
Chapter 3

Beaming

3.1 Rulers and clocks

Special relativity taught us two basic notions: comparing dimensions and
flow of times in two different reference frames, we find out that they differ. If
we measure a ruler at rest, and then measure the same ruler when is moving,
we find that, when moving, the ruler is shorter. If we syncronize two clocks
at rest, and then let one move, we see that the moving clock is delaying.
Let us see how this can be derived by using the Lorentz transformations,
connecting the two reference frames K (that sees the ruler and the clock
moving) and K ′ (that sees the ruler and the clock at rest). For semplicity,
but without loss of generality, consider a a motion along the x axis, with
velocity v ≡ βc corresponding to the Lorentz factor Γ. Primed quantities
are measured in K ′. We have:

x′ = Γ(x− vt)

y′ = y

z′ = z

t′ = Γ
(

t− β
x

c

)

(3.1)

with the inverse relations given by

x = Γ(x′ + vt′)

y = y′

z = z′

t = Γ

(

t′ + β
x′

c

)

. (3.2)

The length of a moving ruler has to be measured through the position of its
extremes at the same time t. Therefore, as ∆t = 0, we have

x′2 − x′1 = Γ(x2 − x1)− Γv∆t = Γ(x2 − x1) (3.3)
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i.e.

∆x =
∆x′

Γ
→ contraction (3.4)

Similarly, in order to determine a time interval a (lab) clock has to be
compared with one in the comoving frame, which has, in this frame, the
same position x′. Then

∆t = Γ∆t′ + Γβ∆
x′

c
= Γ∆t′ → dilation (3.5)

An easy way to remember the transformations is to think to mesons pro-
duced in collisions of cosmic rays in the high atmosphere, which can be
detected even if their lifetime (in the comoving frame) is much shorter than
the time needed to reach the earth’s surface. For us, on ground, relativistic
mesons live longer (for the meson’s point of view, instead, it is the length of
the travelled distance which is shorter).

All this is correct if we measure lengths by comparing rulers (at the same
time in K) and by comparing clocks (at rest in K ′) – the meson lifetime is
a clock. In other words, if we do not use photons for the measurement
process.

3.2 Photographs and light curves

If we have an extended moving object and if the information (about position
and time) are carried by photons, wemust take into account their (different)
travel paths. When we take a picture, we detect photons arriving at the same
time to our camera: if the moving body which emitted them is extended,
we must consider that these photons have been emitted at different times,
when the moving object occupied different locations in space. This may
seem quite obvious. And it is. Nevertheless these facts were pointed out in
1959 (Terrel 1959; Penrose 1959), more than 50 years after the publication
of the theory of special relativity.

3.2.1 The moving bar

Let us consider a moving bar, of proper dimension "′, moving in the direction
of its length at velocity βc and at an angle θ with respect to the line of sight
(see Fig. 3.1). The length of the bar in the frame K (according to relativity
“without photons”) is " = "′/Γ. The photon emitted in A1 reaches the
point H in the time interval ∆te. After ∆te the extreme B1 has reached
the position B2, and by this time, photons emitted by the other extreme
of the bar can reach the observer simultaneously with the photons emitted
by A1, since the travel paths are equal. The length B1B2 = βc∆te, while
A1H = c∆te. Therefore

A1H = A1B2 cos θ → ∆te =
"′ cos θ

cΓ(1− β cos θ)
. (3.6)
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Figure 3.1: A bar moving with velocity βc in the direction of its length. The
path of the photons emitted by the extreme A is longer than the path of
photons emitted by B. When we make a picture (or a map) of the bar, we
collect photons reaching the detector simultaneously. Therefore the photons
from A have to be emitted before those from B, when the bar occupied
another position.

