). CERN
1= openlab

. load("./temp/b TSP
P, load("./temp/burgers—&

nes([10,33])w=~1. # we'll snei
itenatel [sol_gt, divider, sol™=

ions Ground Truth (tap), PING
wshape(sbs, [N+#3+20 11

»33,
'.

*h (top), ‘

Peter Kicsiny | CERN Openlab Summer Student Lectures | 15t July 2024

What is this lecture about?

 Introduction to some of the main concepts in the field

« Walkthrough of the concepts using toy examples

« Some application highlights

What is not covered in this lecture?

 Introduction of numerical simulations / differential equations

* Introduction to machine learning

The lecture will cover:

1. Surrogate models
Physics-based Deep Learning
http: / /physicsbaseddeeplearning.org

2. Physics informed neural networks

3. Differentiable physics

Content based on:
Physics-based Deep Learning

by

N. Thuerey, P . Holl, M. Mueller, P.

arXiv:2109.05237v3 [cs.LG] 25 Apr 2022

N. Thuerey, P. Holl, M. Mueller, P. Schnell, F. Trost, K. Um

Schnell, F. Trost, K. Um 03)

+ supplemented by real physics
examples

Motivation

Applications of physics simulations

Motivation

Applications of physics simulations

30 Apr 2022 18:50Z NESDIS/STAR GOES-East GEOCOLOR

Motivation 6

Applications of physics simulations

Motivation 7

Applications of physics simulations

Motivation 8

Applications of physics simulations

Goal: make classical simulations faster & more accurate

4 N\

Physical System
Data-driven
Terms
Inverse
Problems Deep Learning

Goal: make classical simulations faster & more accurate

7

Physical System

Inverse
Problems

Data-driven

Deep Learning

e Supervised learning

f(x;;0) >.
TR

Supervised loss: L(y;, y¥)

e Supervised learning

* Given arbitrary unknown function

describing a physical system: f*(z) = y* o .
T |

Supervised loss: L(y;, y¥)

e Supervised learning

* Given arbitrary unknown function

describing a physical system: f*(z) = y* E"> .
* Data: measured/simulated samples
R |

Supervised loss: L(y;, y¥)
[Z’(), yf)k]a [337% y:z,]

e Supervised learning

* Given arbitrary unknown function

describing a physical system: f*(z) = y* fx;0) .

* Data: measured/simulated samples
[an yE)k]a [xTw y:;,]

@
 Goal: approximate J/* with a neural

network (NN) denoted by f , trained
on this data

Supervised loss: L(y;, yl?")

Surrogate models: concept

Supervised learning

Given arbitrary unknown function

describing a physical system: f*(x) = y* @ j|> .

Data: measured/simulated samples
[xOvyE)k]a [xn,y;]

Goal: approximate J/* with a neural
network (NN) denoted by f , trained
on this data

Evaluate loss function & optimize
weights of NN via backpropagation

Supervised loss: L(y;, y;“)

QE.

argmln g (z4;0) — yi)?

Surrogate models: example

Input Output

Freestream X
Pressure

Navier-Stokes

Velocity X

numerical solver

Freestream Y

Mask
Velocity Y

f(xi§9)

Ly = [f:m f:wmaSk]’i

Freestream X

Freestream Y

Mask

Output

‘ 4 x 4 convolution

- -* 2 x 2 convolution
- - 4 2x2resizeconvolution
4 4 x4 resize-convolution

~——» Feature-wise concatenation

[p7 UgH, U]7,
Y

%
z
]
S
2

Compare

Surrogate models: example -

Test sample 1

)

O

3

o * Reconstructing

4 pressure seems to be
the most challenging

2

= » Error on few % level

o

=

=

Pressure Velocity X Velocity Y

s: best practices “

e Supervised training setup is a good first approach in many situations

e Always start with a 1-sample overfitting test
e Check how many trainable parameters your network has

* Slowly increase the amount of training data (and potentially network parameters
and depth)

e Adjust hyperparameters (especially the learning rate)

* For any structured data, like spatial functions, or data of any physical field,
convolutional NNs are preferable to fully connected NNs

-Is: CERN applications

0.3032 {35 # g i 1.0
2o "% ’;'..
« Surrogate modeling of LHC beam lifetime oross| 0.8
* Machine learning for beam dynamics studies 7 0.6%
at the CERN Large Hadron Collider, P. & 636555 5
Arpaia et al. [10.1016/j.nima.2020.164652] -
£
» Data: lifetime measurements from real-life 0.2882 ‘c"':;,; = 2
LHC parameter scans
Ty 5 S:- ,.:..,..:.:):
0.2832 "u‘!@f”‘#&g et s

0.2655 0.2705 0.2755
On

2

http://doi.org/10.1016/j.nima.2020.164652

lJrrogate models: CERN applications

« Surrogate modeling of LHC dynamic aperture

Modeling Particle Stability Plots for Accelerator
Optimization Using Adaptive Sampling, M.
Schenk et al. [10.18429/JACoW-IPAC2021-
TUPAB216]

Data: numerical simulations of different LHC
configurations

Ground truth NN output
ot X
s 3.6 * el
) g
0 10 20 0 10 20
2‘IX (Erms) 2JX (Erms)

Colors: how many turns the particles survive m

10.18429/JACoW-IPAC2021-TUPAB216
https://doi.org/10.18429/JACoW-IPAC2021-TUPAB216
https://doi.org/10.18429/JACoW-IPAC2021-TUPAB216
10.18429/JACoW-IPAC2021-TUPAB216

Fast training & constant time

evaluation compared to numerical @) @ Lots of data needed
solvers or measurements

Fast training & constant time

evaluation compared to numerical @) @ Lots of data needed
solvers or measurements

Simple network architecture @ (o] g:g'gog:]ig:g:iggi'g:mance, accuracy

Surrogate models: pros &cons &

Fast training & constant time

evaluation compared to numerical @) @ Lots of data needed
solvers or measurements

. Sub-optimal performance, accuracy

Simple network architecture @) and generalization

_ Purely data driven. Interactions with external
Simple concept @ @ ‘processes” (such as embedding into a solver
for refining results) are difficult

7

Physical System

Inverse
Problems

Data-driven

Deep Learning

Physical System

Inverse
Problems

Data-driven

Loss terms

Deep Learning

Physical losses: PDEs .

