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What is this lecture about?

• Introduction to some of the main concepts in the field

• Walkthrough of the concepts using toy examples 

• Some application highlights

What is not covered in this lecture?

• Introduction of numerical simulations / differential equations

• Introduction to machine learning

Scope 2



Content based on: 
Physics-based Deep Learning 
by
N. Thuerey, P . Holl, M. Mueller, P. 
Schnell, F. Trost, K. Um

+ supplemented by real physics 
examples

The lecture will cover:
1. Surrogate models

2. Physics informed neural networks

3. Differentiable physics

3Literature
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Surrogate models: concept

• Supervised learning

• Given arbitrary unknown function 
describing a physical system:

• Data: measured/simulated samples

• Goal: approximate        with a neural 
network (NN) denoted by      , trained 
on this data

• Evaluate loss function & optimize 
weights of NN via backpropagation
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Input Output

Navier-Stokes 
numerical solver

17Surrogate models: example



CompareCompare

18Surrogate models: example



• Reconstructing 
pressure seems to be 
the most challenging

• Error on few % level

19Surrogate models: example

Pressure Velocity X Velocity Y



• Supervised training setup is a good first approach in many situations

• Always start with a 1-sample overfitting test

• Check how many trainable parameters your network has

• Slowly increase the amount of training data (and potentially network parameters 
and depth)

• Adjust hyperparameters (especially the learning rate)

• For any structured data, like spatial functions, or data of any physical field, 
convolutional NNs are preferable to fully connected NNs

20Surrogate models: best practices



Surrogate models: CERN applications

• Surrogate modeling of LHC beam lifetime

• Machine learning for beam dynamics studies 
at the CERN Large Hadron Collider, P. 
Arpaia et al. [10.1016/j.nima.2020.164652]

• Data: lifetime measurements from real-life 
LHC parameter scans
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http://doi.org/10.1016/j.nima.2020.164652


Surrogate models: CERN applications

• Surrogate modeling of LHC dynamic aperture

• Modeling Particle Stability Plots for Accelerator 
Optimization Using Adaptive Sampling, M. 
Schenk et al. [10.18429/JACoW-IPAC2021-
TUPAB216]

• Data: numerical simulations of different LHC 
configurations 
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Colors: how many turns the particles survive

NN outputGround truth

10.18429/JACoW-IPAC2021-TUPAB216
https://doi.org/10.18429/JACoW-IPAC2021-TUPAB216
https://doi.org/10.18429/JACoW-IPAC2021-TUPAB216
10.18429/JACoW-IPAC2021-TUPAB216


Surrogate models: pros & cons

Fast training & constant time 
evaluation compared to numerical 

solvers or measurements
Lots of data needed
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Surrogate models: pros & cons

Fast training & constant time 
evaluation compared to numerical 

solvers or measurements

Simple network architecture

Simple concept

Lots of data needed

Sub-optimal performance, accuracy 
and generalization

Purely data driven. Interactions with external 
“processes” (such as embedding into a solver 
for refining results) are difficult
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Data-driven

26ML & numerical methods: new possibilities



Loss terms
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Physical losses: PDEs 28

• Partial differential equation (PDE)

• Time evolution of a physical field e.g. velocity expressed with spatial derivatives

• Initial condition:

• Boundary condition:

• With this (usually) a unique solution for u exists (=well-posed PDE)

• Space-time domain is discretized into a computational grid

N dimensional space

x0
x1
x2
x3

t0 t1 t2   t3

Δt

Δx
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• Partial differential equation (PDE)



• Approximate velocity field u with a NN f
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• Approximate velocity field u with a NN f
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Burger’s equation

Residual loss



• Approximate velocity field u with a NN f

Ø Physics informed neural network (PINN)

Physical losses: residual loss 35

Burger’s equation

supervised loss term residual loss term
Residual loss

replace u by f



Physical losses: obtaining partial derivatives 36

sample grid point



• Derivatives in R are obtained from the 
NN via standard backpropagation
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Physical losses: obtaining partial derivatives

• Derivatives in R are obtained from the 
NN via standard backpropagation NN output (f) at sample point [xi, ti]
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• Derivatives in R are obtained from the 
NN via standard backpropagation

• When R is minimized: u (NN output) 
approximately solves the PDE

Physical losses: obtaining partial derivatives

NN output (f) at sample point [xi, ti]
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Physical losses: NN training overview

standard supervised + residual

residual 

from NN backprop. 

