
PHYSICS-BASED
DEEP LEARNING

Peter Kicsiny | CERN Openlab Summer Student Lectures | 15th July 2024

What is this lecture about?

• Introduction to some of the main concepts in the field

• Walkthrough of the concepts using toy examples

• Some application highlights

What is not covered in this lecture?

• Introduction of numerical simulations / differential equations

• Introduction to machine learning

Scope 2

Content based on:
Physics-based Deep Learning
by
N. Thuerey, P . Holl, M. Mueller, P.
Schnell, F. Trost, K. Um

+ supplemented by real physics
examples

The lecture will cover:
1. Surrogate models

2. Physics informed neural networks

3. Differentiable physics

3Literature

Motivation

Applications of physics simulations

4

Motivation 5

Applications of physics simulations

Motivation 6

Applications of physics simulations

Motivation 7

Applications of physics simulations

Motivation 8

Applications of physics simulations

9ML & numerical methods: new possibilities

Goal: make classical simulations faster & more accurate

10ML & numerical methods: new possibilities

Goal: make classical simulations faster & more accurate

Data-driven

11ML & numerical methods: new possibilities

Surrogate models: concept

• Supervised learning

12

Surrogate models: concept

• Supervised learning

• Given arbitrary unknown function
describing a physical system:

13

Surrogate models: concept

• Supervised learning

• Given arbitrary unknown function
describing a physical system:

• Data: measured/simulated samples

14

Surrogate models: concept

• Supervised learning

• Given arbitrary unknown function
describing a physical system:

• Data: measured/simulated samples

• Goal: approximate with a neural
network (NN) denoted by , trained
on this data

15

Surrogate models: concept

• Supervised learning

• Given arbitrary unknown function
describing a physical system:

• Data: measured/simulated samples

• Goal: approximate with a neural
network (NN) denoted by , trained
on this data

• Evaluate loss function & optimize
weights of NN via backpropagation

16

Input Output

Navier-Stokes
numerical solver

17Surrogate models: example

CompareCompare

18Surrogate models: example

• Reconstructing
pressure seems to be
the most challenging

• Error on few % level

19Surrogate models: example

Pressure Velocity X Velocity Y

• Supervised training setup is a good first approach in many situations

• Always start with a 1-sample overfitting test

• Check how many trainable parameters your network has

• Slowly increase the amount of training data (and potentially network parameters
and depth)

• Adjust hyperparameters (especially the learning rate)

• For any structured data, like spatial functions, or data of any physical field,
convolutional NNs are preferable to fully connected NNs

20Surrogate models: best practices

Surrogate models: CERN applications

• Surrogate modeling of LHC beam lifetime

• Machine learning for beam dynamics studies
at the CERN Large Hadron Collider, P.
Arpaia et al. [10.1016/j.nima.2020.164652]

• Data: lifetime measurements from real-life
LHC parameter scans

21

http://doi.org/10.1016/j.nima.2020.164652

Surrogate models: CERN applications

• Surrogate modeling of LHC dynamic aperture

• Modeling Particle Stability Plots for Accelerator
Optimization Using Adaptive Sampling, M.
Schenk et al. [10.18429/JACoW-IPAC2021-
TUPAB216]

• Data: numerical simulations of different LHC
configurations

22

Colors: how many turns the particles survive

NN outputGround truth

10.18429/JACoW-IPAC2021-TUPAB216
https://doi.org/10.18429/JACoW-IPAC2021-TUPAB216
https://doi.org/10.18429/JACoW-IPAC2021-TUPAB216
10.18429/JACoW-IPAC2021-TUPAB216

Surrogate models: pros & cons

Fast training & constant time
evaluation compared to numerical

solvers or measurements
Lots of data needed

23

Surrogate models: pros & cons

Fast training & constant time
evaluation compared to numerical

solvers or measurements

Simple network architecture

Lots of data needed

Sub-optimal performance, accuracy
and generalization

24

Surrogate models: pros & cons

Fast training & constant time
evaluation compared to numerical

solvers or measurements

Simple network architecture

Simple concept

Lots of data needed

Sub-optimal performance, accuracy
and generalization

Purely data driven. Interactions with external
“processes” (such as embedding into a solver
for refining results) are difficult