Partial differential equation (PDE)

Time evolution of a physical field e.g. velocity expressed with spatial derivatives

N
Uy :f(uxauxx7'°'uxx...x) u:u(X7t) X,u € R
N dimensional space
Initial condition: u(x,t = 0) = u’(x) t e RT

Boundary condition: u(x = 0x,t) =0

to t1 tz t3

With this (usually) a unique solution for u exists (=well-posed PDE)
Xo

Space-time domain is discretized into a computational grid X1
X2
X3

$1x

equation

 Partial differential equation (PDE)

%—'—U%:V@ r,u € R
ot Ox Jxr?2 teRT

Initial condition Boundary condition

u(x,t =0) = —sin(nx) u(x = dx,t) =0

Physical losses: Burger's equation

Partial differential equation (PDE)

ou ou 0% u

ot Oor Ox2

Velocity u

r,u € R

-100 -075 -050 -0.25 000 025 050 075 100

X

Initial condition

Boundary condition

u(x,t =0) = —sin(nx)

u(x = dx,t) =0

-||ical losses: Burger’s equation

1.00 4

» Partial differential equation (PDE)

Velocity u

—0.50 4

ot Oor Ox2 teRT

-1.00 4

-1.00 -0.75 =-0.50 =-0.25 0.00 0.25 0.50 0.75 1.00
1.00
0.75

0.50

—0.25

Velocity u

—0.50

-0.75

0.0625
0.09375
0.125
0.15625
0.1875
0.21875
0.25
0.28125
0.3125
0.34375
0.375
0.40625
0.4375
0.46875
0.5
53125
0.5625
0.59375
0.625
0.65625
0.6875
0.71875
0.75
0.78125
0.8125
0.84375
0.875
0.90625
0.9375
0.96875
1.0

n
N
—
m
=4
5}

-1.00

0.

time

Burger’s equation

ou ou 0% u

« Approximate velocity field u with a NN f — +U— = V——F
ot Ox Ox?
f(XG,0) =~ u(X;) Xy = |3, t4]

Burger’s equation

ou ou 0% u
+U— =V

ot ox Ox?
Ou ou 0% u

+UT— — Vs

ot ox Ox?

» Approximate velocity field u with a NN f
[(X3,0) mu(X;) X = |24,

0

» Approximate velocity field u with a NN f

Xi = x4,]

Burger’s equation

ou ou 0% u
+U— =V

ot ox Ox?
Ou ou 0% u

0= — +u— —v—sp
or " 'or Vo2

Residual loss

g o O

:E—I_ ox Ox?

Physical losses: residual loss

Burger’s equation

ou ou 0% u

» Approximate velocity field u with a NN f — t+U— =V—7F
ot 0x Ox?
ou ou 0%u

0= —4u——v—s
2
» Physics informed neural network (PINN) ot Ox ox
Residual loss
supervised loss term residual loss term ou ou agu
A \ r AL \ R = Ly — 7/_2
ot Ox ox

L(X;;0) = Zao (Xi;0) —)" + a1 R(X;0)
lreplaceubyf

Of(X;;0) 0f(Xi0) 2 f(Xis0)

R: —|—f(X7,,9) — UV

Ot ox Ox?

Physical losses: obtaining partial derivatives]

8]”(0) an(9) sample grid point
Xi; Xi; s f
+ f(X;;0) 5 — v 92 Xi = [z,]

Of (X3 0)

f=="5

L(Xi:60) = > oo(f(Xi0) — ;)" + a1 R(X;:6)

¥
argmin L(X;; 0)
0
)

Physical losses: obtaining partial derivatives ¥

Of(X;;0)))
ot + f(Xi;0) By v

[//f arg;nin Zao(f(Xz’;O) —) + a1 R(X;; 0)

« Derivatives in R are obtained from the
NN via standard backpropagation

0f(Xi:6) 0°f(Xi;0)

R =

ing partial derivatives

N Of(X550) 0% f(Xi;0)
Ot + /(Xi50) Ox v 0x?

[//f arggnin ZaO(f(Xi§9) — yf)2 + a1 R(X;;)

* Derivatives in R are obtained from the
NN via standard backpropagation NN output (f) at sample point [x;, t]

Of (X3 0)

R =

x
In [1: def R(u, xi, ti):
u_t = tf.gradients(u, ti)
u_x = tf.gradients(u, xi)
u_xx = tf.gradients(u_x, xi)
return u_t + uku_X - nu * U_XX

_: obtaining partial derivatives

Of(Xi;0) Of(Xi;60) 0°f(Xi;0)
R = Xi; 9 —
ot + I) Ox Y o2
argmin Zao(f(Xz-;H) yr)” + a1 R(X;;0)
0 .

. | in R are obtained from the

NN via standard backpropagation NN output (f) at sample point [x;, t]
- When R is minimized: u (NN output) In [1: def R(u; xi, ti): |

approximately solves the PDE u_t = tf.gradients(u, ti)

u_x = tf.gradients(u, xi)
u_xx = tf.gradients(u_x, xi)

f(Xz, 9) ~ ’U,(Xz) Xz = [xi7ti] return u_t + uku_X = nu * u_xx

residual
0 du du o%u
+Uu —

Ix o ox oxt |

standard supervised + residual
Done < Y Source: [doi.org/10.1038/s42254-021-00314-5]

http://doi.org/10.1038/s42254-021-00314-5

Physical losses: solving Burger's equation 4

find u with a PINN

oo o
ot u(?.iz:_y(?xz

1D computational “grid”: 1 € [—1, 1] 128 steps

Forward simulation in time: ¢ & [(), 1] 33 steps

e S <

dl.nl-!