Source: [doi.org/10.1038/s42254-021-00314-5]
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http://doi.org/10.1038/s42254-021-00314-5


Physical losses: solving Burger’s equation

x

33 steps

1D computational “grid”:

Forward simulation in time:

41

find u with a PINN

128 steps



Physical losses: solving Burger’s equation

• Supervised loss: ground truth data yi
*

• Reference u

x

33 steps

1D computational “grid”:

Forward simulation in time:

supervised loss term

42

128 steps



Physical losses: solving Burger’s equation

33 steps

• Supervised loss: ground truth data yi
*

• Reference u
• E.g. we know u(x, t=0.5)

(direct constraint)

x

supervised loss term
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x

Physical losses: solving Burger’s equation

33 steps

• Supervised loss: ground truth data yi
*

• Reference u
• E.g. we know u(x, t=0.5)

(direct constraint)
• We also know u(x=-1;1, t)=0 

(boundary conditions of PDE)

supervised loss term
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x

Physical losses: solving Burger’s equation

33 steps

• Supervised loss: ground truth data yi
*

• Reference u
• E.g. we know u(x, t=0.5)

(direct constraint)
• We also know u(x=-1;1, t)=0 

(boundary conditions of PDE)

• “Pin down” PDE solution at these points

supervised loss term

45
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• Residual loss: no ground truth data, 
but we sample the the NN inside the 
domain

Physical losses: solving Burger’s equation

128 steps

33 steps

x

x
xx

x
x

x

x
x

x

xx

x

x

x

x
xx

residual loss term
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• Residual loss: no ground truth data, 
but we sample the the NN inside the 
domain
• i.e.: input random Xi to NN
• NN estimates u as f(Xi;θ)

Physical losses: solving Burger’s equation

128 steps

33 steps

x

x
xx

x
x

x

x
x

x

xx

x

x

x

x
xx

residual loss term
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Physical losses: solving Burger’s equation

128 steps

33 steps

x

x
xx

x
x

x

x
x

x

xx

x

x

x

x
xx

• NN in this example:
• 8 fully connected layers
• ~200 trainable parameters
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Physical losses: solving Burger’s equation

128 steps

33 steps

x

x
xx

x
x

x

x
x

x

xx

x

x

x

x
xx

• NN in this example:
• 8 fully connected layers
• ~200 trainable parameters

• Evaluate NN at constraint points |, | & x
• Calculate loss & update weights
• Repeat 10,000 iterations (~1 min) 
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Physical losses: solving Burger’s equation

x
xx

x
x

x

x
x

x

xx

x

x

x

x
xx

• After training: need to evaluate NN for all grid points!
• Computationally expensive for large grids

• Why is this possible?
• NN inherently supports calculation of derivatives

Velocity u after training NN
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Physical losses: discussion

• Boundary conditions u=0 are fulfilled

• Shock at center not well represented

• Initial state of PDE solver not well represented

• More accurate representation requires 
significantly more iterations even for this 
simple case
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Physical losses: discussion

• This is a conceptual starting point, but not very accurate

• Physical loss allows to encode (unique) solutions to PDEs with NNs, which 
allows to use NNs as universal function approximators

• Not really “machine learning”: we reconstruct a single PDE solution in a 
known space-time region

52



Reconstruction of turbulent 
fluctuations of plasma in a 
tokamak (A. Mathews et al., 
2022, 
[doi.org/10.1063/5.0088216])

PINN application examples 53

http://doi.org/10.1063/5.0088216


PINN application examples

Reconstructing unknown 
parameters in Schrödinger 
equation (M. Raissi et al., 2017, 
[arxiv.org/abs/1708.00588])
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https://arxiv.org/abs/1708.00588


PINN application examples

Reconstruction of blood flow in a blood vessel (E. Hwuang, S. Wang 
et al. [doi.org/10.1038/s42254-021-00314-5])
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http://doi.org/10.1038/s42254-021-00314-5


PINN application examples
F. Fuest, S. Cai et al. 

[doi.org/10.1038/s42254-021-00314-5]
[doi.org/10.1017/jfm.2021.135]
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http://doi.org/10.1038/s42254-021-00314-5
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/flow-over-an-espresso-cup-inferring-3d-velocity-and-pressure-fields-from-tomographic-background-oriented-schlieren-via-physicsinformed-neural-networks/160E4A836637FE3996610389666DA030


Physical losses: pros & cons

Easy setup with simple NN
Quite slow: need to evaluate NN at every grid 
point, i.e. “paint the image pixel by pixel”

57



Physical losses: pros & cons

Easy setup with simple NN

PDE derivatives in physical loss can 
be computed with backpropagation

Quite slow: need to evaluate NN at every grid 
point, i.e. “paint the image pixel by pixel”

