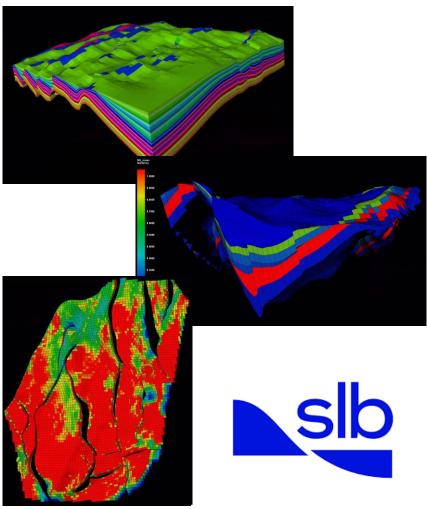
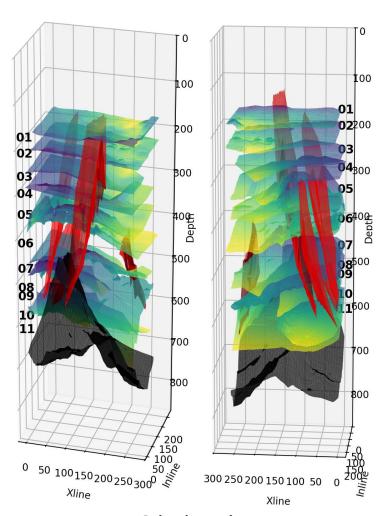
Superconducting Magnets Design

Donghwan Kim

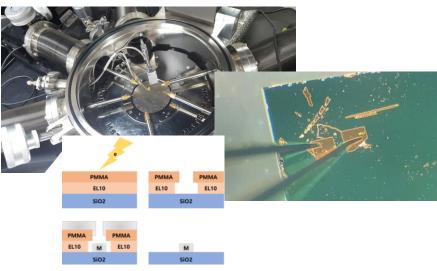
Part 0 자기소개

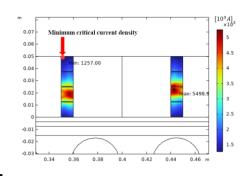

김동환 서울대학교 에너지자원공학과 3학년 (전기정보공학부 복수전공) ENTJ

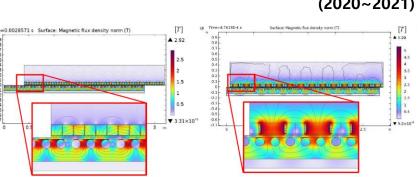
My home and Goldy


Part 0 자기소개

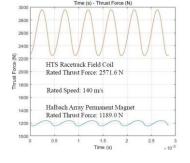
김동환 서울대학교 에너지자원공학과 3학년 (전기정보공학부 복수전공) ENTJ

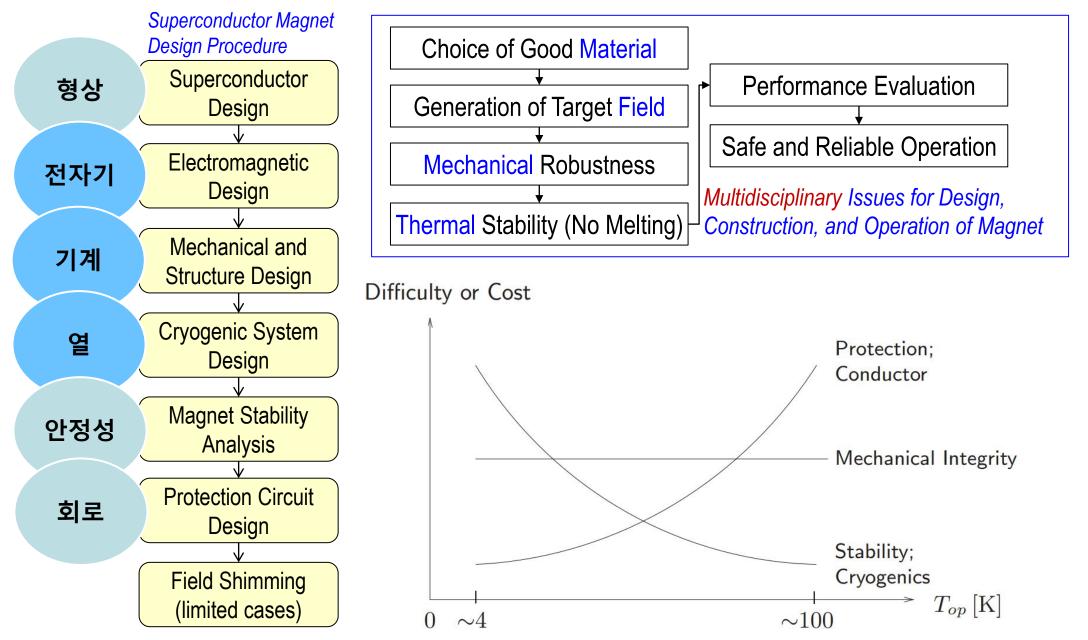

SLB(Schlumberger) Japan CCS Storage Assessment / Seismic Analysis (2024)


