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Introduction: anyons
Exchange rules for particles:
p) = e'®|p),

0, for bosons,

where ¢ = . o
¢ { 1, for fermions.
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Introduction: anyons

Exchange rules for particles in 3D:

h/))l — €i¢|l/)>, / \

0, for bosons, O 0
where ¢ = .

m, for fermions.

\ /
Exchange rules for particles in 2D:
) = ely),
(0, forbosons, e 0

where ¢ =< m, for fermions,
0, for anyons.

\

Toric code Is a good toy model which shows anyonic behavior of
guasiparticles.

Leinaas, J. M. and J. Myrheim (1977). "On the theory of identical particles." Il Nuovo Cimento B (1971-1996) 37(1): 1-23.




What is Toric Code?

A 2D square lattice with a spln-—
particle sitting on every edge.

Hamiltonian:
H=— z A, — 2 B,,
v D
where v: vertex, p: face.

Stabilizers:

do= | oty | | o

jex(v) jEI(p)

where = (v): sites adjacent to v, d(p):

sites on the boundary of p.

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.
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Properties of stabllizers H==) A=) B,

v p
_ J _ j O O O O O O
Ay = 1—[ Oy » Bp = 1_[ Oz O O 0O O O 0O O
jex(v) j€I(p)
Recall the Pauli matrices:

(

[O'i,O}'] = ZiEiijk»
\ {O'l',O'j} — 25111

A

+O}'O'i, if i :j,
—0j 0, ifi #7J.

:}glq]:{

Commutation relations of stabilizers:
[Ay, Ayr] = [Bp'Bp’] = [Av' Bp] =0, O

for any vertices v, v' and faces p, p'.
Elgenvalues i 1 for a” Av y IB@;W, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




Properties of stabllizers

Under periodic boundary conditions:
# of spin-% particles: 2L?

# of stabilizers: Ny = Ng = L?
Constraints on stabilizers:

[ [4=]]E) =1
HBP = H(Uzj)z =1

# of independent stabilizers:
NA+NB_2 :Z(Lz—l)

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.
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The ground states === )5

Hamiltonian: H = — ), A, — 2., B).
= If 3 a state [y) such that

O
O
O
O
O
O

O
O
O

A =+ O O O O
v ) B ) ,forall v, p, L~ 1~
Bylt) = +1) o—fo+fo
O O O O
then [y) must be a ground state. o——o—-1 06 L
Oy XQ){lv O O
Suppose such state |P.s) exists. R
O & O O O 0o 0O
= Egslgs) = Hlpgs) = —2L7[gs). | T T ~ 1T ~ T~
O O O O O O O
Guess the degeneracy of such ground otdod ol ol o1 o
states: 22L°-2(1*~1) = 4,

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The ground states

The ground state degeneracy Is related to the topological property of

the system.

For torus, we have two non-contractive loops, which is related to four-

fold ground states.

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.
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The excited states H==) A~ )

To obtain the excited states, we start from
the ground state |.s).

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

To obtain the excited states, we start from
the ground state |.s).

Consider O'Zj|1/)05>.

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

To obtain the excited states, we start from | |
the ground state |.s).

Consider azjlt,bGS).

J _ i, J_ J
B,o, = Hiea(p) 0,0, = 0;B,,

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

v D
To obtain the excited states, we start from
the ground state | .s).
Consider azjlt,bGS). X.Av”
Bpo-z] = llicap) 9z - 0; = O'ZJBzm T2 X.T—Q——
( S K 4 Ve
: . —0z Ay ifj €x (), _| Xg [ Xg X
Avo-z] — HiE*(v) Oy - O_Z] = Z] ’ o ‘X v_J v"x
\+GZA,,, if j &x* (v). ® 0, ‘x

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

v D
To obtain the excited states, we start from
the ground state | .s).
Consider O'Zj|1/)05>.
Bpo-z] = Hiea(p) O-Zi ' O-Z] = Uz]Bp1
j o
: . —0; Ay, ifj €x (v), e e

A0, = Hie*(v)Ua@'Uz] =9 Z] ’ o J

\+JZA,,, if j &x* (v). g,

= Ho [hes) = (—212 + 2)a] [es).

We denote these two excitation modes by
“electric defect” e.