—

<)

n S N

=} 4
© o~

d o)
N o @ Qo @

supervised loss term

. S.uplgg\;i::aedn::zsz: ground truth data y; argénin Z a0 (f(Xi§ 0) B yf)2 n ole(Xz-; 9)
Z X = |z, t4]

1D computational “grid”: 1 & [—17 1] 128 steps

Forward simulation in time: ¢ € [(), 1] 33 steps

-1
0.5 4
X o
0.5 4
1 ————————————————— T ——— T — T ——T— T — T — T
O 1 1 B N WV W N W W W N W0 I W0 W W W N W W N W W I O
S N N N N &N NN A N &8> SKFD> S &8 o0& 5 & o6& 55~ &85 o8 555
4 © M 4 © ® © 5 o o M M © Mm © 4 © M © © ® W 5 o o M ® VW Mm ©
m S @ g N o= o © M ¥ 5 © < © m NN o g n O o © ® ¥ 5 © O ©
e o <9 - o A N c M ¥ o ¢ n o ©C oo~ N o @ Qo @
IS o = o = = o o = = IS = = o IS o

time

ng Burgersequation s

supervised loss term

 Supervised loss: ground truth data y;’ argmin Z o (f(Xz 9) _ y’-k)2 4 alR(Xi' 9)
) 1)
9 ,

+ Reference u
« E.g. we know u(x, =0.5) X; = [,]
(direct constraint) @ iy Ui

T € [—17 1] 128 steps

t € [0,1] 33steps

-1
0.5 4
X o
0.5 4
1 — T F——— T —— T —————T—T——
O 1 1 B N WV W N W W W N W0 I W0 W W W N W W N W W I O
S N NN N N NN AN & 0K SO NS & > S> 88 & 5 > 6 > 55
4 © M 4 © ® © 5 o o M M © Mm © 4 © M © © ® W 5 o o M ® VW Mm ©
m S o g !n A o © M ¥ 5 © < © m NN o g n O o © ® ¥ 5 © O ©
e o <9 - o A N c M ¥ o ¢ n o ©C oo~ N o @ Qo @
IS o = o = = o o = = IS = = o IS o

time

Physical losses: solving Burger's equation &

-0.5 4

0.5 1

supervised loss term

Reference u
E.g. we know u(x, =0.5) X. = [x t-]
(direct constraint) ’ ©
We also know u(x=-1;1, 1)=0

(boundary conditions of PDE)

Supervised loss: ground truth data y;* argmin Z oo (f(Xz 9) _ y’-k)z 4 alR(Xi' 9)
) 1)
9 ,

T € [—17 1] 128 steps

t € [0,1] 33steps

O 1 1 1 1 W0 W N W W W W N W I W W W W W W W N W W I O

S N NN N N NN AN & 0K SO NS & > S> 88 & 5 > 6 > 55
4 © M 4 © ® © 5 o o M M © Mm © 4 © M © © ® W 5 o o M ® VW Mm ©
m S o g !n A o © M ¥ 5 © < © m NN o g n O o © ® ¥ 5 © O ©
e o <9 - o A N c M ¥ o ¢ n o ©C oo~ N o @ Qo @
IS o = o = = o o = = IS = = o IS o

time

Supervised loss: ground truth data y;’

Reference u
E.g. we know u(x, =0.5) .
(direct constraint) Yi
We also know u(x=-1;1, 1)=0
(boundary conditions of PDE)

“Pin down” PDE solution at these points

supervised loss term

Oéo(f(Xi;t y;;k)2

ng Burger'sequation &
argmin

+ OélR(Xz'; 9)

X = |z, ti]

T € [—17 1] 128 steps

t € [0,1] 33steps

mmmmm

0.1875
0.21875
0.25
0.28125
0.3125
0.34375
0.375
0.40625
0.4375
0.46875
0.5
53125
0.5625
0.59375
0.625
0.65625
0.6875
0.71875
0.75
0.78125
0.8125

0

time

0.84375

0.875
0.90625
0.9375
0.96875
1.0

urger’s equati

residual loss term

*
(]

-)2+a1R(X-;9)

Z Qo (f(Xz'; 0) -

argmin
0

Residual loss: no ground truth data,
but we sample the the NN inside the

domain

X = |z, ti]

T € [—1, 1] 128 steps

t € [0,1] 33steps

0T
§.896°0
SLE6O
§2906°0
SL8°0
SLEVS'O
SC180
SGZ18L°0
SL'0
SL8TL0
S£89°0
§2959°0
S79°0
GLE6S0
S795°0
GZ1eS0

time

S0
SL891°0
SLEV'O
§2901°0
SLEO
SLEVE'D
STI€0
SZ182°0
ST0
SL81C°0
SL8T0
GZ9ST'0
SZT°0
SL£60°0
S290°0
GZ1€0°0

-0.5 4

0.5 1

00

Physical losses: solving Burger’s equation

* Residual loss: no ground truth data, Aremin Z o X 9
but we sample the the NN inside the 5/ o (S (X;

domain
* i.e.:input random X;to NN
* NN estimates u as f(X;;0)

. . 2 .
Of(X;:0) Of(Xi:0) 92f(Xi:0)
) . Y Y
R = + f(X4;0) — v 5
ot Ox Ox
-1+
0.5 x x x x
Xx
X o X X X x
X
05 X X
X X X X
A o
o N N N A o NN N A NS ASRNDN S &~FMSG S S~ N 5
4 © M o4 © ©® ©® 5 o o m m © mMm © 4 © m © © ® ©® 5 o o mMm © © mMm ©
e o < < o o N c ™ S o ¥ n o 0 ©C c N N o X N s @
o o oS o o o o o S S o o o S S S

47

residual loss term

yf)2 + a3 R(X;;0)

X; = [z, t4]

c [—1, 1] 128 steps

t € [0,1] 33steps

urger’s equati

»
| -
)
>
Y
lld
oF
o
@
E c
S 5
o O
@D >
£3
£ oo
P
N.