25

Data-driven

26ML & numerical methods: new possibilities

Loss terms

27ML & numerical methods: new possibilities

Physical losses: PDEs 28

• Partial differential equation (PDE)

• Time evolution of a physical field e.g. velocity expressed with spatial derivatives

• Initial condition:

• Boundary condition:

• With this (usually) a unique solution for u exists (=well-posed PDE)

• Space-time domain is discretized into a computational grid

N dimensional space

x0
x1
x2
x3

t0 t1 t2 t3

Δt

Δx

Physical losses: Burger’s equation 29

• Partial differential equation (PDE)

Initial condition Boundary condition

Physical losses: Burger’s equation 30

• Partial differential equation (PDE)

Initial condition Boundary condition

Physical losses: Burger’s equation 31

• Partial differential equation (PDE)

• Approximate velocity field u with a NN f

Physical losses: residual loss 32

Burger’s equation

• Approximate velocity field u with a NN f

Physical losses: residual loss 33

Burger’s equation

• Approximate velocity field u with a NN f

Physical losses: residual loss 34

Burger’s equation

Residual loss

• Approximate velocity field u with a NN f

Ø Physics informed neural network (PINN)

Physical losses: residual loss 35

Burger’s equation

supervised loss term residual loss term
Residual loss

replace u by f

Physical losses: obtaining partial derivatives 36

sample grid point

• Derivatives in R are obtained from the
NN via standard backpropagation

Physical losses: obtaining partial derivatives 37

Physical losses: obtaining partial derivatives

• Derivatives in R are obtained from the
NN via standard backpropagation NN output (f) at sample point [xi, ti]

38

• Derivatives in R are obtained from the
NN via standard backpropagation

• When R is minimized: u (NN output)
approximately solves the PDE

Physical losses: obtaining partial derivatives

NN output (f) at sample point [xi, ti]

39

Physical losses: NN training overview

standard supervised + residual

residual

from NN backprop.

Source: [doi.org/10.1038/s42254-021-00314-5]

40

http://doi.org/10.1038/s42254-021-00314-5

Physical losses: solving Burger’s equation

x

33 steps

1D computational “grid”:

Forward simulation in time:

41

find u with a PINN

128 steps

Physical losses: solving Burger’s equation

• Supervised loss: ground truth data yi
*

• Reference u

x

33 steps

1D computational “grid”:

Forward simulation in time:

supervised loss term

42

128 steps

Physical losses: solving Burger’s equation

33 steps

• Supervised loss: ground truth data yi
*

• Reference u
• E.g. we know u(x, t=0.5)

(direct constraint)

x

supervised loss term

43

128 steps

x

Physical losses: solving Burger’s equation

33 steps

• Supervised loss: ground truth data yi
*

• Reference u
• E.g. we know u(x, t=0.5)

(direct constraint)
• We also know u(x=-1;1, t)=0

(boundary conditions of PDE)

supervised loss term

44

128 steps

x

Physical losses: solving Burger’s equation

33 steps

• Supervised loss: ground truth data yi
*

• Reference u
• E.g. we know u(x, t=0.5)

(direct constraint)
• We also know u(x=-1;1, t)=0

(boundary conditions of PDE)

• “Pin down” PDE solution at these points

supervised loss term

45

128 steps

• Residual loss: no ground truth data,
but we sample the the NN inside the
domain

Physical losses: solving Burger’s equation

128 steps

33 steps

x

x
xx

x
x

x

x
x

x

xx

x

x

x

x
xx

residual loss term

46

• Residual loss: no ground truth data,
but we sample the the NN inside the
domain
• i.e.: input random Xi to NN
• NN estimates u as f(Xi;θ)

Physical losses: solving Burger’s equation

128 steps

33 steps

x

x
xx

x
x

x

x
x

x

xx

x

x

x

x
xx

residual loss term

47

Physical losses: solving Burger’s equation

128 steps

33 steps

x

x
xx

x
x

x

x
x

x

xx

x

x

x

x
xx

• NN in this example:
• 8 fully connected layers
• ~200 trainable parameters

48

Physical losses: solving Burger’s equation

128 steps

33 steps

x

x
xx

x
x

x

x
x

x

xx

x

x

x

x
xx

• NN in this example:
• 8 fully connected layers
• ~200 trainable parameters

• Evaluate NN at constraint points |, | & x
• Calculate loss & update weights
• Repeat 10,000 iterations (~1 min)