Note the appearance of the term δ = 1/[Γ(1−β cos θ)] in the transformation:
this accounts for both the relativistic length contraction (1/Γ), and the
Doppler effect [1/(1 − β cos θ)] (see below, Eq. 3.15). The length A1B2 is
then given by

A1B2 =
A1H

cos θ
=

"′

Γ(1− β cos θ)
= δ"′. (3.7)

In a real picture, we would see the projection of A1B2, i.e.:

HB2 = A1B2 sin θ = "′
sin θ

Γ(1− β cos θ)
= "′δ sin θ, (3.8)

The observed length depends on the viewing angle, and reaches the maxi-
mum (equal to "′) for cos θ = β.

3.2.2 The moving square

Now consider a square of size "′ in the comoving frame, moving at 90◦ to the
line of sight (Fig. 3.2). Photons emitted in A, B, C and D have to arrive
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Figure 3.2: Left: A square moving with velocity βc seen at 90◦. The observer
can see the left side (segment CA). Light rays are assumed to be parallel,
i.e. the square is assumed to be at large distance from the observer. Right:
The moving square is seen as rotated by an angle α given by cosα = β.

to the film plate at the same time. But the paths of photons from C and
D are longer → they have to be emitted earlier than photons from A and
B: when photons from C and D were emitted, the square was in another
position.

The interval of time between emission from C and from A is "′/c. During
this time the square moves by β"′, i.e. the length CA. Photons from A and
B are emitted and received at the same time and therefore AB = "′/Γ. The
total observed length is given by

CB = CA+AB =
"′

Γ
(1 + Γβ). (3.9)

As β increases, the observer sees the side AB increasingly shortened by
the Lorentz contraction, but at the same time the length of the side CA in-
creases. The maximum total length is observed for β = 1/

√
2, corresponding

to Γ =
√
2 and to CB = "′

√
2, i.e. equal to the diagonal of the square. Note

that we have considered the square (and the bar in the previous section) to
be at large distances from the observer, so that the emitted light rays are
all parallel. If the object is near to the observer, we must take into account
that different points of one side of the square (e.g. the side AB in Fig.
3.2) have different travel paths to reach the observer, producing additional
distortions. See the book by Mook and Vargish (1991) for some interesting
illustrations.
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Figure 3.3: An observer that sees the object at rest at a viewing angle given
by sinα′ = δ sinα, will take the same picture as the observer that sees the
object moving and making an angle α with his/her line of sight. Note that
sinα′ = sin(π − α′).

3.2.3 Rotation, not contraction

The net result (taking into account both the length contraction and the
different paths) is an apparent rotation of the square, as shown in Fig. 3.2
(right panel). The rotation angle α can be simply derived (even geometri-
cally) and is given by

cosα = β (3.10)

A few considerations follow:

• If you rotate a sphere you still get a sphere: you do not observe a
contracted sphere.

• The total length of the projected square, appearing on the film, is
"′(β+1/Γ). It is maximum when the “rotation angle” α = 45◦ → β =
1/
√
2 → Γ =

√
2. This corresponds to the diagonal.

• The appearance of the square is the same as what seen in a comoving
frame for a line of sight making an angle α′ with respect to the velocity
vector, where α′ is the aberrated angle given by

sinα′ =
sinα

Γ(1− β cosα)
= δ sinα (3.11)

See Fig. 3.3 for a schematic illustration.
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Figure 3.4: Difference between the proper time and the photons arrival
time. A lamp, moving with a velocity βc, emits photons for a time inter-
val ∆t′e in its frame K ′. The corresponding time interval measured by an
observed at an angle θ, who receives the photons produced by the lamp is
∆ta = ∆t′e/δ.

The last point is particularly important, because it introduces a great sim-
plification in calculating not only the appearance of bodies with a complex
shape but also the light curves of varying objects.