Seismic Project
Petroleum Engineering / Payzone
(2024)

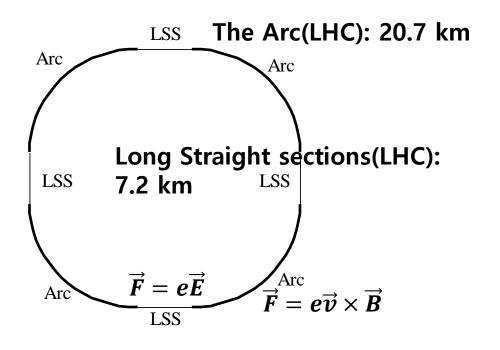


김동환 서울대학교 에너지자원공학과 3학년 (전기정보공학부 복수전공) ENTJ

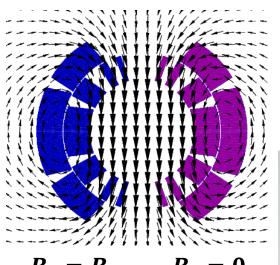

MoS2 Crystal / HfO2 / e-beam lithography / Raman spectroscopy / I-V curve (2017)

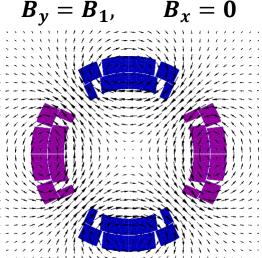

Funtheric of Paravelvita Nanagyustals (CaPla (Par(Cl) 2)

Synthesis of Perovskite Nanocrystals (CsPb(Br/Cl)3)
Surface Engineering / PLQE, FWHM
(2020~2021)


Superconducting Rotating Machine Design
HTS Critical Current density, Temperature, Magnetic field / COMSOL Multiphysics / FEM (2023~)

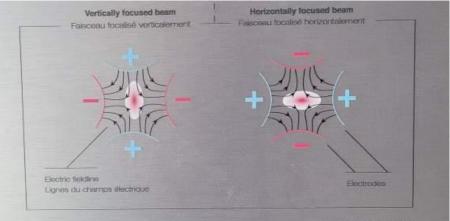
Common Procedure of Superconductor Magnet Design




입자가속기에 필요한 자석 형상

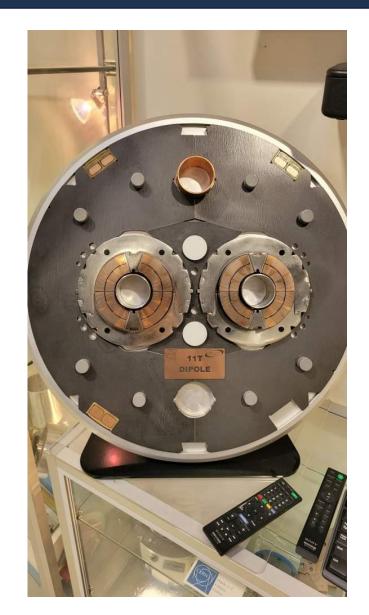
Particle accelerator에서 Magnet의 역할

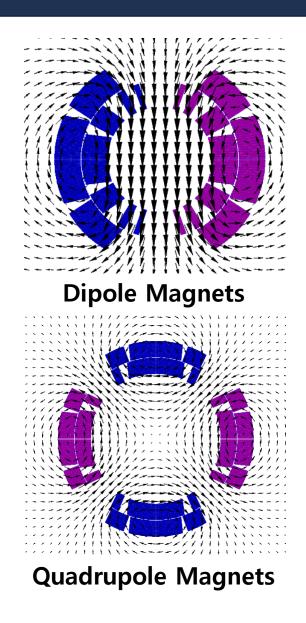
- Particle이 가속되면 에너지가 증가
- 곡률을 가지고 회전하려면 자기장이 필요