49

Physical losses: solving Burger’s equation

x
xx

x
x

x

x
x

x

xx

x

x

x

x
xx

• After training: need to evaluate NN for all grid points!
• Computationally expensive for large grids

• Why is this possible?
• NN inherently supports calculation of derivatives

Velocity u after training NN

50

Physical losses: discussion

• Boundary conditions u=0 are fulfilled

• Shock at center not well represented

• Initial state of PDE solver not well represented

• More accurate representation requires
significantly more iterations even for this
simple case

51

Physical losses: discussion

• This is a conceptual starting point, but not very accurate

• Physical loss allows to encode (unique) solutions to PDEs with NNs, which
allows to use NNs as universal function approximators

• Not really “machine learning”: we reconstruct a single PDE solution in a
known space-time region

52

Reconstruction of turbulent
fluctuations of plasma in a
tokamak (A. Mathews et al.,
2022,
[doi.org/10.1063/5.0088216])

PINN application examples 53

http://doi.org/10.1063/5.0088216

PINN application examples

Reconstructing unknown
parameters in Schrödinger
equation (M. Raissi et al., 2017,
[arxiv.org/abs/1708.00588])

54

https://arxiv.org/abs/1708.00588

PINN application examples

Reconstruction of blood flow in a blood vessel (E. Hwuang, S. Wang
et al. [doi.org/10.1038/s42254-021-00314-5])

55

http://doi.org/10.1038/s42254-021-00314-5

PINN application examples
F. Fuest, S. Cai et al.

[doi.org/10.1038/s42254-021-00314-5]
[doi.org/10.1017/jfm.2021.135]

56

http://doi.org/10.1038/s42254-021-00314-5
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/flow-over-an-espresso-cup-inferring-3d-velocity-and-pressure-fields-from-tomographic-background-oriented-schlieren-via-physicsinformed-neural-networks/160E4A836637FE3996610389666DA030

Physical losses: pros & cons

Easy setup with simple NN
Quite slow: need to evaluate NN at every grid
point, i.e. “paint the image pixel by pixel”

57

Physical losses: pros & cons

Easy setup with simple NN

PDE derivatives in physical loss can
be computed with backpropagation

Quite slow: need to evaluate NN at every grid
point, i.e. “paint the image pixel by pixel”

Accuracy of computed derivatives relies on
learned representation

58

Physical losses: pros & cons

Easy setup with simple NN
Quite slow: need to evaluate NN at every grid
point, i.e. “paint the image pixel by pixel”

Accuracy of computed derivatives relies on
learned representation

PDE derivatives in physical loss can
be computed with backpropagation

Popular for inverse problems: given
certain measurements or observations

(=training data), find a PDE solution

Does not combine well with numerical solvers
e.g. for refining solution

59

Loss terms

60ML & numerical methods: new possibilities

Interleaved

61ML & numerical methods: new possibilities

Differentiable physics

• Differentiable physics = differentiable numerical simulations of physical
systems

62

Differentiable physics

• Differentiable physics = differentiable numerical simulations of physical
systems

• Equip classical numerical solvers (discretized PDE) with the ability to
compute gradients with respect to their inputs

63

Differentiable physics

• Differentiable physics = differentiable numerical simulations of physical
systems

• Equip classical numerical solvers (discretized PDE) with the ability to
compute gradients with respect to their inputs

• This allows integration of numerical methods into the training process of
an attached NN

64

Differentiable physics: differentiable solver example
• Linear advection equation with u=u(x) and d=d(x,t)

65

Differentiable physics: differentiable solver example
• Linear advection equation with u=u(x) and d=d(x,t) E.g. in 1D

66

Differentiable physics: differentiable solver example

• Generally:

• Linear advection equation with u=u(x) and d=d(x,t) E.g. in 1D

67

Differentiable physics: differentiable solver example

d0 d1 d2 de

...P P P P

• Linear advection equation with u=u(x) and d=d(x,t) E.g. in 1D

Δt Δt Δt Δt

68

• Generally:

• For N forward iterations:
end time step

Differentiable physics: differentiable solver example

d0 d1 d2 dtarget

...P P P P

u=?