X = |z, ti]

~200 trainable parameters

T € [—1, 1] 128 steps
t € [0,1] 33steps

0T
§.896°0
SLE6O
§2906°0
SL8°0
SLEVS'O
SC180
SGZ18L°0
SL'0
SL8TL0
S£89°0
§2959°0
S79°0
GLE6S0
S795°0
GZ1eS0
S0

time

SL891°0
SLEV'O
§2901°0
SLEO
SLEVE'D
STI€0
SZ182°0
ST0
SL81C°0
SL8T0
GZ9ST'0
SZT°0
SL£60°0
S290°0
GZ1€0°0

-0.5 4

0.5 1

00

Physical losses: solving Burger's equation

* NN in this example: . ’
8 fully connected layers argénm Z @0 <f(X“ 0) — v;) +a1R(Xi;0)
~200 trainable parameters v X; = [z,]

Y

Evaluate NN at constraint points |, | & x
Calculate loss & update weights x € [—1,1] 128 steps

Repeat 10,000 iterations (~1 min) t e [0 1]
, 33 steps

Physical losses: solving Burger’s equation

« After training: need to evaluate NN for all grid points!
« Computationally expensive for large grids

* Why is this possible?
* NN inherently supports calculation of derivatives

Velocity u after training NN

X

X X

0.5

0.0 4
0.03125 -
0.0625 -
0.09375 -
0.125 -
0.15625 -
0.1875 -
0.21875 -
0.25 -
0.28125 -
0.3125 -
0.34375 -
0.375 -
0.40625 -
0.4375 -
0.46875 -
0.5 -
53125 -
0.5625 -
0.59375 -
0.625 -
0.65625 -
0.6875 -
0.71875 -
0.75 -
0.78125 -
0.8125 -
0.84375 -
0.875 -
0.90625 -
0.9375 -
0.96875 -
1.0 -

0

time

50

0.4

0.2

0.0

-0.2

-0.4

: discussion

1.00 A

NN

0.75 A
Reference

0.50 A
0.25 A1
0.00 +

—0.25 A

~0.50 p

—0.75 1
”

—1.00 1

-1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 1.00

X

Boundary conditions u=0 are fulfilled

Shock at center not well represented

1.00 +

0.75 * u(x,t=0)=-sin(mx)
0.50
0.25

S 0.001

-0.25-

—0.50 A

—0.75 A1

—1.00 1

—1I.00 —OI.75 —OI.50 —OI.25 0.60 O.I25 0.I50 O.I75 1.60
X
Initial state of PDE solver not well represented

More accurate representation requires
significantly more iterations even for this
simple case

Physical losses: discussion

* This is a conceptual starting point, but not very accurate

* Physical loss allows to encode (unique) solutions to PDEs with NNs, which
allows to use NNs as universal function approximators

* Not really “machine learning”: we reconstruct a single PDE solution in a
known space-time region

D

Region of analysis -« -~ |

PINN

(Physics Informed
Neural Nework)

§
[
#
-
Plasma Deasity

) 13
E

Temperature Probing Gas Density

Reconstruction of turbulent
fluctuations of plasma in a
tokamak (A. Mathews et al.,
2022,
[doi.org/10.1063/5.0088216])

n, (10** m-?)

90.50 90.75
R (cm)

~1.15

-1.05

-0.95

+0.85

The learned two-dimensional n , (a), T, (b), and Cn (c) for plasma discharge 1120711021 along
with the experimentally observed 587.6 nm photon emission (d) at t= 1.312815 s. The learned
measurements are based on the collective predictions within the deep learning framework training
against the neutral transport physics and N . = 1 CR theory constraints. Multimedia view:
https://doi.org/10.1063/5.0088216.1.

T, (eV) Cng (arb. units) Iy (arb. units)
~105.00 240
102,15 216
-=99.30 192
-96.45 168
93.60 144
90.75 120
87.90 96
85.05 72
82,20 48
; 79.35 24
90.50 90.75 90.50 90.75 90.50 90.75

R (cm) R (cm) R (cm)

http://doi.org/10.1063/5.0088216

Reconstructing unknown
parameters in Schrodinger
equation (M. Raissi et al., 2017,
[arxiv.org/abs/1708.00588])

0.5 1 1.5

t = 2.55726

49 training data

2 4
x

2 2.5 3

t = 2.56354
51 training data

~nN

u(t, x)
e

-4 -2 0 2 4

£

Correct PDE

ihy + 0.5k, + |h|°h =0

Identified PDE (clean data)

ihy = 0.506k,, + 0.995 h|“h = 0

Identified PDE (1% noise)

ihy — 0.476h,, +0.999/h*h =0

https://arxiv.org/abs/1708.00588

PINN application examples

Velocity(m/s)

w
0
3
=
3]
o
0
>

Pressure(mmHg)
Wall Shear Stress(Pa

Reconstruction of blood flow in a blood vessel (E. Hwuang, S. Wang
et al. [doi.org/10.1038/s42254-021-00314-5])

http://doi.org/10.1038/s42254-021-00314-5

PINN application examples -

F. Fuest, S. Cai et al.
a b [doi.org/10.1038/s42254-021-00314-5]

Tomo-BOS setup 3D temperature data

[doi.org/10.1017/jfm.2021.135]

Temperature of Tomo-BOS (K) Temperature error (K)
Z=-21 mm Z=-21 mm
85 340 s
330
4
320
— o 3
E E
E 310 8
- - 2
I 300
X y .
| 290
S Physics-informed 280 o
c neural network 4
_____________________________________ Se X [mm] X [mm]
3D velocity ;
Pressure learned by PINN Planar velocity learned by PINN
.34 Z=-21 mm ss Z=-21 mm '
.30 0.01
.26
.22 08
.18 0.005
14 >
.1 z = 4
06 E Y 2 A 1 \
ks = = | T 0
o -0.005 P i
/ ’.-'\
- 02
z -0.01 =i
| -90 0
-64 63
y X [mm] X [mm)
S o el !

