Highlights from ALICE

Marco van Leeuwen, Nikhef and CERN

CERN - Ukraine 2024: "Past - Present – Future" Kyiv Ukraine May 28-29, 2024

The ALICE collaboration

ALICE Week, March 2024

ALICE collaboration:

- 1069 authors
- 157 institutes, 19 associate institutes
- 40 countries

ALICE publications over the years

New results in preparation for

Evolution of the Inner Tracking system: ITS1

Original ITS: 3 technologies

- 2 silicon (hybrid) pixel detector layers -----
- 2 silicon drift detector layers

Installed in 2007

2 silicon strip detector layers -

The completed detector with the teams from Ukraine and Netherlands

Silicon strip sensor module

ITS2 and ITS3

ITS2: installed in 2021

Completely new system: 7 layers of monolithic active pixels

ALPIDE pixel sensors developed by/for ALICE Power bus cables produced in Ukraine

ITS3 upgrade under development

Curved sensor prototypes

Replace inner layers by ultra-thin, large-area, curved sensors to improve pointing resolution

<u>TDR</u> approved — design of final sensor in progress

Inner tracking system performance: pointing resolution

Impact parameter resolution improved by a factor 2-3 Final alignment will bring further improvement

ITS3 provides additional factor ~2 improvement at low p_T

5

LS3 upgrades: FoCal

EPICAL: a Si-W pixel calorimeter

J Alme et al, JINST 18, 01, P01038

Forward Calorimeter upgrade: $3.4 < \eta < 5.8$

- High-granularity Si-W electromagnetic calorimeter
- Hadron calorimeter: Cu-scintillator •
- Goal: determine small-x gluon density in the nucleus • by measuring forward production of isolated direct photons, π^0 , jets ...

<u>TDR</u> approved — moving towards mass production

Aehle et al, arXiv:2311.07413

FoCal-E pixel layers

EPICal half-layer

7

Heavy-ion collisions and the quark-gluon plasma

Properties of equilibrium matter: equation of state, transport coefficients **Dynamics:** hadronisation, interactions of partons with the medium

High-temperature QCD and deconfinement: melting of quarkonia

Binding force screened when $r > \lambda_d$

Binding of quarkonia ($b\bar{b}$, $c\bar{c}$ bound states) screened at higher temperature, density

Nuclear modification factor

$$R_{AA} = \frac{dN/dp_T|_{AA}}{\langle N_{coll} \rangle dN/dp_T|_{pp}}$$

 $R_{AA} = 1$: no effect

 $R_{AA} = 0$: complete suppression

$\Upsilon(b\overline{b})$ nuclear m

Large suppression — dissociation in central events Larger effect for higher states — weaker binding

 $\Upsilon(b\overline{b})$ nuclear modification vs centrality

High-temperature QCD and deconfinement: melting of quarkonia

Binding force screened when $r > \lambda_d$

Binding of quarkonia ($b\bar{b}$, $c\bar{c}$ bound states) screened at higher temperature, density

Nuclear modification factor

$$R_{AA} = \frac{dN/dp_T|_{AA}}{\langle N_{coll} \rangle dN/dp_T|_{pp}}$$

 $R_{AA} = 1$: no effect

 $R_{AA} = 0$: complete suppression

$\Upsilon(b\overline{b})$ nuclear m

Large suppression — dissociation in central events Larger effect for higher states — weaker binding

 $\Upsilon(bb)$ nuclear modification vs centrality

 J/ψ modification vs centrality

 J/ψ : $c\overline{c}$ bound state shows smaller suppression

Early stage temperature: melting of charmonia (J/ψ)

ALICE, arXiv:1506.08804 PHENIX, arXiv:1103.6269 Transport models: arXiv:1102.2194, arXiv:1401.5845

CERN-Ukraine 2024: past, present, future | 28 May 2024 | Marco van Leeuwen

Early stage temperature: melting of charmonia (J/ψ)