• Linear advection equation with u=u(x) and d=d(x,t) E.g. in 1D

Δt Δt Δt Δt

• Find velocity field u that brings a known initial
density d0 = d(t0=0) into a known target
density dtarget = d(te=t+NΔt)

69

• Generally:

• For N forward iterations:

Differentiable physics: differentiable solver example

d0 d1 d2 dtarget

...P P P P

u=?

• Optimization problem:

• Linear advection equation with u=u(x) and d=d(x,t) E.g. in 1D

Δt Δt Δt Δt

• Find velocity field u that brings a known initial
density d0 = d(t0=0) into a known target
density dtarget = d(te=t+NΔt)

70

output of simulation known from observation

• Generally:

• For N forward iterations:

Differentiable physics: differentiable solver example

d0 d1 d2 dtarget

...P P P P

u=?

• Linear advection equation with u=u(x) and d=d(x,t) E.g. in 1D

Δt Δt Δt Δt

• Find velocity field u that brings a known initial
density d0 = d(t0=0) into a known target
density dtarget = d(te=t+NΔt)

71

• Optimization problem:

• Generally:

• For N forward iterations:

Differentiable physics: differentiable solver example

d0 d1 d2 dtarget

...P P P P

u=?

u unknown at start e.g. init with 0s

• Linear advection equation with u=u(x) and d=d(x,t) E.g. in 1D

Δt Δt Δt Δt

• Find velocity field u that brings a known initial
density d0 = d(t0=0) into a known target
density dtarget = d(te=t+NΔt)

72

known reference quantities from observation

• Optimization problem:

• Generally:

• For N forward iterations:

Differentiable physics: differentiable solver example 73

learning rate

Differentiable physics: differentiable solver example 74

In case of a single forward step from te-1 to te:

learning rate

Differentiable physics: differentiable solver example 75

In case of a single forward step from te-1 to te:

From: with:

learning rate

Differentiable physics: differentiable solver example 76

In case of multiple forward steps from t0 to te:

Δt Δt

P

d0 de-1 de

... P P
Δt

• Final density de depends on velocity ui
through all previous density states:

Differentiable physics: differentiable solver example 77

In case of multiple forward steps from t0 to te:

Δt Δt

P

d0 de-1 de

... P P
Δt

• Final density de depends on velocity ui
through all previous density states:

Differentiable physics: differentiable solver example 78

In case of multiple forward steps from t0 to te:

*potential contributions from cells i+1, i-1 etc...

Δt Δt

P

d0 de-1 de

... P P
Δt

• Final density de depends on velocity ui
through all previous density states:

Differentiable physics: differentiable solver example 79

In case of multiple forward steps from t0 to te:

*potential contributions from cells i+1, i-1 etc...

Δt Δt

P

d0 de-1 de

... P P
Δt

• Final density de depends on velocity ui
through all previous density states:

Differentiable physics: differentiable solver example 80

In case of multiple forward steps from t0 to te:

*potential contributions from cells i+1, i-1 etc...

Δt Δt

P

d0 de-1 de

... P P
Δt

• Final density de depends on velocity ui
through all previous density states:

A typical PDE based numerical solver consists of arithmetic operations
which are differentiable. The computation of gradients is typically not

expensive and it can happen during forward simulation.

x

Differentiable physics: solving Burger’s equation with DP
• Classical gradient based optimization, no DL

• Start with u(x,t=0)=0, utarget(x,t=0.5) known

81

Burger’s equation

x

Differentiable physics: solving Burger’s equation with DP
• Classical gradient based optimization, no DL

• Start with u(x,t=0)=0, utarget(x,t=0.5) known

1. Simulate P (discretized PDE) from t=0 to t=1 in N=32 time steps

forward simulate through
P N times

82

Burger’s equation

x

Differentiable physics: solving Burger’s equation with DP
• Classical gradient based optimization, no DL