http://doi.org/10.1038/s42254-021-00314-5
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/flow-over-an-espresso-cup-inferring-3d-velocity-and-pressure-fields-from-tomographic-background-oriented-schlieren-via-physicsinformed-neural-networks/160E4A836637FE3996610389666DA030

(o) Quite slow: need to evaluate NN at every grid

Easy setup with simple NN . point, i.e. “paint the image pixel by pixel”

. Quite slow: need to evaluate NN at every grid

Easy setup with simple NN . point, i.e. “paint the image pixel by pixel”

PDE derivatives in physical loss can . . Accuracy of computed derivatives relies on
be computed with backpropagation learned representation

Easy setup with simple NN

PDE derivatives in physical loss can
be computed with backpropagation

Popular for inverse problems: given
certain measurements or observations
(=training data), find a PDE solution

Quite slow: need to evaluate NN at every grid
point, i.e. “paint the image pixel by pixel”

Accuracy of computed derivatives relies on
learned representation

Does not combine well with numerical solvers
e.g. for refining solution

Physical System

Inverse
Problems

Data-driven

Loss terms

Deep Learning

7

Physical System

Data-driven

ss Terms

Interleaved

Inverse
Problems Deep Learning

« Differentiable physics = differentiable numerical simulations of physical
systems

« Differentiable physics = differentiable numerical simulations of physical
systems

« Equip classical numerical solvers (discretized PDE) with the ability to
compute gradients with respect to their inputs

« Differentiable physics = differentiable numerical simulations of physical
systems

« Equip classical numerical solvers (discretized PDE) with the ability to
compute gradients with respect to their inputs

» This allows integration of numerical methods into the training process of
an attached NN

» Linear advection equation with u=u(x) and d=d(x,t)

od
E—I—u-Vd-O

Differentiable physics: differentiable solver example %]

* Linear advection equation with u=u(x) and d=d(x,t) E.g.in 1D

Od | .vd=0 wep d@it+ A1) —d(.t) d(w: + Az, t) — d(w, 1)

ot At = —ulzi) Az

Differentiable physics: differentiable solver example ¢

- Linear advection equation with u=u(x) and d=d(x,1) E.g.in 1D

od | n |
o7 +u-Vd=0 map d(z;,t+ At) =d(z;,t) — At U(wi)d(xz+1’t) d(x;,t)

« Generally:
d(t+ At) = P(d(t), u, t + At)

-Je physics: differentiable solver example _

» Linear advection equation with u=u(x) and d=d(x,t) E.g.in 1D
d d(xiq1,t) — d(x;,t
a——I—u~Vd=O m) d(x;,t+ At) =d(x;,t) — At [u(a:z) (Fir1,0) — dlz)]
ot Ax
* Generally:
d(t + At) =P(d(t),u,t + At) end time step
» For N forward iterations: \

d® = P(d°, u,t + NAt = t°)

0 1 2 e
AtdAtd At Atd
0'0°0 0@

Differentiable physics: differentiable solver example 6“

- Linear advection equation with u=u(x) and d=d(x,t) E.g.in 1D
od d i+1 t)—d 7 t
E—ku-Vd:O m) d(x;,t+ At) =d(x;,t) — At {U(%) (i1 ix @)]

* Generally: * Find velocity field u that brings a known initial
d(t+ At) =P(d(t),u,t + At) density d? = d(t°=0) into a known target
density dtarget = d(te=t+NAt)

0
d At
@®-

0.6
©
0.4

 For N forward iterations:

d¢ = P(d°, u,t + NAt = t¢) d

1 2
Atd At
00’ '@

u=?

1.

0.

0.24

0.0

lfferentiable physics: differentiable solver example

- Linear advection equation with u=u(x) and d=d(x,t) E.g.in 1D
od d i+1 t)—d 7 t

* Generally: * Find velocity field u that brings a known initial
d(t+ At) =P(d(t),u,t + At) density d? = d(t°=0) into a known target

i target = =
« For N forward iterations: density d d(te=t+NA?)

e __ 0 __ € 0 1 2 target
d¢ = P(d° u,t + NAL = t°) @ ,d &, d
« Optimization problem: ‘ P ‘ P ‘ P ‘
I = |de . dtarget|2
/v \ o:s- u—?
output of simulation known from observation oc -

©
0.4 1

0.2 1

0.0 1

Differentiable physics: differentiable solver example

- Linear advection equation with u=u(x) and d=d(x,t) E.g.in 1D
od d i+1 t)—d 7 t
E—l—u-Vd:O m) d(x;,t+ At) =d(x;,t) — At {U(%) (i1 ix @)]

* Generally: * Find velocity field u that brings a known initial
d(t+ At) =P(d(t),u,t + At) density d? = d(t°=0) into a known target

i target = =
« For N forward iterations: density d d(te=t+NAY

d® = P(d°, u,t + NAt = t°) a .
* Optimization problem: ‘ P
I = |de . dtarget‘Q — \P(do,u,te) . dtarget‘Q Lo

0.8

1 2
dAtd At
-0 -0

u=?

0.6
©
0.4

0.24

0.0

Differentiable physics: differentiable solver example 7“

- Linear advection equation with u=u(x) and d=d(x,t) E.g.in 1D
od d i+1 t)—d 7 t
E—ku Vd=0 map d(z;,t+ At) =d(x;,t) — At {U(%) (it ix @)]

* Generally: * Find velocity field u that brings a known initial
d(t+ At) =P(d(t),u,t + At) density d? = d(t°=0) into a known target
i target = =
* For N forward iterations: density d d(te=t+NAY)

d® =P(d°, u,t + NAt = t°) a@ , d , a? gtarget

* Optimization problem: ‘ P ‘ P ‘ P P ‘
I = |de dtarget‘Q ‘P(do U te) dtarget‘Q Lol

0.8

known reference quantities from observation 5

¥ \ 04
argmin L(u) = argmin [P (d°, u, t¢) — d*?8|? o
u u / 0.0

u unknown at start e.g. init with Os

u=?