Accuracy of computed derivatives relies on 
learned representation

58



Physical losses: pros & cons

Easy setup with simple NN
Quite slow: need to evaluate NN at every grid 
point, i.e. “paint the image pixel by pixel”

Accuracy of computed derivatives relies on 
learned representation

PDE derivatives in physical loss can 
be computed with backpropagation

Popular for inverse problems: given 
certain measurements or observations 

(=training data), find a PDE solution

Does not combine well with numerical solvers 
e.g. for refining solution
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Loss terms

60ML & numerical methods: new possibilities



Interleaved

61ML & numerical methods: new possibilities



Differentiable physics

• Differentiable physics = differentiable numerical simulations of physical 
systems
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Differentiable physics

• Differentiable physics = differentiable numerical simulations of physical 
systems

• Equip classical numerical solvers (discretized PDE) with the ability to 
compute gradients with respect to their inputs
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Differentiable physics

• Differentiable physics = differentiable numerical simulations of physical 
systems

• Equip classical numerical solvers (discretized PDE) with the ability to 
compute gradients with respect to their inputs

• This allows integration of numerical methods into the training process of 
an attached NN

64



Differentiable physics: differentiable solver example
• Linear advection equation with u=u(x) and d=d(x,t)
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Differentiable physics: differentiable solver example
• Linear advection equation with u=u(x) and d=d(x,t) E.g. in 1D
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Differentiable physics: differentiable solver example

• Generally:

• Linear advection equation with u=u(x) and d=d(x,t) E.g. in 1D
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Differentiable physics: differentiable solver example

d0 d1 d2 de

...P P P P

• Linear advection equation with u=u(x) and d=d(x,t) E.g. in 1D

Δt Δt Δt Δt

68

• Generally:

• For N forward iterations:
end time step



Differentiable physics: differentiable solver example

d0 d1 d2 dtarget

...P P P P

u=?

• Linear advection equation with u=u(x) and d=d(x,t) E.g. in 1D

Δt Δt Δt Δt

• Find velocity field u that brings a known initial 
density d0 = d(t0=0) into a known target 
density dtarget = d(te=t+NΔt)
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• Generally:

• For N forward iterations:



Differentiable physics: differentiable solver example

d0 d1 d2 dtarget

...P P P P

u=?

• Optimization problem:

• Linear advection equation with u=u(x) and d=d(x,t) E.g. in 1D

Δt Δt Δt Δt

• Find velocity field u that brings a known initial 
density d0 = d(t0=0) into a known target 
density dtarget = d(te=t+NΔt)

70

output of simulation known from observation

• Generally:

• For N forward iterations:



Differentiable physics: differentiable solver example

d0 d1 d2 dtarget

...P P P P

u=?

• Linear advection equation with u=u(x) and d=d(x,t) E.g. in 1D

Δt Δt Δt Δt

• Find velocity field u that brings a known initial 
density d0 = d(t0=0) into a known target 
density dtarget = d(te=t+NΔt)
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Differentiable physics: differentiable solver example

d0 d1 d2 dtarget

...P P P P

u=?

u unknown at start e.g. init with 0s

• Linear advection equation with u=u(x) and d=d(x,t) E.g. in 1D

Δt Δt Δt Δt

• Find velocity field u that brings a known initial 
density d0 = d(t0=0) into a known target 
density dtarget = d(te=t+NΔt)
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known reference quantities from observation

• Optimization problem:

• Generally:

• For N forward iterations:



Differentiable physics: differentiable solver example 73

learning rate



Differentiable physics: differentiable solver example 74

In case of a single forward step from te-1 to te:

learning rate



Differentiable physics: differentiable solver example 75

In case of a single forward step from te-1 to te:

From: with:

learning rate



Differentiable physics: differentiable solver example 76

In case of multiple forward steps from t0 to te:

Δt Δt

P

d0 de-1 de

... P P
Δt

• Final density de depends on velocity ui
through all previous density states:
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In case of multiple forward steps from t0 to te:

Δt Δt

P

d0 de-1 de

... P P
Δt

• Final density de depends on velocity ui
through all previous density states:



Differentiable physics: differentiable solver example 78

In case of multiple forward steps from t0 to te:

*potential contributions from cells i+1, i-1 etc...

Δt Δt

P

d0 de-1 de

... P P
Δt

• Final density de depends on velocity ui
through all previous density states:



Differentiable physics: differentiable solver example 79

In case of multiple forward steps from t0 to te:

*potential contributions from cells i+1, i-1 etc...

Δt Δt

P

d0 de-1 de

... P P
Δt

• Final density de depends on velocity ui
through all previous density states:



Differentiable physics: differentiable solver example 80

In case of multiple forward steps from t0 to te:

*potential contributions from cells i+1, i-1 etc...

