ 𝜎𝑥
𝑗′
= 𝜎𝑥

𝑗′
𝐴𝑣,

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝

𝐴𝑣

𝑣
x

x
x

x

𝐴𝑣′

𝑣′
x

x
x

x

𝜎x
𝑗′
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The excited states

Similarly, consider 𝜎𝑥
𝑗′
𝜓𝐺𝑆 .

𝐴𝑣𝜎𝑥
𝑗′
= ς𝑖∈∗ 𝑣 𝜎𝑥

𝑖 ⋅ 𝜎𝑥
𝑗′
= 𝜎𝑥

𝑗′
𝐴𝑣,

𝐵𝑝𝜎𝑥
𝑗′
= ෑ

𝑖∈𝜕 𝑝

𝜎𝑧
𝑖 ⋅ 𝜎𝑥

𝑗′
= ቐ

−𝜎𝑥
𝑗′
𝐵𝑝, if 𝑗

′ ∈ 𝜕 𝑣 ,

+𝜎𝑥
𝑗′
𝐵𝑝, if 𝑗

′ ∉ 𝜕 𝑣 .

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝

𝐵𝑝𝑝z

z

z

z

𝐵𝑝′

𝑝′z

z

z

z 𝜎x
𝑗′
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The excited states

Similarly, consider 𝜎𝑥
𝑗′
𝜓𝐺𝑆 .

𝐴𝑣𝜎𝑥
𝑗′
= ς𝑖∈∗ 𝑣 𝜎𝑥

𝑖 ⋅ 𝜎𝑥
𝑗′
= 𝜎𝑥

𝑗′
𝐴𝑣,

𝐵𝑝𝜎𝑥
𝑗′
= ෑ

𝑖∈𝜕 𝑝

𝜎𝑧
𝑖 ⋅ 𝜎𝑥

𝑗′
= ቐ

−𝜎𝑥
𝑗′
𝐵𝑝, if 𝑗

′ ∈ 𝜕 𝑣 ,

+𝜎𝑥
𝑗′
𝐵𝑝, if 𝑗

′ ∉ 𝜕 𝑣 .

⟹H𝜎𝑧
𝑗′
𝜓𝐺𝑆 = −2L2 + 2 𝜎𝑧

𝑗′
𝜓𝐺𝑆 .

We denote these two excitation modes by 
“magnetic vortex” m.

m

m

𝜎x
𝑗′

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝
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The excited states

𝜎𝑧
𝑗
: creator of two “electric defect” e at 

both vertices adjacent to the site j.

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝

𝜎𝑧
𝑗

e e
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The excited states

𝜎𝑧
𝑗
: creator of two “electric defect” e at 

both vertices adjacent to the site j.

Now, consider acting 𝜎𝑧 operators on 
adjacent edges: 

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝

𝜎𝑧
𝑗 𝜎𝑧

𝑗′
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The excited states

𝜎𝑧
𝑗
: creator of two “electric defect” e at 

both vertices adjacent to the site j.

Now, consider acting 𝜎𝑧 operators on 
adjacent edges: 

𝐴𝑣′ which originally anti-commuted now 

commute with 𝜎𝑧
𝑗
𝜎𝑧
𝑗′

.

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝

𝜎𝑧
𝑗
𝐴𝑣′

𝑣′
x

x

x
x

𝜎𝑧
𝑗′
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The excited states

𝜎𝑧
𝑗
: creator of two “electric defect” e at 

both vertices adjacent to the site j.

Now, consider acting 𝜎𝑧 operators on 
adjacent edges: 

since only two stabilizers 𝐴𝑣 on the end 
of the operator-acting edges does not 

commute with 𝜎𝑧
𝑗
𝜎𝑧
𝑗′

, we still have the 
same excitation by 2.

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝

e e𝜎𝑧
𝑗

𝐴𝑣

𝑣
x

x

x

x

𝐴𝑣′′

𝑣′′x

x

x
x

𝜎𝑧
𝑗′
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The excited states

Define a string operator:

𝑆𝑧 𝐶 = ς𝑗∈𝐶 𝜎𝑧
𝑗

for a path C.

⟹ 𝑆𝑧 𝐶 𝜓𝐺𝑆 : excited state with 2 
electric defect at the end of the path C.

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝

𝜎𝑧
e

e

𝜎𝑧
𝜎𝑧

C
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The excited states

Define a string operator:

𝑆𝑧 𝐶 = ς𝑗∈𝐶 𝜎𝑧
𝑗

for a path C.

⟹ 𝑆𝑧 𝐶 𝜓𝐺𝑆 : excited state with 2 
electric defect at the end of the path C.

By acting a string operator, we can 
generate or move electric defects e.