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

./
Similarly, consider o [¢s).

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

v p
- . ’ |
Similarly, consider o [¢s). A7
./ ./ ./
i _ ] X | X
Ayoy = llicuq)0x - 03 = 0y Ay,
x v
X Av y
® o
Yoo —{—

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

./
Similarly, consider o [¢s).

Avgic] — Hie*(v) O-Jlé ' 0-; (: Uk] Ay,
| L
y o —o, B,,ifj' € 0(v),
i€0(p) Tk By, ifj' & a(v).

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

./
Similarly, consider o [¢s).

AvO'; — Hie*(v) O-Jl; ' 0-; (: O-XJ Ay,
| LA
y o —o, B,,ifj' € 0(v),
i€ (p) k+ax B,,ifj" & 0(v). i
Io'X

= Ho, [Ygs) = (=217 + 2)a; |Pgs).

@16

We denote these two excitation modes by
“magnetic vortex” m.

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

aZj . creator of two “electric defect” e at
both vertices adjacent to the site |.

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

v p
aZj . creator of two “electric defect” e at
both vertices adjacent to the site |.
Now, consider acting o, operators on
adjacent edges:
o) ol

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

v p
aZj . creator of two “electric defect” e at
both vertices adjacent to the site |.
Now, consider acting o, operators on
adjacent edges:
A, which originally anti-commuted now GJ)'( A'j,'j’
. . i X2z Z
commute with ¢ o, . — 50— —

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

aZj . creator of two “electric defect” e at
both vertices adjacent to the site |.

Now, consider acting o, operators on
adjacent edges:
X Av KA1

since only two stabilizers A, on the end O e
of the operator- actlng edges does not Xo-eiéoz— -9

X

commute with ¢/, , we still have the N

same excitation by 2.

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

Define a string operator:
5.(C) =1ljec crzj for a path C.

= S,(C)|Ys): excited state with 2
electric defect at the end of the path C.

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

Define a string operator:
5.(C) =1ljec crzj for a path C.

= S,(C)|Ys): excited state with 2
electric defect at the end of the path C.

By acting a string operator, we can e C
generate or move electric defects e. _+ 0y

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

Define a string operator:
5.(C) =1ljec crzj for a path C.

= S,(C)|Ys): excited state with 2
electric defect at the end of the path C.

By acting a string operator, we can e C
generate or move electric defects e. _+ 0y
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The excited states H==) A~ )

Define a string operator:
5.(C) =1ljec crzj for a path C.

= S,(C)|Ys): excited state with 2
electric defect at the end of the path C.

By acting a string operator, we can e C
generate or move electric defects e. _+ 0y
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The excited states H==) A~ )

Similarly, we can define the string
operator for g; as following:

Sx(C") =1ljec 09{ for a path C' on the
dual lattice.

Then, S, (C")|yYss) is an excited state
with 2 electric defect at the end of C’.

By acting a string operator, we can
generate or move magnetic vortexes m.

e
B

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

Similarly, we can define the string
operator for g; as following:

S,(C") = Hjec 09{ for a path €’ on the @

: - b
dual lattice. T
Then, S,.(C")|Yss) is an excited state 0.
with 2 electric defect at the end of C’. @

By acting a string operator, we can
generate or move magnetic vortexes m.

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

Similarly, we can define the string

operator for ¢, as following: 0.
Sx(C") =Tljec 09{ for a path C' on the (w4 C

i Lo
dual lattice. P
Then, S, (C)|Y¢s) is an excited state s
with 2 electric defect at the end of C'. @

By acting a string operator, we can
generate or move magnetic vortexes m.

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

Similarly, we can define the string

operator for a; as following: v o
$,(€") =l;ec o} for a path ¢’ on the @ 4o c
dual lattice. O
Then, S, (C)|Y¢s) is an excited state s
with 2 electric defect at the end of C’. @

By acting a string operator, we can
generate or move magnetic vortexes m.

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

Similarly, we can define the string

operator for a; as following: v o
$,(€") =l;ec o} for a path ¢’ on the i c
dual lattice. o - O
Then, S, (C)|Yss) is an excited state Q), 0.
with 2 electric defect at the end of C’. @

By acting a string operator, we can
generate or move magnetic vortexes m.