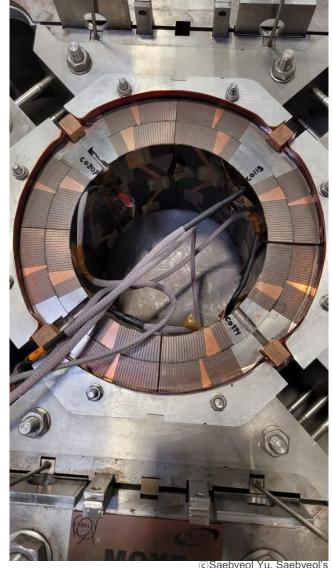


$$B_y = Gx$$
, $B_x = Gy$

Dipole Magnets

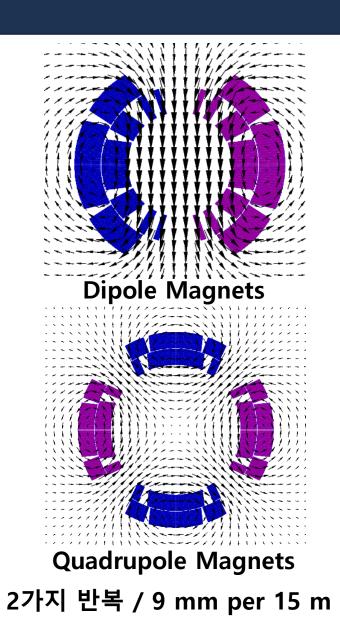

• 일정한 장을 주면서 원형 궤도를 만듦

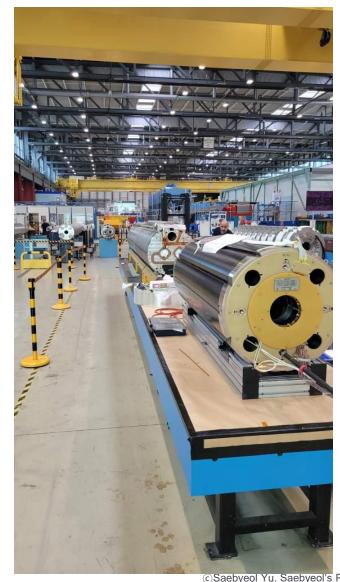



Quadrupole Magnets

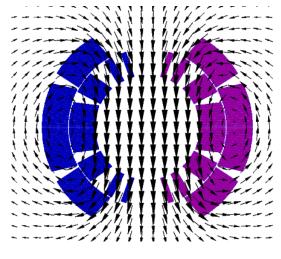
- Particles가 궤도에 집중하게 함
- 지속적으로 Focusing이 일어나게 함
- 중력장에 의해 떨어지는 것도 잡아줌 (최소 60 ms마다 잡아줘야 함)

입자가속기에 필요한 자석 형상





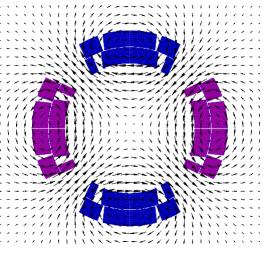
입자가속기에 필요한 자석 형상



©Saebyeol Yu. Saebyeol's PowerPoint

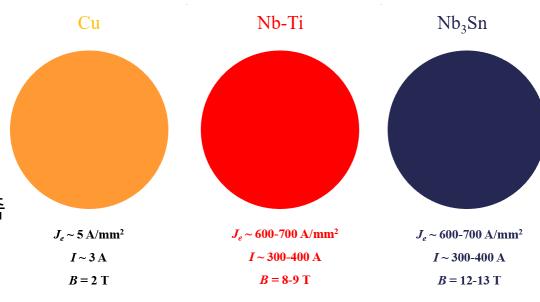
자기장 세기 향상에서의 초전도체의 역할

Dipole Magnets

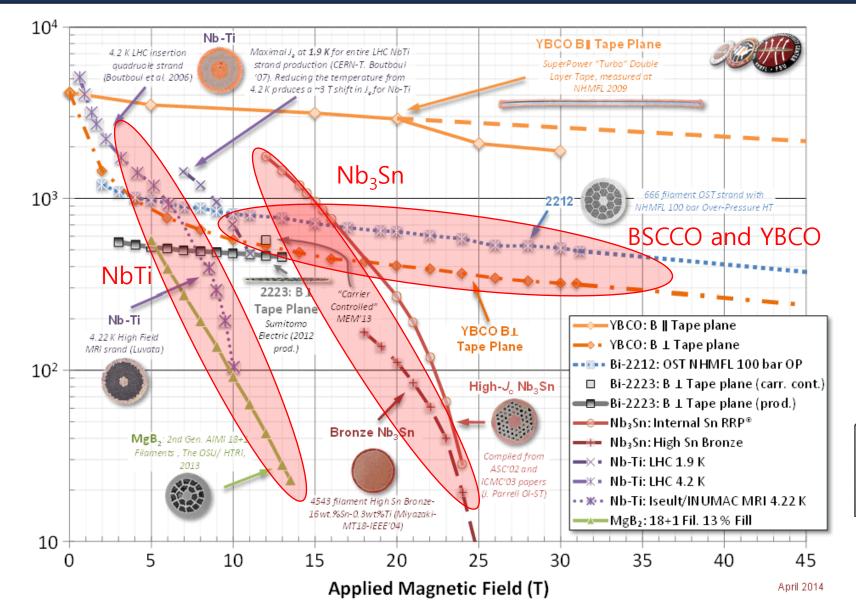

- 일정한 장을 주면서 원형 궤도를 만듦
- B가 커질수록 허용 에너지가 커짐

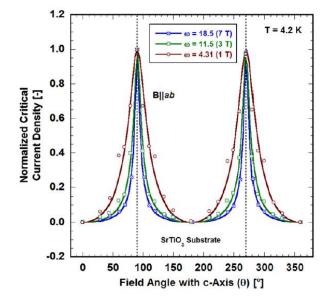
$$B_y = -\frac{\mu_0 J_0}{2} w, \qquad B_x = 0$$