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝

𝜎𝑧
e

e

𝜎𝑧
𝜎𝑧

𝜎𝑧

C
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The excited states

Define a string operator:

𝑆𝑧 𝐶 = ς𝑗∈𝐶 𝜎𝑧
𝑗

for a path C.

⟹ 𝑆𝑧 𝐶 𝜓𝐺𝑆 : excited state with 2 
electric defect at the end of the path C.

By acting a string operator, we can 
generate or move electric defects e.

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝

𝜎𝑧
e

e

𝜎𝑧
𝜎𝑧

𝜎𝑧

𝜎𝑧

C
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The excited states

Define a string operator:

𝑆𝑧 𝐶 = ς𝑗∈𝐶 𝜎𝑧
𝑗

for a path C.

⟹ 𝑆𝑧 𝐶 𝜓𝐺𝑆 : excited state with 2 
electric defect at the end of the path C.

By acting a string operator, we can 
generate or move electric defects e.

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝

𝜎𝑧
e

e

𝜎𝑧
𝜎𝑧

𝜎𝑧

𝜎𝑧𝜎𝑧

C
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The excited states

Similarly, we can define the string 

operator for 𝜎𝑥
𝑗

as following:

𝑆𝑥 𝐶′ = ς𝑗∈𝐶 𝜎𝑥
𝑗

for a path 𝐶′ on the 

dual lattice.

Then, 𝑆𝑥 𝐶′ 𝜓𝐺𝑆 is an excited state 
with 2 electric defect at the end of 𝐶′.

By acting a string operator, we can 
generate or move magnetic vortexes m.

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝

𝜎𝑥
m

m
𝐶′
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The excited states

Similarly, we can define the string 

operator for 𝜎𝑥
𝑗

as following:

𝑆𝑥 𝐶′ = ς𝑗∈𝐶 𝜎𝑥
𝑗

for a path 𝐶′ on the 

dual lattice.

Then, 𝑆𝑥 𝐶′ 𝜓𝐺𝑆 is an excited state 
with 2 electric defect at the end of 𝐶′.

By acting a string operator, we can 
generate or move magnetic vortexes m.

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝

𝜎𝑥

𝜎𝑥
𝐶′

m

m
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The excited states

Similarly, we can define the string 

operator for 𝜎𝑥
𝑗

as following:

𝑆𝑥 𝐶′ = ς𝑗∈𝐶 𝜎𝑥
𝑗

for a path 𝐶′ on the 

dual lattice.

Then, 𝑆𝑥 𝐶′ 𝜓𝐺𝑆 is an excited state 
with 2 electric defect at the end of 𝐶′.

By acting a string operator, we can 
generate or move magnetic vortexes m.

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝

𝜎𝑥

𝜎𝑥

𝜎𝑥
𝐶′

m

m
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The excited states

Similarly, we can define the string 

operator for 𝜎𝑥
𝑗

as following:

𝑆𝑥 𝐶′ = ς𝑗∈𝐶 𝜎𝑥
𝑗

for a path 𝐶′ on the 

dual lattice.

Then, 𝑆𝑥 𝐶′ 𝜓𝐺𝑆 is an excited state 
with 2 electric defect at the end of 𝐶′.

By acting a string operator, we can 
generate or move magnetic vortexes m.
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Quasiparticle excitation

So, what are these excitations?

Consider the initial state: 

𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑆𝑧 𝐶2 𝑆𝑥 𝐶1 𝜓𝐺𝑆 .

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝

e e𝜎𝑧
𝑗 𝜎𝑧

𝑗′

𝜎𝑥

m

𝜎𝑥

m
𝐶1

𝐶2
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𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑆𝑧 𝐶2 𝑆𝑥 𝐶1 𝜓𝐺𝑆 .

With string operators, a magnetic vortex 
is moved around an electric defect.
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Quasiparticle excitation 𝐻 = −

𝑣
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𝑝
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So, what are these excitations?

Consider the initial state: 

𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑆𝑧 𝐶2 𝑆𝑥 𝐶1 𝜓𝐺𝑆 .

With string operators, a magnetic vortex 
is moved around an electric defect.
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Quasiparticle excitation

So, what are these excitations?

Consider the initial state: 

𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑆𝑧 𝐶2 𝑆𝑥 𝐶1 𝜓𝐺𝑆 .

With string operators, a magnetic vortex 
is moved around an electric defect.