3.2.4 Time

Consider a lamp moving with velocity v = βc at an angle θ from the line
of sight. In K ′, the lamp remains on for a time ∆t′e. According to special
relativity (“without photons”) the measured time in frame K should be
∆te = Γ∆t′e (time dilation). However, if we use photons to measure the time
interval, we once again must consider that the first and the last photons have
been emitted in different location, and their travel path lengths are different.
To find out ∆ta, the time interval between the arrival of the first and last
photon, consider Fig. 3.4. The first photon is emitted in A, the last in B.
If these points are measured in frame K, then the path AB is

AB = βc∆te = Γβc∆t′e (3.12)

While the lamp moved from A to B, the photon emitted when the lamp was
in A has travelled a distance AC = c∆te, and is now in point D. Along the
direction of the line of sight, the first and the last photons (the ones emitted
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in A and in B) are separated by CD. The corresponding time interval,
CD/c, is the interval of time ∆ta between the arrival of the first and the
last photon:

∆ta =
CD

c
=

AD −AC

c
= ∆te − β∆te cos θ

= ∆te(1− β cos θ)

= ∆t′eΓ(1− β cos θ)

=
∆t′e
δ

(3.13)

If θ is small and the velocity is relativistic, then δ > 1, and ∆ta < ∆ts, i.e.
we measure a time contraction instead of time dilation. Note also that we
recover the usual time dilation (i.e. ∆ta = Γ∆t′e) if θ = 90◦, because in this
case all photons have to travel the same distance to reach us.

Since a frequency is the inverse of time, it will transform as

ν = ν ′ δ (3.14)

It is because of this that the factor δ is called the relativistic Doppler factor.
Its definition is then

δ =
1

Γ(1− β cos θ)
(3.15)

Note the two terms:

• The term 1/Γ: this corresponds to the usual special relativity term.

• The term 1/(1−β cos θ): this corresponds to the usual Doppler effect.

The δ factor is the result of the competition of these two terms: for θ = 90◦

the usual Doppler term is unity, and only “special relativity” remains: δ =
1/Γ. For small θ the term 1/(1 − β cos θ) becomes very large, more than
compensating for the 1/Γ factor. For cos θ = β (i.e. sin θ = 1/Γ) we have
δ = Γ. For θ = 0◦ we have δ = Γ(1 + β).

3.2.5 Aberration

Another very important effect happening when a source is moving is the
aberration of light. It is rather simple to understand, if one looks at Fig. 3.5.
A source of photons is located perpendilarly to the right wall of a lift. If the
lift is not moving, and there is a hole in its right wall, then the ligth ray enters
in A and ends its travel in B. If the lift is not moving, A and B are at the
same heigth. If the lift is moving with a constant velocity v to the top, when
the photon smashes the left wall it has a different location, and the point B
will have, for a comoving observer, a smaller height than A. The light ray
path now appears oblique, tilted. Of course, the greater v, the more tilted
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the light ray path appears. This immediately stimulate the question: what
happens if the lift, instead to move with a constant velocity, is accelerating?
With this example one can easily convince him/herself that the “trajectory”
of the photon would appear curved. Since, by the equivalence principle, the
accelerating lift cannot tell if there is an engine pulling him up or if there is
a planet underneath it, we can then say that gravity bends the light rays,
and make the space curved.

Figure 3.5: The relativistic lift, to explain relativistic aberration of light.
Assume first a non–moving lift, with a hole on the right wall. A light ray,
coming perpendicularly to the right wall, enter through the wall in A and
ends its travel in B. If the lift is moving with a constant velocity v to the
top, its position is changed when the photon arrives to the left wall. For the
comoving observer, therefore, it appears that the light path is tilted, since
the point B where the photon smashes into the left wall is below the point
A. What happens if the lift, instead to move with a constant velocity, is
accelerating?

This helps to understand why angles, between two inertial frames, change.
Calling θ the angle between the direction of the emitted photon and the
source velocity vector, we have:

sin θ =
sin θ′

Γ(1 + β cos θ′)
; sin θ′ =

sin θ

Γ(1− β cos θ)

cos θ =
cos θ′ + β

1 + β cos θ′
; cos θ′ =

cos θ − β

1− β cos θ
(3.16)

Note that, if θ′ = 90◦, then sin θ = 1/Γ and cos θ = β. Consider a source
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emitting isotropically in K ′. Half of its photons are emitted in one emi-
sphere, namely, with θ′ ≤ 90◦. Then, in K, the same source will appear to
emit half of its photons into a cone of semiaperture 1/Γ.