Δt Δt

P

d0 de-1 de

... P P
Δt

• Final density de depends on velocity ui
through all previous density states:

A typical PDE based numerical solver consists of arithmetic operations 
which are differentiable. The computation of gradients is typically not 

expensive and it can happen during forward simulation.



x

Differentiable physics: solving Burger’s equation with DP
• Classical gradient based optimization, no DL

• Start with u(x,t=0)=0, utarget(x,t=0.5) known

81

Burger’s equation
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Differentiable physics: solving Burger’s equation with DP
• Classical gradient based optimization, no DL

• Start with u(x,t=0)=0, utarget(x,t=0.5) known

1. Simulate P (discretized PDE) from t=0 to t=1 in N=32 time steps

forward simulate through 
P N times 

82

Burger’s equation



x

Differentiable physics: solving Burger’s equation with DP
• Classical gradient based optimization, no DL

• Start with u(x,t=0)=0, utarget(x,t=0.5) known

1. Simulate P (discretized PDE) from t=0 to t=1 in N=32 time steps

2. Backpropagate gradients from t=0.5, 16 steps back till first step at t=0

backpropagate gradients
forward simulate through 
P N times 
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x

Differentiable physics: solving Burger’s equation with DP
• Classical gradient based optimization, no DL

• Start with u(x,t=0)=0, utarget(x,t=0.5) known

1. Simulate P (discretized PDE) from t=0 to t=1 in N=32 time steps

2. Backpropagate gradients from t=0.5, 16 steps back till first step at t=0

3. Update u(x,t=0) with gradients:

forward simulate through 
P N times 

backpropagate gradients
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Differentiable physics: solving Burger’s equation with DP
• Classical gradient based optimization, no DL

• Start with u(x,t=0)=0, utarget(x,t=0.5) known

1. Simulate P (discretized PDE) from t=0 to t=1 in N=32 time steps

2. Backpropagate gradients from t=0.5, 16 steps back till first step at t=0

3. Update u(x,t=0) with gradients

4. Repeat 50 times
(~2 mins)

85

forward sim. with optimized u

Burger’s equation



Differentiable physics: solving Burger’s equation with DP 86



Differentiable physics: discussion of PINN vs DP

Physics informed NN (PINN)
• Recovers the overall shape of the 

solution

• Temporal constraints are at least 
partially fulfilled 

• Poor reconstruction of amplitudes

Differentiable physics solver (DP)
• Much closer to ground truth (GT) 

thanks to flow of gradients

• Difficulty with sharper features: 
artifacts
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• Physical field u input to 
differentiable solver

• Find optimal u

Differentiable 
solver

89Differentiable physics: coupling differentiable solver with NN



• Physical field u input to 
differentiable solver

• Find optimal u

Differentiable 
solver

90

• NN approximates physical field u

• Physical field u input to 
differentiable solver

• Find optimal NN weights: gradients 
are guided by solver

gradient w.r.t. NN weights

Differentiable 
solver

Neural 
network

Differentiable physics: coupling differentiable solver with NN
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NN only

NN + DP

• Gradients from differentiable solver allow to access previously “hidden” parts of the loss landscape

more “refined” 
outputs

Image source: [cs.umd.edu]

Differentiable physics: coupling differentiable solver with NN

https://www.cs.umd.edu/~tomg/projects/landscapes/


Differentiable physics: pros & cons

Uses existing numerical tools which 
can be coupled to the training of 

neural networks
More complicated implementation
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Efficient evaluation of gradients is 
possible
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Requires understanding of the physics 
to choose suitable discretization
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Differentiable physics: pros & cons

Uses existing numerical tools which 
can be coupled to the training of 

neural networks

Efficient evaluation of gradients is 
possible

More complicated implementation

Requires understanding of the physics 
to choose suitable discretization

Choice of PDE discretization gives 
control on numerical accuracy

Computational cost and training 
difficulty scales with time look-ahead
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Differentiable physics: application examples
Controlling fluid deformations & reduction of 
numerical errors, J. Tang et al. 2023 [link]
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https://studios.disneyresearch.com/2023/05/07/physics-informed-neural-corrector-for-deformation-based-fluid-control/


Differentiable physics: application examples

Super-resolution 
forecasting of precipitation 
rate, B. Teufel et al. 2023 
[doi.org/10.1186/s40562-
023-00272-z]
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http://doi.org/10.1186/s40562-023-00272-z
http://doi.org/10.1186/s40562-023-00272-z


Differentiable physics: application examples
Reconstruction of 6D beam distribution in a particle accelerator,  
R. Roussel et al., 2022, [arXiv:2211.09077]
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https://arxiv.org/abs/2211.09077