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




The excited states H==) A~ )

Similarly, we can define the string

with 2 electric defect at the end of C’.

By acting a string operator, we can
generate or move magnetic vortexes m.

operator for ¢, as following: _—
$,(€") =l;ec o} for a path ¢’ on the i c
dual lattice. od o 0%
Then, S, (C)|Y¢s) is an excited state o | s

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




Quasiparticle excitation H=‘Z“v‘§%

So, what are these excitations?
Consider the Initial state:

|l/)initial> — Sz(CZ)Sx (Cl) |¢GS>-

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




Quasiparticle excitation H==) A=) B,

So, what are these excitations?
Consider the Initial state:
|l/)initial> — Sz(CZ)Sx(Cl)leS>-

With string operators, a magnetic vortex
Is moved around an electric defect. I 5
S 2

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




Quasiparticle excitation H==) A=) B,

So, what are these excitations?
Consider the Initial state:

[Winitiar) = S2(C2)Sx(C1)gs)- O
With string operators, a magnetic vortex - —
IS moved around an electric defect. L | -
_e+ VA Z +e_ f X

2

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




Quasiparticle excitation H==) A=) B,

v p
So, what are these excitations?

Consider the initial state: 0, oy
|l/)initial> — SZ(CZ)Sx(Cl)leS>- @ —————————————— L
With string operators, a magnetic vortex - —
IS moved around an electric defect. L | -
_9+ Z Z +e_ ! X
lox

@-----.@.1 ____________________________

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




Quasiparticle excitation H==) A=) B,

So, what are these excitations?
Consider the initial state: 0, oy

|l:[)l'NitiCll> — Sz(CZ)Sx(Cl)|¢GS> Y S iC’
With string operators, a magnetic vortex |

Is moved around an electric defect. R CZUZJ' AP 0,
Final state: _+ +_
‘l/)fm(al>) 5(‘ (§ )lé/hnﬁ:zal)) Ox bx
— S C S CZ S Cl l/JGS ______q;_____ N4 :

= -5 (Cz)s (C )5 (C1)|¢GS) @ — U_€n>_0_ —

= _fli(cz)sps(cl)(sx(cl)|¢GS>) LELT 5F A

— ~ | Winitial

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




Braidings: exchange of quasiparticles

Under the rotation of “m” around “e”, t4 e m e m

‘l/)final> — _llpinitial>- | \

Topologically, rotating a particle around the
other is equivalent to double exchanges of
their position. —

LT

Exchange leads to R,,,, = e 2 of phase
change. \ \

= (R,,)? = e'™ = —1 for a whole rotation.

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




Anyonic statistics

Phase factor due to exchhatmge: t 4 e m e m
R,,, =e2, \
which i1s neither bosonic nor fermionic.

Thus, we can conclude that these are
guasiparticles which follow statistics —
completely different from the ones of
ordinary particles.

We call those quasiparticles as Anyon. \ \

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




Conclusion

Toric Code system has excitation states =" |
following anyonic statistics: exchange of \\ > | \ - }Li_\

. i &
particles leads to phase change by ez. \L\:\ // A& A

These anyons can be used to store

guantum information: braidings of anyonic
particles store the record of event that they E ¢ gy cited states
exchanged their positions. =

The degenerate ground states of the Toric

Code themselves can be used as qubits. Gap

v

Ground states

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.
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Appendix. Ground state degeneracy

For a closed path C, then S,(C)
commutes with every stabilizer.

= S,(C)|yY¢s): ground state for a
closed path C.

C
O-Z O-Z
a, 0,
o, g,
O-Z O-Z

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




Appendix. Ground state degeneracy

For a closed path C, then S,(C)
commutes with every stabilizer.

= S,(C)|yY¢s): ground state for a c'
closed path C. ol i1 1. n

Similarly, for a closed path C’ defined 5 ;
on the dual lattice, S, (C") commutes o ox
with every stabilizer. L

= S,.(C)|Yes): ground state for a g e on
closed path C’.