Final state:
𝜓𝑓𝑖𝑛𝑎𝑙 = 𝑆𝑥 𝐶′ 𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙

= 𝑆𝑥 𝐶′ 𝑆𝑧 𝐶2 𝑆𝑥 𝐶1 𝜓𝐺𝑆
= −𝑆𝑧 𝐶2 𝑆𝑥 𝐶′ 𝑆𝑥 𝐶1 𝜓𝐺𝑆
= −𝑆𝑧 𝐶2 𝑆𝑥 𝐶1 𝑆𝑥 𝐶′ 𝜓𝐺𝑆
= − 𝝍𝒊𝒏𝒊𝒕𝒊𝒂𝒍

𝐻 = −

𝑣

𝐴𝑣 −

𝑝

𝐵𝑝

𝜎𝑧
𝑗′

e e𝜎𝑧
𝑗

𝜎𝑥

m

𝜎𝑥 𝜎𝑥 𝜎𝑥
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Braidings: exchange of quasiparticles

Under the rotation of “m” around “e”, 

𝜓𝑓𝑖𝑛𝑎𝑙 = − 𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .

Topologically, rotating a particle around the 
other is equivalent to double exchanges of 
their position.

Exchange leads to 𝑅𝑒𝑚 = 𝑒
𝑖𝜋

2 of phase 
change.

⟹ 𝑅𝑒𝑚
2 = 𝑒𝑖𝜋 = −1 for a whole rotation.

me

met

me

me

=
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Anyonic statistics

Phase factor due to exchange:

𝑅𝑒𝑚 = 𝑒
𝑖𝜋
2 ,

which is neither bosonic nor fermionic.

Thus, we can conclude that these are 
quasiparticles which follow statistics 
completely different from the ones of 
ordinary particles.

We call those quasiparticles as Anyon.
me

met

me

me

=

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.



Conclusion
Toric Code system has excitation states 
following anyonic statistics: exchange of 

particles leads to phase change by 𝑒
𝑖𝜋

2 .

These anyons can be used to store 
quantum information: braidings of anyonic
particles store the record of event that they 
exchanged their positions.

The degenerate ground states of the Toric 
Code themselves can be used as qubits.

E Excited states

Gap

Ground states
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Appendix. Ground state degeneracy

For a closed path C, then 𝑆𝑧 𝐶
commutes with every stabilizer.

⟹ 𝑆𝑧 𝐶 𝜓𝐺𝑆 : ground state for a 
closed path C.

𝜎𝑧 𝜎𝑧
𝜎𝑧

𝜎𝑧

𝜎𝑧

𝜎𝑧

𝜎𝑧

C

𝜎𝑧
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For a closed path C, then 𝑆𝑧 𝐶
commutes with every stabilizer.

⟹ 𝑆𝑧 𝐶 𝜓𝐺𝑆 : ground state for a 
closed path C.

Similarly, for a closed path 𝐶′ defined 
on the dual lattice, 𝑆𝑥 𝐶′ commutes 
with every stabilizer.

⟹ 𝑆𝑥 𝐶′ 𝜓𝐺𝑆 : ground state for a 
closed path 𝐶′.

𝜎𝑥

𝜎𝑥

𝜎𝑥𝜎𝑥

𝜎𝑥

𝜎𝑥

𝜎𝑥 𝜎𝑥
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Appendix. Ground state degeneracy

We assumed that 𝜓𝐺𝑆 such that

൝
𝐴𝑣 𝜓𝐺𝑆 = + 𝜓𝐺𝑆

𝐵𝑝 𝜓𝐺𝑆 = + 𝜓𝐺𝑆
, for all v, p, exists, 

and speculated that there would be 4-
fold degeneracy.

However, it appears that there exists 
infinite-fold degeneracy for each 
possible form of closed loop: 

for any closed loop 𝐶 in lattice or 𝐶′ in 
dual lattice, 𝑆𝑧 𝐶 𝜓𝐺𝑆 and 𝑆𝑥 𝐶′ 𝜓𝐺𝑆
are also ground states.

𝐶

𝐶′
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Appendix. Ground state degeneracy

Then, what is wrong with our logics?

In fact, 𝑆𝑧 𝐶 𝜓𝐺𝑆 and 𝑆𝑥 𝐶′ 𝜓𝐺𝑆 all 
stands for the same state.

We claim that there exists exactly 4-
fold degenerate ground states.

𝐶

𝐶′
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Appendix. Ground state degeneracy

Claim 1: 𝜓 = ς𝑣 1 + 𝐴𝑣 0 , where 0 is a tensor product of up-
spin state for each site, is a ground state.

𝐵𝑝 𝜓 = ς𝑣′ 1 + 𝐴𝑣′ 𝐵𝑝 0 = 𝜓 ,

𝐴𝑣 𝜓 = 𝐴𝑣ς𝑣′ 1 + 𝐴𝑣′ 0

= ς𝑣′ 𝐶𝑣′ 0 , where 𝐶𝑣′ = ቊ
1 + 𝐴𝑣′ , if 𝑣′ ≠ 𝑣,

𝐴𝑣 1 + 𝐴𝑣 , if 𝑣′ = 𝑣,
= 1 + 𝐴𝑣′ , for any 𝑣

′

= 𝜓 .