• Start with u(x,t=0)=0, utarget(x,t=0.5) known

1. Simulate P (discretized PDE) from t=0 to t=1 in N=32 time steps

2. Backpropagate gradients from t=0.5, 16 steps back till first step at t=0

backpropagate gradients
forward simulate through
P N times

83

Burger’s equation

x

Differentiable physics: solving Burger’s equation with DP
• Classical gradient based optimization, no DL

• Start with u(x,t=0)=0, utarget(x,t=0.5) known

1. Simulate P (discretized PDE) from t=0 to t=1 in N=32 time steps

2. Backpropagate gradients from t=0.5, 16 steps back till first step at t=0

3. Update u(x,t=0) with gradients:

forward simulate through
P N times

backpropagate gradients

84

Burger’s equation

Differentiable physics: solving Burger’s equation with DP
• Classical gradient based optimization, no DL

• Start with u(x,t=0)=0, utarget(x,t=0.5) known

1. Simulate P (discretized PDE) from t=0 to t=1 in N=32 time steps

2. Backpropagate gradients from t=0.5, 16 steps back till first step at t=0

3. Update u(x,t=0) with gradients

4. Repeat 50 times
(~2 mins)

85

forward sim. with optimized u

Burger’s equation

Differentiable physics: solving Burger’s equation with DP 86

Differentiable physics: discussion of PINN vs DP

Physics informed NN (PINN)
• Recovers the overall shape of the

solution

• Temporal constraints are at least
partially fulfilled

• Poor reconstruction of amplitudes

Differentiable physics solver (DP)
• Much closer to ground truth (GT)

thanks to flow of gradients

• Difficulty with sharper features:
artifacts

87

Differentiable physics: coupling differentiable solver with NN 88

• Physical field u input to
differentiable solver

• Find optimal u

Differentiable
solver

89Differentiable physics: coupling differentiable solver with NN

• Physical field u input to
differentiable solver

• Find optimal u

Differentiable
solver

90

• NN approximates physical field u

• Physical field u input to
differentiable solver

• Find optimal NN weights: gradients
are guided by solver

gradient w.r.t. NN weights

Differentiable
solver

Neural
network

Differentiable physics: coupling differentiable solver with NN

91

NN only

NN + DP

• Gradients from differentiable solver allow to access previously “hidden” parts of the loss landscape

more “refined”
outputs

Image source: [cs.umd.edu]

Differentiable physics: coupling differentiable solver with NN

https://www.cs.umd.edu/~tomg/projects/landscapes/

Differentiable physics: pros & cons

Uses existing numerical tools which
can be coupled to the training of

neural networks
More complicated implementation

92

Differentiable physics: pros & cons

Uses existing numerical tools which
can be coupled to the training of

neural networks

Efficient evaluation of gradients is
possible

More complicated implementation

Requires understanding of the physics
to choose suitable discretization

93

Differentiable physics: pros & cons

Uses existing numerical tools which
can be coupled to the training of

neural networks

Efficient evaluation of gradients is
possible

More complicated implementation

Requires understanding of the physics
to choose suitable discretization

Choice of PDE discretization gives
control on numerical accuracy

Computational cost and training
difficulty scales with time look-ahead

94

Differentiable physics: application examples
Controlling fluid deformations & reduction of
numerical errors, J. Tang et al. 2023 [link]

95

https://studios.disneyresearch.com/2023/05/07/physics-informed-neural-corrector-for-deformation-based-fluid-control/

Differentiable physics: application examples

Super-resolution
forecasting of precipitation
rate, B. Teufel et al. 2023
[doi.org/10.1186/s40562-
023-00272-z]

96

http://doi.org/10.1186/s40562-023-00272-z
http://doi.org/10.1186/s40562-023-00272-z

Differentiable physics: application examples
Reconstruction of 6D beam distribution in a particle accelerator,
R. Roussel et al., 2022, [arXiv:2211.09077]

97

https://arxiv.org/abs/2211.09077

Summary

• Physics based deep learning is an emerging topic with many exciting
possibilities

98

Summary

• Physics based deep learning is an emerging topic with many exciting
possibilities

• AI will not replace classical numerical simulations!

99

Summary

• Physics based deep learning is an emerging topic with many exciting
possibilities

• AI will not replace classical numerical simulations!