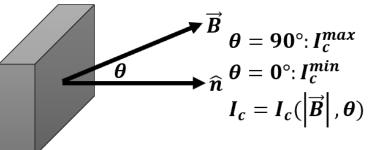
일반적으로 B가 커질수록 좋음


→ J가 높아질 수록 B를 높일 수 있음

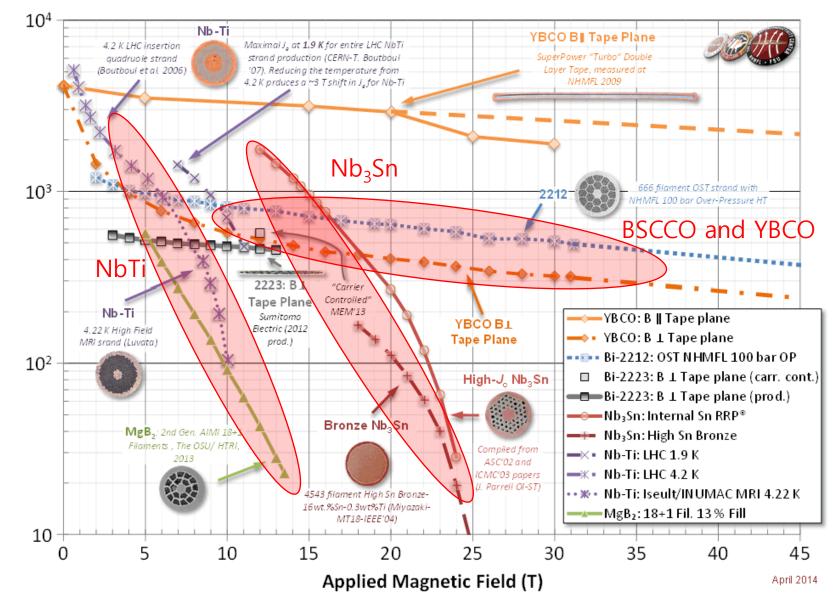
0.85 mm 직경 Strand 기준 전류밀도


Quadrupole Magnets


- Particles가 궤도에 집중하게 함
- 지속적으로 Focusing이 일어나게 함
- 중력장에 의해 떨어지는 것도 잡아줌 (최소 60 ms마다 잡아줘야 함)
- *B*가 커질수록 Focusing이 잘 됨



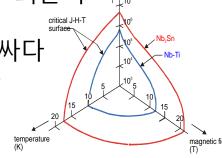
$$B_y = Gx$$
, $B_x = Gy$, $G = -\frac{\mu_0 J_0}{2} \ln \frac{r_{out}}{r_{in}}$


HTS and LTS

HTS and LTS

HTS (BSSCO & YBCO)

- 100 K 정도의 높은 T_C
- · 150 T 정도의 높은 H_C
- *J*가 *H*에 거의 불변 (Flat)
- 매우 비싸다 (NbTi의 10배)
- 원하는 형태로 가공하기 어렵고, 온도/압력 조건이 까다로운 편이다.

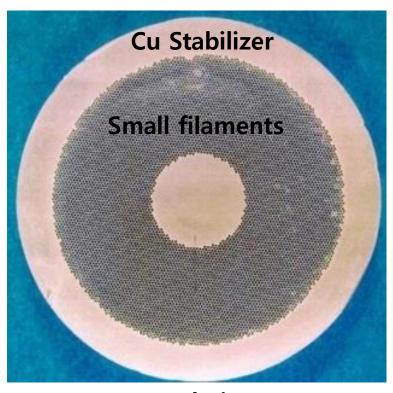

LTS (NbTi & Nb3Sn)

- 18 K 정도로 낮은 T_C
- 28 T 정도의 낮은 H_C

J가 H에 매우 의존적

• HTS 보다는 싸다

• 현재 사용 중


초전도 자석 구조: Strand and Cable

1. Strand

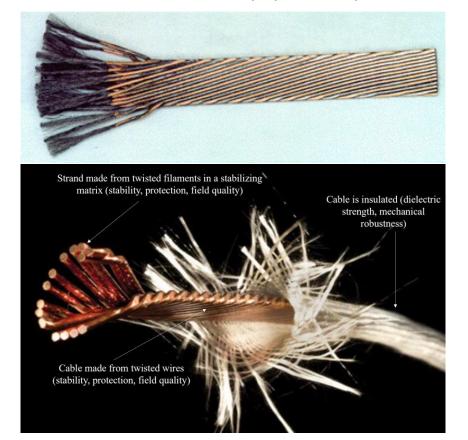
- 초전도 선재는 Small filaments와 그것을 둘러싸는 Cu Stabilizer로 구분된다.
- 이를 "Multi-filament wire" 내지는 "Strand"라고 한다.