Assuming symmetry around the angle φ, the transformation of the solid
angle dΩ is

dΩ = 2πd cos θ =
dΩ′

Γ2(1 + β cos θ′)2
= dΩ′ Γ2(1− β cos θ)2 =

dΩ′

δ2
(3.17)

3.2.6 Intensity

We now have all the ingredients necessary to calculate the transformation
of the specific (i.e. monochromatic) and bolometric intensity. The specific
intensity has the unit of energy per unit surface, time, frequency and solid
angle. In cgs, the units are [erg cm−2 s−1 Hz−1 ster−1]. We can then write
the specific intensity as

I(ν) = hν
dN

dt dν dΩ dA

= δhν ′
dN ′

(dt′/δ) δdν ′ (dΩ′/δ2) dA′

= δ3 I ′(ν ′) = δ3I ′(ν/δ) (3.18)

Note that dN = dN ′ because it is a number, and that dA = dA′. If we inte-
grate over frequencies we obtain the bolometric intensity which transforms
as

I = δ4I ′ (3.19)

The fourth power of δ can be understood in a simple way: one power comes
from the transformation of the frequencies, one for the time, and two for
the solid angle. They all add up. This transformation is at the base of our
understanding of relativistic sources, namely radio–loud AGNs, gamma–ray
bursts and galactic superluminal sources.

3.2.7 Luminosity and flux

The transformation of fluxes and luminosities from the comoving to the
observer frames is not trivial. The most used formula is L = δ4L′, but this
assumes that we are dealing with a single, spherical blob. It can be simply
derived by noting that L = 4πd2LF , where F is the observed flux, and by
considering that the flux, for a distance source, is F ∝

∫

Ωs
IdΩ. Since Ωs is

the source solid angle, which is the same in the two K and K ′ frames, we
have that F transforms like I, and so does L. But the emission from jets
may come not only by a single spherical blob, but by, for instance, many
blobs, or even by a continuous distribution of emitting particles flowing in
the jet. If we assume that the walls of the jet are fixed, then the concept of
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“comoving” frame is somewhat misleading, because if we are comoving with
the flowing plasma, then we see the walls of the jet which are moving.

A further complication exists if the velocity is not uni–directional, but
radial, like in gamma–ray bursts. In this case, assume that the plasma is
contained in a conical narrow shell (width smaller than the distance of the
shell from the apex of the cone). The observer which is moving together
with a portion of the plasma, (the nearest case of a “comoving observer”)
will see the plasma close to her going away from her, and more so for more
distant portions of the plasma. Indeed, there could be a limiting distance
beyond which the two portions of the shells are causally disconnected.

Useful references are Lind & Blandford (1985) and Sikora et al. (1997).

3.2.8 Emissivity

The (frequency integrated) emissivity j is the energy emitted per unit time,
solid angle and volume. We generally have that the intensity, for an optically
thin source, is I =

∫

∆R jdr, where ∆R is the length of the region containing
the emitting particles. The emissivity transforms like j = j′δ3, namely with
one power of δ less than the intensity.

Figure 3.6: Due to aberration of light, the travel path of the a light ray is
different in the two frames K and K ′

To understand why, consider a slab with plasma flowing with a velocity
parallel to the walls of the slab, as in Fig. 3.6. The observer in K will
measure a certain ∆R which depends on her viewing angle. In K ′ the same
path has a different length, because of the aberration of light. The height
of the slab h′ = h, since it is perpendicular to the velocity. The light ray
travels a distance ∆R = h/ sin θ in K, and the same light ray travels a
distance ∆R′ = h′/ sin θ′ in K ′. Since sin θ′ = δ sin θ, then ∆R′ = ∆R/δ.
Therefore the column of plasma contributing to the emission, for δ > 1,
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is less than what the observer in K would guess by measuring ∆R. For
semplicity, assume that the plasma is homogenous, allowing to simply write
I = j∆R. In this case:

I = j∆R = δ4I ′ = δ4j′∆R′ → j = δ3j′ (3.20)

And the corresponding transformation for the specific emissivity is j(ν) =
δ2j′(ν ′).