CERN-Ukraine 2024: past, present, future | 28 May 2024 | Marco van Leeuwen

Early stage temperature: melting of charmonia (J/ψ)

CERN-Ukraine 2024: past, present, future | 28 May 2024 | Marco van Leeuwen

In agreement with coalescence expectation: larger $c\overline{c}$ density at mid-rapidity

Azimuthal anisotropy: initial and final states

Simulated event: location of nucleons

Initial state spatial anisotropies ε_n are transferred into final state momentum anisotropies v_n by pressure gradients, flow of the Quark Gluon Plasma

Azimuthal anisotropy: initial and final states

Simulated event: location of nucleons

Initial state spatial anisotropies ε_n are transferred into final state momentum anisotropies v_n by pressure gradients, flow of the Quark Gluon Plasma

Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ ALICE ALICI Single event Π J Ū 753, 50 511 $0.15 < p_{T. track} < 5 \text{ GeV}/c, |\eta_{track}|$ -- $\rho_{0}(1+2v_{2}\cos(2[\phi-\Psi_{EP,2}]))$ ····· $\rho_{0}(1+2v_{3}\cos(3[\phi-\Psi_{EP,3}]))$ 5 3 2 $\mathbf{0}$ 4 φ (rad)

Azimuthal distribution single event

Azimuthal anisotropy: initial and final states

Simulated event: location of nucleons

Initial state spatial anisotropies ε_n are transferred into final state momentum anisotropies v_n by pressure gradients, flow of the Quark Gluon Plasma

Anisotropic flow: initial state and QGP expansion

Mass-dependence of v₂ measures flow velocity

CERN-Ukraine 2024: past, present, future | 28 May 2024 | Marco van Leeuwen

Anisotropic flow: initial state and QGP expansion

Mass-dependence of v₂ measures flow velocity

CERN-Ukraine 2024: past, present, future | 28 May 2024 | Marco van Leeuwen

Even nuclei flow !

CERN-Ukraine 2024: past, present, future | 28 May 2024 | Marco van Leeuwen

Constraining initial state and plasma properties simultaneously: Bayesian inference

Experimental input: yields, mean p_T and harmonic flow vs p_T

Model: initial anisotropies + medium response

Explores a large parameter space to investigate reliability/robustness of the modeling

CERN-Ukraine 2024: past, present, future | 28 May 2024 | Marco van Leeuwen

J. E. Bernhard et al, arXiv: 1605.03954

Flow cumulants $v_n\{2\}$ Mean p_T [GeV] 0.09 $\bullet v_2$ $p\bar{p}$ 0.06 K^{\pm} • π^{\pm} 0.03 • v_3 $\bullet v_4$ 0.09 $\bullet v_2$ $p\bar{p}$ 0.06 K^{\pm} \pm 0.03• v_{A} 0.00705030 40 5060 4060 702030 100Centrality % Centrality %

A global fit to anisotropic flow: main result

QGP has a very small 'specific viscosity' \Rightarrow small mean free path

Viscosity close to fundamental lower bound

CERN-Ukraine 2024: past, present, future | 28 May 2024 | Marco van Leeuwen

J. E. Bernhard et al, Nature Physics 15, 1113–1117, arXiv: 1605.03954

Comparison to well-known liquids

osity' \Rightarrow small mean free path $\eta = \frac{1}{3} n \overline{p} \lambda$

14

Messengers of the Plasma: soft and hard processes

Soft processes

Momenta comparable to QGP temperature $p_T \lesssim 3~{\rm GeV}/c$ Near thermal equilibrium with the plasma

'particles from the QGP'

Messengers of the Plasma: soft and hard processes

Soft processes

Momenta comparable to QGP temperature

 $p_T \lesssim 3 \text{ GeV/}c$

Near thermal equilibrium with the plasma

'particles from the QGP'

Hard processes: large momenta >> T_{QGP}

 Short formation time: initial production independent of QGP formation • Start out far out of thermal equilibrium: approach equilibrium through interactions Short life time: expect only partial equilibration