2. Cable

• 입자가속기에는 주로, 앞에서 말한 Strand들을 여러 개 꼬아서 "Multi-strand cable" 내지는 "Rutherford cable"이라고 한다.

3. Cable insulation

Polyimide나 Fiber glass로 한 번 더 감아준다.


Strand made from twisted filaments in a stabilizing matrix (stability, protection, field quality) Cable is insulated (dielectric strength, mechanical Cable made from twisted wires (stability, protection, field quality)

NbTi

Part 1 초전도 자석 구조: Strand and Cable

2. Cable

• 입자가속기에는 주로, 앞에서 말한 Strand들을 여러 개 꼬아서 "Multi-strand cable" 내지는 "Rutherford cable"이라고 한다.

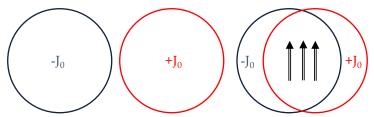
초전도 자석 구조: Strand and Cable

1. Strand에는 왜 Stabilizer를 두는가?

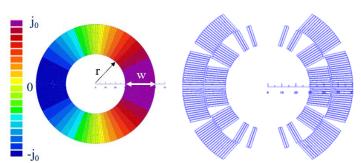
- Flux jumps: 국소적인 열적 변동이 임계 전류 밀도를 살짝 바꾸고, 이게 자속을 이동시키면서 전력 소비. 따라서 자속을 이동하지 못하게 하는 역할.
- Quench protection: 초전도체는 초전도성을 잃으면 큰 저항이 나타나면서 타버리는 현상 발생. 알아서 Copper Matrix로 잘 빠져나가게...
- Persistent Current: 외부 자기장이 변할 때 Filament 일부가 자기장이 차폐되면서, 외부 자기장이 일정하게 유지되면 감소 않고 지속... 열/전류/응력 개선
- Inter-filament Coupling: 시변 자기장에 filament가 놓이면 AC loss가 발생하면서 Flux가 서로 coupling 되는, Flux jump 발생. 꼬아서 해결.

2. Cable은 왜 Twisted된 모양인가?

- Inter-strand coupling current 감소
- 기계적 안정성 증가
- 전류 재분배: 하나의 strand에서 defect가 발생한다면, 다른 strands로 전류가 흐르게 한다.
- **Turns수 감소**: Winding이 편리하고 Inductance 를 줄일 수 있다.
- 전체 길이 감소

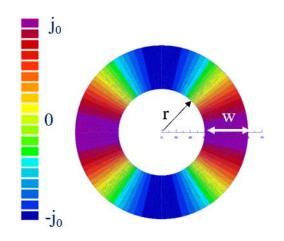

3. Cable insulation을 해서 무엇을 얻을 수 있나?

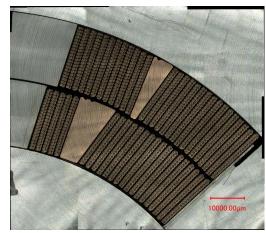
- 전기적 특성 향상: Quench 발생 후 turn-to-turn Voltage에 더 잘 저항할 수 있다.
- **기계적 특성 향상**: 고압 환경을 잘 버틸 수 있다.
- **공극률 향상**: 액체 헬륨 순환을 더 잘 할 수 있다.
- 방사능 저항 증가


초전도 자석으로 원하는 자기장을 만드는 방법

Dipole Field 만들기

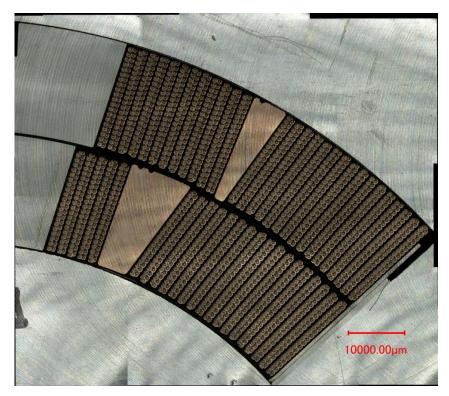
- Perfect Dipole을 만들고 싶다면, Circle/Ellipse를 Intercept시키면 된다. 한 방향만 남게 된다.
- 다만, **Flat cable에서 적용하기 어렵고**, Aperture가 Circular하지 않기 때문에 바로 적용하기 어렵다.