Figure 3.7: Due to the differences in light travel time, the number of
blobs that can be observed simultaneously at any given time depends on the
viewing angle and the velocity of the blobs. In the top panel the viewing
angle is θ = 90◦ and all the blobs contained within a certain distance R can
be seen. For smaller viewing angles, less blobs are seen. This is because the
photons emitted by the rear blobs have more distance to travel, and therefore
they have to be emitted before the photons produced by the front blob.
Decreasing the viewing angle θ we see less blobs (3 for the case illustrated
in the bottom panel).

Fig. 3.7 illustrates another interesting example, taken from the work
of Sikora et al. (1997). Consider that within a distance R from the apex
of a jet (R measured in K), at any given time there are N blobs (10 on
the specific example of Fig. 3.7), moving with a velocity v = βc along the
jet. To fix the ideas, let assume that beyond R they switch off. If the
viewing angle is θ = 90◦, the photons emitted by each blob travel the same
distance to reach the observer, who will see all the 10 blobs. But if θ < 90◦,
the photons produced by the rear blobs must travel for a longer distance in
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order to reach the observer, and therefore they have to be emitted before the
photons produced by the front blob. The observer will then see less blobs.
To be more quantitative, consider a viewing angle θ < 90◦. Photons emitted
by blob numer 3 to reach blobs number 1 when it produces its last photon
(before to switch off) were emitted when the blobs itself was just born (it was
crossing point A). They travelled a distance R cos θ in a time ∆t. During
the same time, the blob number 3 travelled a distance ∆R = cβ∆t in the
forward direction. The fraction f of blobs that can be seen is then

f =
R−∆R

R
= 1−

cβ∆t

R
= 1− β cos θ (3.21)

Where we have used the fact that ∆t = (R/c) cos θ. This is the usual
Doppler factor. We may multiply and divide by Γ to obtain

f =
1

Γδ
(3.22)

The bottom line is the following: even if the flux from a single blob is boosted
by δ4, if the jet is made by many (N) equal blobs, the total flux is not just
boosted by Nδ4 times the intrinsic flux of a blob, because the observer will
see less blobs if θ < 90◦.

3.2.9 Brightness Temperature

The brightness temperature is a quantity used especially in radio astronomy,
and it is defined by

TB ≡
I(ν)

2k

c2

ν2
=

F (ν)

2πk θ2s

c2

ν2
(3.23)

where we have assumed that the solid angle subtended by the source is
∆Ωs ∼ πθ2s , and that the received flux is F (ν) = ∆ΩsI(ν). There are 2
ways to measure θs:

1. from VLBI observations, one can often resolve the source and hence
directly measure the angular size. In this case the relation between
the brightness temperature measured in the K and K ′ frames is

TB =
δ3F ′(ν ′)

2πk θ2s

c2

δ2(ν ′)2
= δ T ′

B (3.24)

2. If the source is varying, we can estimate its size by requiring that the
observed variability time–scale ∆tvar is longer than the light travel
time R/c, where R is the typical radius of the emission region. In this
case

TB >
δ3F ′(ν ′)

2πk

d2Aδ
2

(c∆t′var)
2

c2

δ2(ν ′)2
= δ3 T ′

B (3.25)

where dA is the angular distance, related to the luminosity distance
dL by dA = dL/(1 + z)2.
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There is a particular class of extragalactic radio sources, called Intra–
Day Variable (IDV) sources, showing variability time–scales of hours in the
radio band. For them, the corresponding observed brightess temperature
can exceed 1016 K, a value much larger than the theoretical limit for an
incoherent synchrotron source, which is between 1011 and 1012 K. If the
variability is indeed intrinsic, namely not produced by interstellar scintilla-
tion, then one would derive a limit on the beamig factor δ, which should be
larger than about 100.