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




Appendix. Ground state degeneracy

We assumed that |y .¢) such that

Aylpgs) = +pgs)
BylYgs) = +lpgs)

and speculated that there would be 4- ; i
fold degeneracy. N :

for all v, p, exists,

However, it appears that there exists
Infinite-fold degeneracy for each
possible form of closed loop:

for any closed loop C in lattice or C' in
dual lattice, S,(C)|Yess) and S, (C)|Yes)
are also ground states.

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




Appendix. Ground state degeneracy

Then, what is wrong with our logics?

In fact, 5,(C)lgs) and S, (C)Ipgs) al C
stands for the same state. |

We claim that there exists exactly 4- | |
fold degenerate ground states. S i

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




Appendix. Ground state degeneracy

Claim 1: [y) = [],(1 + 4,) |0), where |0) is a tensor product of up-
spin state for each site, Is a ground state.

B,|¥) = (I, (1 + 4,1))By0) = [1h),
Aplpp) = A, TT,/(1 + 4,1) |0)

= [,/ C, |0), where C,» = {

= [¥).
= Hlp) = —2L*[).

1+A,, if v’ # v,

=1 A /f !/
Av(l_l'Av),ifU’ = 7, T pHyIorany v

Thus, we may take |Y.s) = c|y) for proper normalization const. c.

Valenti, A., E. van Nieuwenburg, S. Huber and E. Greplova (2019). "Hamiltonian learning for quantum error correction." Physical Review Research 1(3): 033092.




Appendix. Ground state degeneracy

Definition.

Cz
We define Z; as a string operator on 2
the non-contractible Ioop Cy,: //’\\
Z; = S,(Cz,) = H]ECZO' fori = 1,2. ( )
N o
Similarly, define X; on the non- R~

contractible loop Cy, in dual lattice:
X; = S¢(Cx,) = jec, 01, fori = 1,2.

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation by anyons." Annals of Physics 303(1): 2-30.




Appendix. Ground state degeneracy

Definition.

We define Z; as a string operator on
the non-contractible Ioop Cy,:

Z; = S,(Cz,) = HJECZU fori = 1,2.

Similarly, define X; on the non-
contractible loop Cy, in dual lattice:

X; = Sx(Cx,) = jecy, 0z for i = 1,2,

x>
|
|
|
1
i
|

I N - -1---------------

C, C

Kitaev, A. Y. (1997). "Quantum computations: algorlﬂﬂms aRd error correction." Russian Mathematical Surveys 52(6): 1191.




Appendix. Ground state degeneracy

Z — H]ECZ O-z’ X H]ECX OJ
Commutation relations:
1Z1,Z;] = |X1,X2] =0,

1Z1, X521 = [Z5,X1] =0,

Z1X1 = —XZq,Z,X, = —X,Z5,
71 =75 =X{ = X5 = 1.

x>
|
|
|
1
i
|

I N - -1---------------

C, C

Kitaev, A. Y. (1997). "Quantum computations: algorlﬂﬂms aRd error correction." Russian Mathematical Surveys 52(6): 1191.




Appendix. Ground state degeneracy

Claim 2: Take |a, b) = 0% 14022 1),

fora,b = +1. Then, |a, b) composes 4-
fold degenerate ground states.

:Av' Zl —

:Bp'Zi: =

~Ayla,b) =

B,la, b)

Lljex(v) O-x 'H]ECZ ] = O X A
[ Cz, x| xV
11jea(p) GZ ’HJECZ ] = 0. xL 4 '
1+aZ, 1+bZ ® v
Ay—=—"1Y¢s) = la,b), 1re—"0
X‘V

1+aZ, 1+bZ
= Bp - - |l/)GS> = |a, b).

2 2

2 2

C

Kitaev, A. Y. (2003). "Fault-tolerant quantum computation k%/]anyons.” Annals of Physics 303(1): 2-30.




Remarks for Appendix

1. Toric Code system has four-fold degenerate
ground states given by |a, b) =

1+;LZl 1+;9Z2 Hv(l + Av) |TTT ) fora,b = +1.

2. Its degeneracy is based on the system’s
topological property: if it were not for torus,
say for 2D square lattice, the system has non-
degenerate ground state, since every loop
can be represented as a product of stabilizers.
(.e., every loop is contractible.)

3. Based on the four degenerate ground
states, we can construct 2 qubits and thus can
be used in the field of quantum computation.

t Excited states

A

Gap

v

Ground states