• 따라서, **적당히 cos θ에 따라 전류 분포**를 주면서 flat cable로 구현 가능하도록 근사한다. 이러면 **Perfect dipole은 아니지만 원하는 모양**을 만들 수 있다.

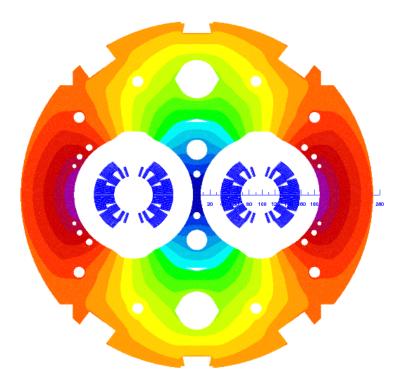
2-n Pole Field 만들기

- 앞에서 했던 것과 같이, n개의 intersecting ellipse를 가지도록, cos nθ 에 따라 같은 논리로 적용한다.
- n이 2라면, Quadrupole에 해당한다.
- Approximation은 SINC function을 이용하면 어느 정도 가능하다는 것이 알려져 있다.



초전도 자석 구조: Coil and Iron yoke

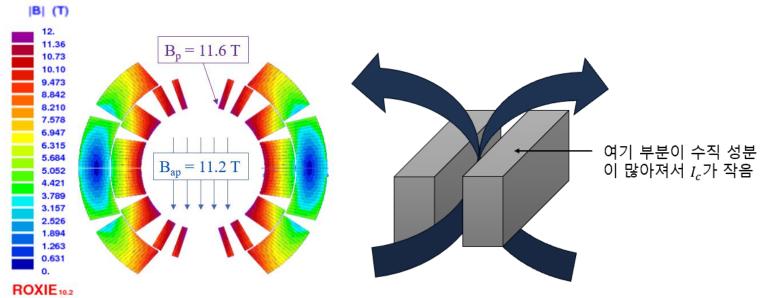
The Coil

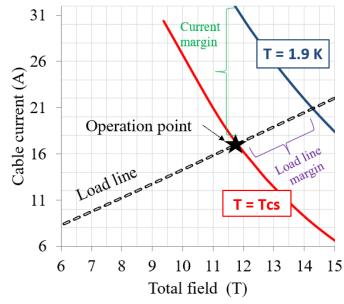

- 단면 정밀도를 micro 미터 단위로 맞추는 것이 중요
- 가공 방식과 재료에 따라, Coil 자체의 기계적 특성이 변화할 수 있음.

: Nb3Sn의 경우, Brittle하게 뽑히는 특성

The Iron yoke

- Fringe Field 방지: Coil 밖에서 Magnetic flux를 붙잡아서 회귀, Field 세기 향상
- 기계적 안정성 도모

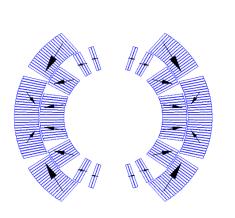

초전도 자석 설계 상의 주의점


Field 조건 관련

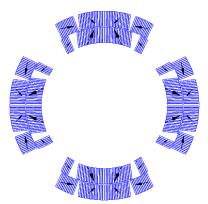
- 자석 설계는 전체 형상에서 Weakest point에 해당
 하는 부분, 즉 Peak Field인 지점을 찾는 것이 중요
- Aperture Field는 설계적 문제에는 관련 없고, 자석을 지나는 Peak Field만 중요하다.
- 해당 Peak Field를 기준으로 Operating Margin

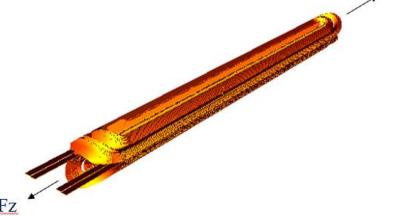
Current density 조건 관련

- Load Line margin: Operating current와 Critical current가 같아지는 line을 Load Line Current라고 한다.
- LHC에서는 Operating current를 Load line current의 80%로 잡는다.

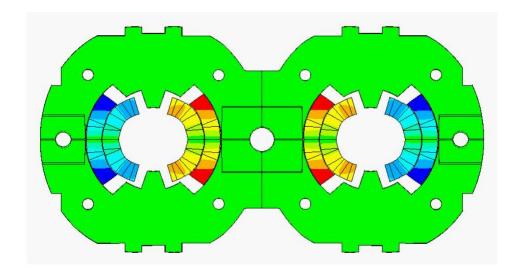


기계적 설계


고자기장 / 로렌츠 힘 증가 / 응력 파괴 발생


• 보통 Azimuthal하게는 Mid-plane으로, Radial하게는 Outward하게 응력이 발생하는 경향이 있음

• Coil End에서는 Longitudinal direction 으로 미는 경향이 있음

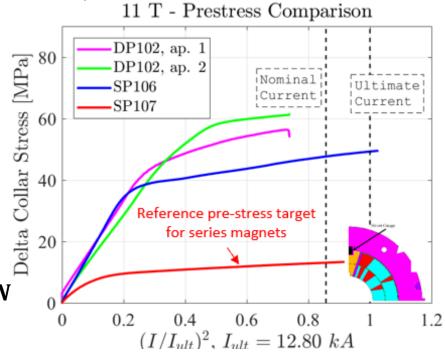

일반적으로 발생하는 **응력은 자기장** 제곱에 비례하고, Bore radius에 대해 Radial하게는 비례하고 Axial하게는 제곱에 비례한다.