Differentiable physics: differentiable solver example %]

argmin L(u) = argmin |7D(0107 u, %) — dtarget|2

u u)
learning rate

. \
oL OP; OL ul®v = u; — nAu,

Differentiable physics: differentiable solver example

argmin L(u) = argmin |73(d0, u, t¢) — dtarget|2

u u .
learning rate

oL OP;|0L .

A’U,Z' = = u?ew = U; — nA’U,Z

du; Qu; OP; Z |df — dlfargetIQ
In case of a single forward step from t&-1 to te: /
oL O|P — dtareet|? 0L d|d® — dtareet|? B
oP; OP; ~ods dde B

Q(df L d‘garget)

1

-hysics: differentiable solver examp|

argmin L(u) = argmin |7D(d0, u, te) . dtarget |2

“ v learning rate
OL |0Py|0L \
. = — 7 new __ P — Z& ;
A= G T lawpp) M T TR

In case of a single forward step from t&-1 to te:

OL _ Q[P —d™*]> QL _ 9|d° —d™="]> _ 2(de — e
OP; OP; (9cle B od

oP; B 8d,§ At [
8u7; B 8’11,Z B A(E

e—1 6—1_
dz+1 dz‘

e =1+ At
’ te—]_:t

with

From: d(x;,t + At) = d(x;, t) — At [u(xi)d(wiﬂ, ti; d(z;, t)]

| physics: differentiable solver exampl

argmin L(u) = argmin [P(d°, u, t¢) — d**&°*|?
u u
oL OP; OL
Au; = = uP*vV = u; — nAuy
" Bu; ouw 0P, P
In case of multiple forward steps from t°to t&: « Final density d® depends on velocity u;
ode OL through all previous density states:
AU =5, Bde d° gt

N ode=1 dde 0L ‘fp i" ‘
At

Ou; 0de—1 ode
<8d0 ode—1 ode 8L)
ou; 0de—2 0de—1 Ode

Differentiable physics: differentiable solver example 7]

argmin L(u) = argmin |7D(d0, u, te) _ dtarget |2
Au,; = oL = OP: OL ;Y = u; — nAu,

In case of multiple forward steps from t® to t¢; + Final density d® depends on velocity u;

........................

ode OL through all previous density states:
= ' de 1 e

d
Gdel 94° aL
T b - —— ‘ ‘Ait’ P ‘ ‘

od’ ode! 0d® OL
+ ('aui " Dge2 ade—léadeé) O

-ole physics: differentiable solver example _

argmin L(u) = argmin |’]D(dO7 u, te) _ dtarget |2
Au,; = oL = OP: OL ;Y = u; — nAu,

In case of multiple forward steps from t® to t¢; + Final density d® depends on velocity u;

........................

ode OL through all previous density states:
= ' de 1 e

d
Qd71 0d° oL
Rerirzaly ° ®: 0’0

8uz- ode—1 8d6

T o od; At
(8d0 . ade—l od° 8-[/) ‘ 8d;2—1 =1+ A—xuz
ou; dde—2 9de—1 0de

R *potential contributions from cells i+1, i-1 etc...

-Ie physics: differentiable solver example _

dtarget |2

argmin L(u) = argmin [P(d°, u,t¢) —

u

OL
Au,; = -
! 3uz
In case of mL spends on velocity u;

s density states:

g1 de
.p‘ ‘
o o, A
"'836—2 a?zg—l%g;) O o1~ Ac

R *potential contributions from cells i+1, i-1 etc...

-Iiable physics: differentiable solver example ‘-

. dtarget |2

argmin L(u) = argmin [P(d°, u, t%)

u
OL
Au,i — auz -
In case of m 2pends on velocity u;
Au,; _3d6_5 '1 s density states:
Ou; O ge! d°
i o

A typical PDE based numerical solver consists of arithmetic operations
which are differentiable. The computation of gradients is typically not
expensive and it can happen during forward simulation.

gaTToaT gad” 0L G A
" (8u7; dde—2 8d€—1§8d6§) -

----------------- *potential contributions from cells i+1, i-1 etc...

Differentiable physics: solving Burger's equation with DP e

Burger’s equation

» Classical gradient based optimization, no DL
ou ou 0%
| - — tU— =V
« Start with u(x,t=0)=0, utereel(x,t=0.5) known Ot O 012
X o

Differentiable physics: solving Burger's equation with DP &

Burger’s equation

» Classical gradient based optimization, no DL
J g ou ou 0w
« Start with u(x,t=0)=0, utaree(x,t=0.5) known Ot U O =V 012

1. Simulate P (discretized PDE) from t=0 to t=1 in N=32 time steps

-1
-0.5
X 01 f d simulate th h
orward simulate throug
0.5 1 I
14 e —_n——————————————— T — T
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
o' NNNNNNNNNNNNNNN o' o~ o~ ~ o~ o~ ~ ~ ~ o~ o~ ~ ~ o~ ~ ~ '_i
mememe O - — m m [(e) m [s¢] - o m o [(e) [se] [e¢] o' — —~ m [s¢] [(e) m 0]
e o -+ o o N o) S o = n o © o~ N o X Qo O
o o o o o o o o o o o o o o o o

-tiable physics: solving Burger’s equation with D_

Burger’s equation

» Classical gradient based optimization, no DL
J g ou ou 0w
« Start with u(x,t=0)=0, utereel(x,t=0.5) known Ot Tu O =V O 2