3.2.10 Moving in an homogeneous radiation field

Jets in AGNs often moves in an external radiation field, produced by, e.g.
the accretion disk, or by the Broad Line Region (BLR) which intercepts a
fraction of the radiation produced by the disk and re–emits it in the form
of emission lines. It it therefore interesting to calculate what is the energy
density seen by a an observer which is comoving with the jet plasma.

Figure 3.8: A real case: a relativistic bob is moving within the Broad Line
Region of a radio loud AGN, with Lorentz factor Γ. In the rest frame K ′ of
the blob the photons coming from 90◦ in frame K are seen to come at an
angle 1/Γ. The energy density as seen by the blob is enhanced by a factor
∼ Γ2.
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To make a specific example, as illustrated by Fig. 3.8, assume that
a portion of the jet is moving with a bulk Lorentz factor Γ, velocity βc
and that it is surrounded by a shell of broad line clouds. For simplicity,
assume that the broad line photons are produced by the surface of a sphere
of radius R and that the jet is within it. Assume also that the radiation is
monochromatic at some frequency ν0 (in frame K). The comoving (in frame
K ′) observer will see photons coming from a cone of semi–aperture 1/Γ (the
other half may be hidden by the accretion disk): photons coming from the
forward direction are seen blue–shifted by a factor (1 + β)Γ, while photons
that the observer in K sees as coming from the side (i.e. 90◦ degrees) will
be observed in K ′ as coming from an angle given by sin θ′ = 1/Γ (and
cos θ′ = β) and will be blue–shifted by a factor Γ. As seen in K ′, each
element of the BLR surface is moving in the opposite direction of the actual
jet velocity, and the photons emitted by this element form an angle θ′ with
respect the element velocity. The Doppler factor used by K ′ is then

δ′ =
1

Γ(1− β cos θ′)
(3.26)

The intensity coming from each element is seen boosted as (cfr Eq. 3.2.10):

I ′ = δ′4I (3.27)

The radiation energy density is the integral over the solid angle of the in-
tensity, divided by c:

U ′ =
2π

c

∫ 1

β
I ′d cos θ′

=
2π

c

∫ 1

β

I

Γ4(1− β cos θ′)4
d cos θ′

=

(

1 + β +
β2

3

)

Γ2 2πI

c

=

(

1 + β +
β2

3

)

Γ2 U (3.28)

Note that the limits of the integral correspond to the angles 0′ and 90◦ in
frame K. The radiation energy density, in frame K ′, is then boosted by a
factor (7/3)Γ2 when β ∼ 1. Doing the same calculation for a sphere, one
would obtain U ′ = Γ2U .

Furthermore a (monochromatic) flux in K is seen, in K ′, at different
frequencies, between Γν0 and (1 + β)Γν0, with a slope F ′(ν ′) ∝ ν ′2. Why
the slope ν ′2? This can be derived as follows: we already know that I ′(ν ′) =
δ′3I(ν) = (ν ′/ν)3I(ν). The flux at a specific frequency is

F ′(ν ′) = 2π

∫ µ′

2

µ′

1

dµ′

(

ν ′

ν

)3

I(ν) (3.29)
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where µ′ ≡ cos θ′, and the integral is over those µ′ contributing at ν ′. Since

ν ′

ν
= δ′ =

1

Γ(1− βµ′)
→ µ′ =

1

β

(

1−
ν

Γν ′

)

(3.30)

we have

dµ′ = −
dν

βΓν ′
(3.31)

Therefore, if the intensity is monochromatic in frame K, i.e. I(ν) = I0δ(ν−
ν0), the flux density in the comoving frame is

F ′(ν ′) = 2π

∫ ν1

ν2

dν

βΓν ′

(

ν ′

ν

)3

I0δ(ν − ν0)

=
2π

Γβ

I0
ν30
ν ′2; Γν0 ≤ ν ′ ≤ (1 + β)Γν0 (3.32)

where the frequency limits corresponds to photons produced in an emysphere
in frame K, and between 0◦ and sin θ′ = 1/Γ in frame K ′. Integrating Eq.
3.32 over frequency, one obtains

F ′ = 2πI0Γ
2

(

1 + β +
β2

3

)

= Γ2

(

1 + β +
β2

3

)

F (3.33)

in agreement with Eq. 3.28.