Summary

• Physics based deep learning is an emerging topic with many exciting 
possibilities
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Summary

• Physics based deep learning is an emerging topic with many exciting 
possibilities

• AI will not replace classical numerical simulations!
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Fast simulations

Numerical error reduction
Forecasting

Field reconstruction

Control problems

Equation learning



Further read: examples in high energy physics

• A. Adelmann et al., 2022, New directions for surrogate models and 
differentiable programming for High Energy Physics detector simulation 
[doi.org/10.48550/arXiv.2203.08806]

• T. Dorigo et al., 2023, Toward the end-to-end optimization of particle 
physics instruments with differentiable programming 
[cds.cern.ch/record/2807001]

• MODE Collaboration, 2021, Toward Machine Learning Optimization of 
Experimental Design [inspirehep.net/literature/1850892]

• R. Lehe et al., 2020, Machine learning and surrogate models for 
simulation-based optimization of accelerator design [link]
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https://doi.org/10.48550/arXiv.2203.08806
https://cds.cern.ch/record/2807001
https://inspirehep.net/literature/1850892
https://snowmass21.org/docs/files/summaries/CompF/SNOWMASS21-CompF2_CompF3-AF1_AF6_Lehe-075.pdf


Further read: examples in weather/climate modeling

• K. Kashinath et al., 2021, Physics-informed machine learning: case 
studies for weather and climate modelling 
[doi.org/10.1098/rsta.2020.0093]

• S. Rasp et al., 2021, Data-Driven Medium-Range Weather Prediction 
With a Resnet Pretrained on Climate Simulations: A New Model for 
WeatherBench [doi.org/10.1029/2020MS002405]

• J. Pathak et al., 2018, Hybrid forecasting of chaotic processes: Using 
machine learning in conjunction with a knowledge-based model 
[doi.org/10.1063/1.5028373]
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http://doi.org/10.1098/rsta.2020.0093
https://doi.org/10.1029/2020MS002405
https://doi.org/10.1063/1.5028373


Further read: examples in computer graphics

• S. Zhao et al., 2020, Physics-Based Differentiable Rendering A 
Comprehensive Introduction [link]

• N. Thuerey et al., 2019, Simulation & Animation [link]

• Y. Wang et al., 2023, Amortizing Samples in Physics-Based Inverse 
Rendering Using ReSTIR [link]
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https://shuangz.com/courses/pbdr-course-sg20/
https://geometry.cs.ucl.ac.uk/workshops/creativeai/slides/part6_physicsAnimation_nils.pdf
https://research.nvidia.com/labs/rtr/publication/wang2023amortizing/


Further read: examples in DP + reinforcement learning

• J. Degrave et al., 2019, A Differentiable Physics Engine for Deep 
Learning in Robotics [doi.org/10.3389/fnbot.2019.00006]

• F. de Avila Belbute-Pere et al., 2018, End-to-End Differentiable Physics 
for Learning and Control [link]

• S. Chen et al., 2022, Imitation Learning via Differentiable Physics 
[doi.org/10.48550/arXiv.2206.04873]

• J. Lv et al., 2022, SAM-RL: Sensing-Aware Model-Based Reinforcement 
Learning via Differentiable Physics-Based Simulation and Rendering 
[doi.org/10.48550/arXiv.2210.15185]
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https://doi.org/10.3389/fnbot.2019.00006
https://papers.nips.cc/paper_files/paper/2018/hash/842424a1d0595b76ec4fa03c46e8d755-Abstract.html
https://doi.org/10.48550/arXiv.2206.04873
https://doi.org/10.48550/arXiv.2210.15185


Further read: examples in predictive control/maintenance

• J. Morton et al., 2018, Deep Dynamical Modeling and Control of 
Unsteady Fluid Flows [doi.org/10.48550/arXiv.1805.07472]

• L. G. Huber et al., 2023, Physics-Informed Machine Learning for 
Predictive Maintenance: Applied Use-Cases 
[doi.org/10.1109/SDS57534.2023.00016]

• D. Di Lorenzo et al., 2023, Physics informed and data-based augmented 
learning in structural health diagnosis 
[doi.org/10.1016/j.cma.2023.116186]

• V. Jadhav et al., 2022, Physics Informed Neural Network for Health 
Monitoring of an Air Preheater [doi.org/10.36001/phme.2022.v7i1.3343]
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https://doi.org/10.48550/arXiv.1805.07472
https://ieeexplore.ieee.org/document/10196678
https://doi.org/10.1016/j.cma.2023.116186
https://doi.org/10.36001/phme.2022.v7i1.3343