1. Simulate P (discretized PDE) from t=0 to t=1 in N=32 time steps

2. Backpropagate gradients from t=0.5, 16 steps back till first step at t=0

B P OL
Au; = 0L/0u; = — —
/ ou; OP | « L=>|ui(t=05) — u;="|?
backpropagate gradients ;
X o propagate gradi forward simulate through ?
o P N times
. |

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
4 © m © VW ® ® g5 o o M W OV m ©

5])
QN o @

© 4 WM Hd 0 ® ©® 5 4 4 MmO Mm®
- o .
S o < - o o

Differentiable physics: solving Burger’s equation with DP 8“

Burger’s equation

» Classical gradient based optimization, no DL
J g ou ou 0%
. o i} — fu— =V
« Start with u(x,t=0)=0, utareel(x,t=0.5) known Ot oxr Ox?2
1. Simulate P (discretized PDE) from t=0 to t=1 in N=32 time steps
2. Backpropagate gradients from t=0.5, 16 steps back till first step at t=0

3. Update u(x,t=0) with gradients: u}*V = u; — nAu;

B JP 0L
Au; = 0L/0u; = — —
/ ou; OP | « L=>) |u(t=0.5) — u;"*"|?
backpropagate gradients ;
X o propagate gradi forward simulate through ?
o P N times
. . "

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
o N &N~ N N N > N NN~ SN N NN S NN S SNNNS SN S
- © m 4 © W ®W 5 o o4 m m © m ©

d o 1
S o < - o o

4 © M © © ® ® 5 o o4 M ® VW M ®
.......
! < o ¢ N o © o =~ QN o @

.ferentiable physics: solving Burger’s equation with DP

Burger’s equation

e Classical gradient based optimization, no DL
J P ou ou 0%u
« Start with u(x,t=0)=0, utereel(x,t=0.5) known Ot Tu O =V O 2

1. Simulate P (discretized PDE) from t=0 to t=1 in N=32 time steps

2. Backpropagate gradients from t=0.5, 16 steps back till first step at t=0

3. Update u(x,t=0) with gradients

forward sim. with optimized u 075
4. Repeat 50 times
(~2 mins)

-erentiable physics: solving Burger’s equation with DP

After 50 Optimization Steps at t=0 After 50 Optimization Steps at t=0.5
1.00 1 —— Ground truth initial state 1.00 1 — Reference
0.75 4 —— Optimized initial state 0.75 —— Simulated velocity
0.50 A _ Sin(ﬂ'[lj‘) 0.50
0.25 4 0.25 A
> 0.00 > 0.00+
-0.25 4 -0.25
-0.50 ~0.50
-0.75 1
-1.00 4

.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 -1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 1.00

0.75
0.50
0.25
0.00
-0.25
-0.50
© 1 M N NN N N W N N N NI N N N NN N N N W N NN N O
S N N >~ N N>~ NN N> & > &N 6 > 6 & > 5 8 8 & > S5 o > 55 -0.75
H © M 4 © ® ©® 5 o o4 Mm Mm ©VW m © 4 © m © © ® ® 5 o o4 M © © Mm ®
m S o g w oo o © M ¥ 5 © ¢ © m 1 o 5 om0 o © ® ¥ 5 O o ©
© o 9 - o o N o ™M S o ¢ n o 0 © o~ ~ o ® N o
o IS IS <] <] o IS IS =] =] IS IS IS IS] o IS 1.00

time

.ifferentiable physics: discussion of PINN vs DP -

Physics informed NN (PINN)
» Recovers the overall shape of the
solution

o

1.00

0.75

=
o
o

0.50
« Temporal constraints are at least

partially fulfilled

=
w
o

0.25

I

0.00
_0.25 » Poor reconstruction of amplitudes

N
Ul
o

-0.50

300 _

Differentiable physics solver (DP)
~0.75 * Much closer to ground truth (GT)
—1.00 thanks to flow of gradients

DP PINN GT

w
w
o

5
o
o

0.0
0.125
0.25
0.375
0.5
0.625
0.75
0.875
1.0

 Difficulty with sharper features:

time
artifacts

Differentiable physics: coupling differentiable solver with NN

A .
where deeplearning?

Differentiable physics: coupling differentiable solver with NN %2

OP OL

* Physical field u input to
differentiable solver

* Find optimal u

Differentiable physics: coupling differentiable solver with NN %"

OP OL

gradient w.r.t. NN weights
Ag_ OL _|0uloP oL
00 |00|0u OP

NN approximates physical field u

* Physical field u input to
differentiable solver

* Find optimal u

Physical field u input to
differentiable solver

Find optimal NN weights: gradients
are guided by solver

-tiable physics: coupling differentiable solver witI{

Image source: [cs.umd.edu]

/ - ;;)r vl‘
O J
gmore “refined”
r\ .\ B outputs
J \ A <

lL‘/ 3

Gradients from differentiable solver allow to access previously “hidden” parts of the loss landscape

https://www.cs.umd.edu/~tomg/projects/landscapes/

Uses existing numerical tools which

can be coupled to the training of @) @ More complicated implementation
neural networks

Differentiable physics: pros &cons 8]

Uses existing numerical tools which

can be coupled to the training of . . More complicated implementation
neural networks

Efficient evaluation of gradients is o) Requires understanding of the physics
possible to choose suitable discretization

Differentiable physics: pros &cons]

Uses existing numerical tools which

can be coupled to the training of . . More complicated implementation
neural networks

Efficient evaluation of gradients is o o Requires understanding of the physics
possible to choose suitable discretization

Choice of PDE discretization gives o) o) Computational cost and training
control on numerical accuracy difficulty scales with time look-ahead

plication examples]

Controlling fluid deformations & reduction of
numerical errors, J. Tang et al. 2023 [link]

Deform D

‘Benzp
¢ | RESEARCH

S T U DI OSs

https://studios.disneyresearch.com/2023/05/07/physics-informed-neural-corrector-for-deformation-based-fluid-control/