로렌츠 힘에 의한 영향

- Coil 형상 변화: Field Quality 저하,
 가속 주파수 불균형
- Displacement **발생**: 마찰 응력 축적
- (NbTi) Insulation에 Damage 발생
- (Nb3Sn) **Conductance 저하** 따라서, **Stress limit 조건도 지켜야** 함

Coil Stress의 종류

- Collaring: Coil 2개를 서로 걸면서 발생하는 응력
- Yoking: Coil과 그 주변 Yoke 간에 발생하는 응력
- Shell welding: Yoke를 싸는 Shell로부터 오는 응력
- Cool-down: 서로 다른 열수축에 따른 열 응력
- Excitation: 극 방향으로 갈 수록 응력 차이 발생


해결 방법

- **Pre-stress**: 자기장에 의한 변형이 발생하더라도 탄성 변형에 의해 Stress를 받쳐줄 수 있도록, 고 의적으로 Stress를 가하면서 결합시킨다.
- Axial support: Longitudinal 방향으로 생기는 응력을 보상한다.

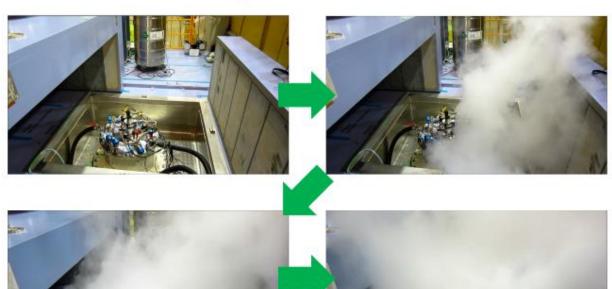
이러한 Stress를 막기 위한 주 목적은,

- Coil motion의 최소화
- Cost 최소화,
 그것을 위한 Dimension 최소화
- 소성 변형 전까지의 최대 응력 제한

LHC의 경우, $F_x = 1.7MN/m$, $F_z = 265 kN$

Part 1 열적 설계

Quench: 비가역적으로 초전도성을 상실하는 현상 일반적으로 Heat generation이 Cooling보다 크면 발생


- Mechanical events: 마찰변형, Shell 파괴
- **Electromagnetic events**: Flux jumping, AC loss
- Thermal events: Cooling 실패
- Nuclear events: Particle shower

Quench가 발생하면 Magnetic Energy가 모두 Thermal Energy로 치환되면서, **Joule Heating**이 발생, 타버린다.

단 한 곳에서도 Limit을 만족하지 않는다면, Quench!

Quench situation

- Mechanical events: 마찰변형, Shell 파괴
- **Electromagnetic events**: Flux jumping, AC loss
- Thermal events: Cooling 실패
- Nuclear events: Particle shower

Quench가 발생하면 Magnetic Energy가 모두 Thermal Energy로 치환되면서, **Joule Heating**이 발생, 타버린다.

단 한 곳에서도 Limit을 만족하지 않는다면, Quench!

Quench Protection

- External-dump: Quench가 발생하면 Magnet 외부에 R_{quench} 보다 아주 큰 R_{dump} 를 둬서, Magnet에서타지 않고 R_{dump} 에서 에너지를 쓰도록 만든다.
- Self-dump: Quench가 발생하면 short circuit을 만들어서 internal resistance가 0이 되도록 만든다. 최대한 Voltage를 유지하면서 Current를 유지하는 방식.
 (LHC에서 주로 사용하는 방법)

$$I(t) = I_0 e^{-\frac{t}{L}R(t)} \approx I_0 e^{-\frac{tR_d}{L}}$$

보통 Quench 발생 후 5 ms 후에 발생을 알아차리고, Current 감소까지 40 ms 정도 걸리는데, 이 안에 350 K 이하의 온도 조건으로 회복시켜야 한다.