3.3 Superluminal motion

In 1971 the Very Long Baseline Interferometry began, linking different radio–
telescopes that where distant even thousands of km. The resolving power of
a telescope is of the order of

φ ∼
λ

D
(3.34)

where λ is the wavelength to be observed, and D is the diameter of the tele-
scope or the distance of two connected telescopes. Observing at 1 cm, with
two telescopes separated by 1000 km (i.e.108 cm), means that we can observe
details of the source down to the milli–arcsec level (m.a.s.). The first obser-
vations of the inner jet of radio–loud quasars revealed that the jet structure
was not continuous, but blobby, with several radio knots. Repeating the ob-
servations allowed us to discover that the blobs were not stationary, but were
moving. Comparing radio maps taken at different times one could measure
the angular displacement ∆θ between the position of the blob. Knowing
the distance d, one could then transform ∆θ is a linear size: ∆R = d∆θ.
Dividing by the time interval ∆ta between the two radio maps, one obtains
a velocity

vapp =
d∆θ

∆tA
(3.35)
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Figure 3.9: Top: The apparent velocity βapp as a function of the viewing
angle θ for different values of Γ, as labelled. Bottom: the amplification δ4

as a function of the viewing angle, for the same Γ as in the top panel.

With some surprise, in several objects this turned out to be larger than
the light speed c. Therefore these sources were called superluminal. The
explanation of this apparent violation of special relativity is in Fig. 3.4: the
time interval ∆ta can be much shorter than the emission time ∆te. With
reference to Fig. 3.4, what the observer measures in the two radio maps is
the position of the blob in point A (first map) and B (second map), projected
in the plane of the sky. The observed displacement is then:

CB = βc∆te sin θ (3.36)

Dividing by ∆ta = ∆te(1− β cos θ) we have the measured apparent velocity
as

vapp =
βc∆te sin θ

∆ta
−→ βapp =

β sin θ

1− β cos θ
(3.37)
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Ask yourself: Γ does not appear. Is it ok? At 0◦ the apparent velocity is zero.
Is is ok? At what angle βapp is maximized? What is its maximum value?
Fig. 3.9 shows βapp as a function of the viewing angle (angle between the
line of sight and the velocity) for different Γ. Is the apparent superluminal
speed given by a real motion of the emitting material? Can it be something
else? If there are other possibilities, how to discriminate among them?

ν = ν ′δ frequency
t = t′/δ time
V = V ′δ volume
sin θ = sin θ′/δ sine
cos θ = (cos θ′ + β)/(1 + β cos θ′) cosine
I(ν) = δ3I ′(ν ′) specific intensity
I = δ4I ′ total intensity
j(ν) = j′(ν ′)δ2 specific emissivity
κ(ν) = κ′(ν ′)/δ absorption coefficient
TB = T ′

Bδ brightn. temp. (size directly measured)
TB = T ′

Bδ
3 brightn. temp. (size from variability)

U ′ = (1 + β + β2/3)Γ2U Radiation energy density within an emisphere

Table 3.1: Useful relativistic transformations

3.4 A question

Suppose that some optically thin plasma of mass m is falling onto a central
object with a velocity v and bulk Lorentz factor Γ. The central object
has mass M and produces a luminosity L. Assume that the interaction is
through Thomson scattering and that there are no electron–positron pairs.

a) What is the radiation force acting on the electrons?
b) What is the gravity force acting on the protons?
c) What definition of limiting (“Eddington”) luminosity would you give

in this case?
d) What happens if the plasma is instead going outward?
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