(a) Precipitation rate (mm/h)

HR (DL model) LR (input)

HR (truth)

Event 1 Event 3
" - =u

e

Event 4

application examples]

Super-resolution
forecasting of precipitation
rate, B. Teufel et al. 2023
[doi.org/10.1186/s40562-
023-00272-7]

http://doi.org/10.1186/s40562-023-00272-z
http://doi.org/10.1186/s40562-023-00272-z

Differentiable physics: application examples @

Reconstruction of 6D beam distribution in a particle accelerator,
R. Roussel et al., 2022, [arXiv:2211.09077] 1 A o

ACCELERATOR

JHF\V LABORATORY

Base Particle Neural Network Proposed Initial Differentiable Accelerator Simulations Simulated Screen Images
Distribution Parameterized Transform Particle Distribution . l
n=]
n=1
> K >
n
X ~N(0,1) g(x36,) : 9(X; Zn = f(Y; Kn) (9) — KDE(Z,)
Reconstructed 9 = inl Exoeri s |
Initial Distribution = arg min e .) xperimental Screen Images
Gradient calculation <.
01 — 0(,_1 - h(V,;!)

Optimization Step

Loss Function
o) R
l=]”g | (27 (“ ,,,,J} + \Z I{'n’ lil (:.‘_v,) e

o

Initial Image Divergence

S (i,7)
Y* = _(](X; 0"‘) Distribution Entropy Constraint Penalty Ry

https://arxiv.org/abs/2211.09077

« Physics based deep learning is an emerging topic with many exciting
possibilities

Summary

* Physics based deep learning is an emerging topic with many exciting
possibilities

« Al will not replace classical numerical simulations!

Summary

* Physics based deep learning is an emerging topic with many exciting
possibilities

« Al will not replace classical numerical simulations!

Equation learning

examples In high energy physics “

A. Adelmann et al., 2022, New directions for surrogate models and
differentiable programming for High Energy Physics detector simulation
[doi.org/10.48550/arXiv.2203.08806]

« T. Dorigo et al., 2023, Toward the end-to-end optimization of particle
physics instruments with differentiable programming
[cds.cern.ch/record/2807001]

« MODE Collaboration, 2021, Toward Machine Learning Optimization of
Experimental Design [inspirehep.net/literature/1850892]

 R. Lehe et al., 2020, Machine learning and surrogate models for
simulation-based optimization of accelerator design [link]

https://doi.org/10.48550/arXiv.2203.08806
https://cds.cern.ch/record/2807001
https://inspirehep.net/literature/1850892
https://snowmass21.org/docs/files/summaries/CompF/SNOWMASS21-CompF2_CompF3-AF1_AF6_Lehe-075.pdf

-amples in weather/climate modeli_

K. Kashinath et al., 2021, Physics-informed machine learning: case
studies for weather and climate modelling
[doi.org/10.1098/rsta.2020.0093]

S. Rasp et al., 2021, Data-Driven Medium-Range Weather Prediction
With a Resnet Pretrained on Climate Simulations: A New Model for
WeatherBench [doi.org/10.1029/2020MS002405]

J. Pathak et al., 2018, Hybrid forecasting of chaotic processes: Using
machine learning in conjunction with a knowledge-based model
[doi.org/10.1063/1.5028373]

http://doi.org/10.1098/rsta.2020.0093
https://doi.org/10.1029/2020MS002405
https://doi.org/10.1063/1.5028373

Further read: examples in computer graphics 8]

« S. Zhao et al., 2020, Physics-Based Differentiable Rendering A
Comprehensive Introduction [link]

* N. Thuerey et al., 2019, Simulation & Animation [link]

* Y. Wang et al., 2023, Amortizing Samples in Physics-Based Inverse
Rendering Using ReSTIR [link]

https://shuangz.com/courses/pbdr-course-sg20/
https://geometry.cs.ucl.ac.uk/workshops/creativeai/slides/part6_physicsAnimation_nils.pdf
https://research.nvidia.com/labs/rtr/publication/wang2023amortizing/

Further read: examples in DP + reinforcement learning

J. Degrave et al., 2019, A Differentiable Physics Engine for Deep
Learning in Robotics [doi.org/10.3389/fnbot.2019.00006]

F. de Avila Belbute-Pere et al., 2018, End-to-End Differentiable Physics
for Learning and Control [link]

S. Chen et al., 2022, Imitation Learning via Differentiable Physics
[doi.org/10.48550/arXiv.2206.04873]

J. Lvetal., 2022, SAM-RL: Sensing-Aware Model-Based Reinforcement

Learning via Differentiable Physics-Based Simulation and Rendering
[doi.org/10.48550/arXiv.2210.15185]

https://doi.org/10.3389/fnbot.2019.00006
https://papers.nips.cc/paper_files/paper/2018/hash/842424a1d0595b76ec4fa03c46e8d755-Abstract.html
https://doi.org/10.48550/arXiv.2206.04873
https://doi.org/10.48550/arXiv.2210.15185

Hamples In predictive control/mai

J. Morton et al., 2018, Deep Dynamical Modeling and Control of
Unsteady Fluid Flows [doi.org/10.48550/arXiv.1805.07472]

* L. G. Huber et al., 2023, Physics-Informed Machine Learning for
Predictive Maintenance: Applied Use-Cases
[doi.org/10.1109/SDS57534.2023.00016]

« D. DiLorenzo et al., 2023, Physics informed and data-based augmented
learning in structural health diagnosis
[doi.org/10.1016/j.cma.2023.116186]

« V. Jadhav et al., 2022, Physics Informed Neural Network for Health
Monitoring of an Air Preheater [doi.org/10.36001/phme.2022.v7i1.3343]

https://doi.org/10.48550/arXiv.1805.07472
https://ieeexplore.ieee.org/document/10196678
https://doi.org/10.1016/j.cma.2023.116186
https://doi.org/10.36001/phme.2022.v7i1.3343