Adiabatic heat balance

Quench는 **어떤 특정한 장소(hot-spot)에 단열적**으로 발생하는 현상에 해당한다.

$$\bar{C}\frac{\partial \boldsymbol{T_{cond}}}{\partial t} = \eta_{Cu}\boldsymbol{J^2}$$

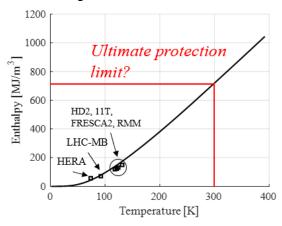
 (\bar{C}) : average heat capacity, η_{Cu} : Resistivity of Cu)

$$\int_{T_{op}}^{T_{max}} \frac{\bar{C}}{\eta_{Cu}} dT = \int_{0}^{\infty} J^{2} dt$$

왼쪽은 Cable이 Current를 버틸 수 있는 역량

: Quench Capital (Γ)

오른쪽은 Decay하는 Current를 적분한 Load

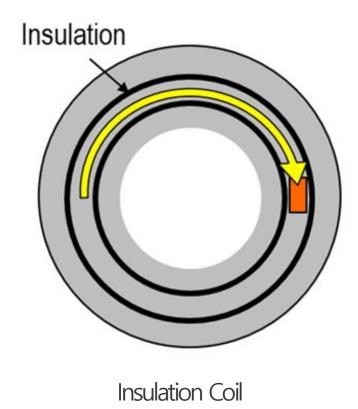

: Quench tax

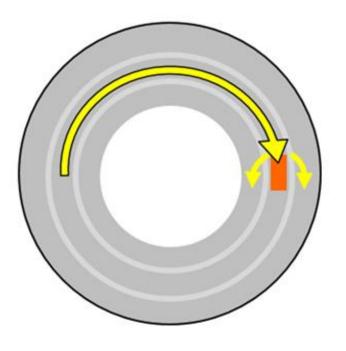
이로서 Quench 시의 Hot-spot Temperature 계산가능

Protection Limit

이상적이라면, Quench가 시작되자마자 모든 자석이 전부 Quench 상태에 돌입해야 한다.

실제로는, Quench가 되었다는 것을 Detect하기까지의 시간이 필요하므로 Delay가 존재한다!

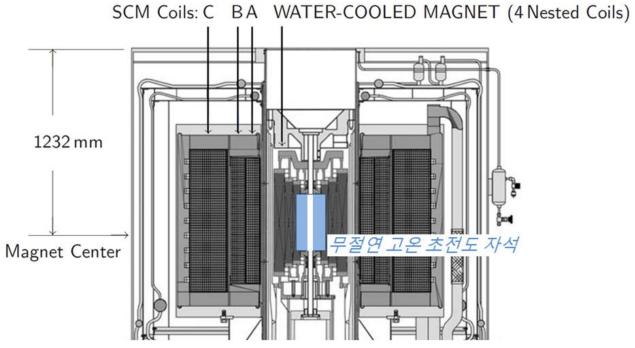

Enthalpy of the strand volume (neglecting the insulation)


Detecting은,

- Voltage level이 Noise를 넘는 수준인가? 3~5 ms
- Validation time(Voltage spike를 억제 실패)? 10 ms
 을 통해 일어난다.

NI (No-insulation) High Temperature Supercon. Winding

2011년 MIT


No-Insulation Coil

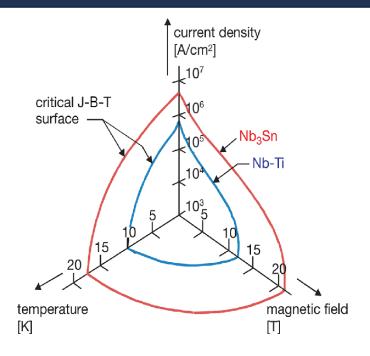
45.5 Tesla Coil

2019년 MIT

2019년 6월 Nature 게재

미국 고자기장 연구소

2000년 44.8 Telsa 자석 대비 Size 1/100배


Future Outlook

FCC (Future Circular Collider)

Magnet의 관점에서는...
LTS인 Nb3Sn의 설계를 개선하는 식과
HTS 재료를 새롭게 개발해서 도입할 예정

목표는 20 Tesla 정도인데...

LTS Nb3Sn이 16 T에 이르면 Current density를 거의 주 지 못하는 상황이 된다.

HTS

LTS는 원리가 어느 정도 확립되어서 Homogeneous 한 자기장을 생성하지만, HTS는 자기장의 균질성을 보장하기 어렵고 Quench가 생길 곳을 알기 어렵다.

Future Outlook

FCC (Future Circular Collider)

Magnet의 관점에서는...
LTS인 Nb3Sn의 설계를 개선하는 식과
HTS 재료를 새롭게 개발해서 도입할 예정

목표는 20 Tesla 정도인데...

- LTS를 이용해서 16 Tesla 도달 목표
- HTS를 이용해서 5 Tesla **이상 도달** 목표
- 총합 20 Tesla 이상 안정적 도달 목표

Large scale manufacturing과 Cost optimizing이 중요

만약 **16 Tesla 이상이 필요하다면 무조건 HTS**를 써야 따라서, **HTS를 LTS안에 삽입**하는 식으로 제작