100

Fast simulations

Numerical error reduction
Forecasting

Field reconstruction

Control problems

Equation learning

Further read: examples in high energy physics

• A. Adelmann et al., 2022, New directions for surrogate models and
differentiable programming for High Energy Physics detector simulation
[doi.org/10.48550/arXiv.2203.08806]

• T. Dorigo et al., 2023, Toward the end-to-end optimization of particle
physics instruments with differentiable programming
[cds.cern.ch/record/2807001]

• MODE Collaboration, 2021, Toward Machine Learning Optimization of
Experimental Design [inspirehep.net/literature/1850892]

• R. Lehe et al., 2020, Machine learning and surrogate models for
simulation-based optimization of accelerator design [link]

101

https://doi.org/10.48550/arXiv.2203.08806
https://cds.cern.ch/record/2807001
https://inspirehep.net/literature/1850892
https://snowmass21.org/docs/files/summaries/CompF/SNOWMASS21-CompF2_CompF3-AF1_AF6_Lehe-075.pdf

Further read: examples in weather/climate modeling

• K. Kashinath et al., 2021, Physics-informed machine learning: case
studies for weather and climate modelling
[doi.org/10.1098/rsta.2020.0093]

• S. Rasp et al., 2021, Data-Driven Medium-Range Weather Prediction
With a Resnet Pretrained on Climate Simulations: A New Model for
WeatherBench [doi.org/10.1029/2020MS002405]

• J. Pathak et al., 2018, Hybrid forecasting of chaotic processes: Using
machine learning in conjunction with a knowledge-based model
[doi.org/10.1063/1.5028373]

102

http://doi.org/10.1098/rsta.2020.0093
https://doi.org/10.1029/2020MS002405
https://doi.org/10.1063/1.5028373

Further read: examples in computer graphics

• S. Zhao et al., 2020, Physics-Based Differentiable Rendering A
Comprehensive Introduction [link]

• N. Thuerey et al., 2019, Simulation & Animation [link]

• Y. Wang et al., 2023, Amortizing Samples in Physics-Based Inverse
Rendering Using ReSTIR [link]

103

https://shuangz.com/courses/pbdr-course-sg20/
https://geometry.cs.ucl.ac.uk/workshops/creativeai/slides/part6_physicsAnimation_nils.pdf
https://research.nvidia.com/labs/rtr/publication/wang2023amortizing/

Further read: examples in DP + reinforcement learning

• J. Degrave et al., 2019, A Differentiable Physics Engine for Deep
Learning in Robotics [doi.org/10.3389/fnbot.2019.00006]

• F. de Avila Belbute-Pere et al., 2018, End-to-End Differentiable Physics
for Learning and Control [link]

• S. Chen et al., 2022, Imitation Learning via Differentiable Physics
[doi.org/10.48550/arXiv.2206.04873]

• J. Lv et al., 2022, SAM-RL: Sensing-Aware Model-Based Reinforcement
Learning via Differentiable Physics-Based Simulation and Rendering
[doi.org/10.48550/arXiv.2210.15185]

104

https://doi.org/10.3389/fnbot.2019.00006
https://papers.nips.cc/paper_files/paper/2018/hash/842424a1d0595b76ec4fa03c46e8d755-Abstract.html
https://doi.org/10.48550/arXiv.2206.04873
https://doi.org/10.48550/arXiv.2210.15185

Further read: examples in predictive control/maintenance

• J. Morton et al., 2018, Deep Dynamical Modeling and Control of
Unsteady Fluid Flows [doi.org/10.48550/arXiv.1805.07472]

• L. G. Huber et al., 2023, Physics-Informed Machine Learning for
Predictive Maintenance: Applied Use-Cases
[doi.org/10.1109/SDS57534.2023.00016]

• D. Di Lorenzo et al., 2023, Physics informed and data-based augmented
learning in structural health diagnosis
[doi.org/10.1016/j.cma.2023.116186]

• V. Jadhav et al., 2022, Physics Informed Neural Network for Health
Monitoring of an Air Preheater [doi.org/10.36001/phme.2022.v7i1.3343]

105

https://doi.org/10.48550/arXiv.1805.07472
https://ieeexplore.ieee.org/document/10196678
https://doi.org/10.1016/j.cma.2023.116186
https://doi.org/10.36001/phme.2022.v7i1.3343