⟹H 𝜓 = −2𝐿2 𝜓 .

Thus, we may take 𝜓𝐺𝑆 = 𝑐 𝜓 for proper normalization const. 𝑐.

Valenti, A., E. van Nieuwenburg, S. Huber and E. Greplova (2019). "Hamiltonian learning for quantum error correction." Physical Review Research 1(3): 033092.



Appendix. Ground state degeneracy

Definition.

We define 𝑍𝑖 as a string operator on 
the non-contractible loop 𝐶𝑍𝑖:

𝑍𝑖 = 𝑆𝑧 𝐶𝑍𝑖 = ς𝑗∈𝐶𝑍𝑖
𝜎𝑧
𝑗
, for 𝑖 = 1,2.

Similarly, define 𝑋𝑖 on the non-
contractible loop 𝐶𝑋𝑖 in dual lattice:

𝑋𝑖 = 𝑆𝑥 𝐶𝑋𝑖 = ς𝑗∈𝐶𝑋𝑖
𝜎𝑥
𝑗
, for 𝑖 = 1,2.

𝐶𝑍1

𝐶𝑍2
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Appendix. Ground state degeneracy

Definition.

We define 𝑍𝑖 as a string operator on 
the non-contractible loop 𝐶𝑍𝑖:

𝑍𝑖 = 𝑆𝑧 𝐶𝑍𝑖 = ς𝑗∈𝐶𝑍𝑖
𝜎𝑧
𝑗
, for 𝑖 = 1,2.

Similarly, define 𝑋𝑖 on the non-
contractible loop 𝐶𝑋𝑖 in dual lattice:

𝑋𝑖 = 𝑆𝑥 𝐶𝑋𝑖 = ς𝑗∈𝐶𝑋𝑖
𝜎𝑥
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𝐶𝑍1

𝐶𝑋1
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Appendix. Ground state degeneracy

𝑍𝑖 = ς𝑗∈𝐶𝑍𝑖
𝜎𝑧
𝑗
, 𝑋𝑖 = ς𝑗∈𝐶𝑋𝑖

𝜎𝑥
𝑗
.

Commutation relations:

𝑍1, 𝑍2 = 𝑋1, 𝑋2 = 0,

𝑍1, 𝑋2 = 𝑍2, 𝑋1 = 0,

𝑍1𝑋1 = −𝑋1𝑍1, 𝑍2𝑋2 = −𝑋2𝑍2,

𝑍1
2 = 𝑍2

2 = 𝑋1
2 = 𝑋2

2 = 1.

𝐶𝑍2

𝐶𝑍1

𝐶𝑋1
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Appendix. Ground state degeneracy

Claim 2: Take 𝑎, 𝑏 =
1+𝑎𝑍1

2

1+𝑏𝑍2

2
𝜓𝐺𝑆

for 𝑎, 𝑏 = ±1. Then, 𝑎, 𝑏 composes 4-
fold degenerate ground states.

𝐴𝑣 , 𝑍𝑖 = ς𝑗∈∗ 𝑣 𝜎𝑥
𝑗
, ς𝑗∈𝐶𝑍𝑖

𝜎𝑧
𝑗
= 0,

𝐵𝑝, 𝑍𝑖 = ς𝑗∈𝜕 𝑝 𝜎𝑧
𝑗
, ς𝑗∈𝐶𝑍𝑖

𝜎𝑧
𝑗
= 0.

∴ 𝐴𝑣 𝑎, 𝑏 = 𝐴𝑣
1+𝑎𝑍1

2

1+𝑏𝑍2

2
𝜓𝐺𝑆 = 𝑎, 𝑏 ,

𝐵𝑝 𝑎, 𝑏 = 𝐵𝑝
1+𝑎𝑍1

2

1+𝑏𝑍2

2
𝜓𝐺𝑆 = 𝑎, 𝑏 .

𝐶𝑍2

𝐶𝑍1

𝐴𝑣

𝑣
x

x
x

x

𝐴𝑣′

𝑣′
x

x
x

x



Remarks for Appendix

1. Toric Code system has four-fold degenerate 
ground states given by 𝑎, 𝑏 =

𝑐
1+𝑎𝑍1

2

1+𝑏𝑍2

2
ς𝑣 1 + 𝐴𝑣 ↑↑↑ ⋯ for 𝑎, 𝑏 = ±1.

2. Its degeneracy is based on the system’s 
topological property: if it were not for torus, 
say for 2D square lattice, the system has non-
degenerate ground state, since every loop 
can be represented as a product of stabilizers. 
(i.e., every loop is contractible.)

3. Based on the four degenerate ground 
states, we can construct 2 qubits and thus can 
be used in the field of quantum computation.

E Excited states

Gap

Ground states