'Hard probes' of interactions with the QGP

Nuclear modification of p_T spectra

CERN-Ukraine 2024: past, present, future | 28 May 2024 | Marco van Leeuwen

ALICE, PLB720, 52 CMS, EPJC, 72, 1945 ATLAS, arXiv:1504.04337

Nuclear modification of p_T spectra

CERN-Ukraine 2024: past, present, future | 28 May 2024 | Marco van Leeuwen

ALICE, PLB720, 52 CMS, EPJC, 72, 1945 ATLAS, arXiv:1504.04337

Pb+Pb: clear suppression ($R_{AA} < 1$): parton energy loss

Nuclear modification of p_T spectra

CERN-Ukraine 2024: past, present, future | 28 May 2024 | Marco van Leeuwen

ALICE, PLB720, 52 CMS, EPJC, 72, 1945 ATLAS, arXiv:1504.04337

Pb+Pb: clear suppression ($R_{AA} < 1$): parton energy loss

D mesons contain a charm quark m >> T, that is produced in an initial hard scattering

Nuclear modification factor

D mesons contain a charm quark m >> T, that is produced in an initial hard scattering

Nuclear modification factor

CERN-Ukraine 2024: past, present, future | 28 May 2024 | Marco van Leeuwen

D mesons contain a charm quark m >> T, that is produced in an initial hard scattering

Nuclear modification factor

D mesons contain a charm quark m >> T, that is produced in an initial hard scattering

Nuclear modification factor

Azimuthal anisotropy: Full effect generated by interactions

Heavy flavor transport coefficient: Bayesian fit

Diffusion coefficient *D*_s

CERN-Ukraine 2024: past, present, future | 28 May 2024 | Marco van Leeuwen

and between light and heavy flavour sector

Elliptic flow of charm beauty quarks: effect of mass

Quarkonia: flow generated by quark flow and coalescence Charmonia: large elliptic flow — Bottomonia: compatible with no flow

Beauty quarks flow less than charm quarks: larger mass, slower thermalisation

Open and hidden flavor allow to investigate impact of hadronisation, light quark flow

Non-prompt D mesons (open beauty) show smaller v₂

Future plans: upgrades

LS3 upgrades

CERN-Ukraine 2024: past, present, future | 28 May 2024 | Marco van Leeuwen

ALICE 3: LS4

LHC Run 5 and 6: ALICE 3

- Compact all-silicon tracker lacksquarewith high-resolution vertex detector
- Particle Identification over large acceptance: \bullet muons, electrons, hadrons, photons
- Fast read-out and online processing ullet

ALICE 3 physics program

- Thermal radiation from the QGP phase and chiral symmetry restoration
 - Dilepton production
- Interactions of heavy flavour hadrons with the QGP thermalisation
 - $D\overline{D}$ azimuthal correlations
 - Multi-charm baryon production
 - P-wave quarkonia
- Hadron physics structure of exotic hadrons
 - Femtoscopic correlations
 - Production exotic in pp, PbPb
- . . .

ALICE 3 Letter of Intent (CDS: <u>LHCC-2022-009</u>)

access to $\rho - a_1$ mixing, time evolution of temperature

Conclusion

- LHC heavy-ion program: multi-body QCD and the lacksquareproperties of strongly interacting matter at high T
- Dissociation ('melting') of quarkonia: very high density and T
- Determine properties of QGP: viscosity and transport coefficients
 - Viscosity very small: close to lower limit $\eta/s = 1/4\pi$ ullet
 - Slower thermalisation for beauty than charm
- First measurements of thermal radiation expected with lacksquareupgraded detector in Run 3 + 4
 - ALICE 3: next-generation upgrade for run 5 and 6

ALICE, arXiv:2211.04384

Thank you for your attention

Azimuthal anisotropy: two mechanisms

Hydrodynamical expansion

Conversion of pressure gradients into momentum space anisotropy

Equilibrium processes: soft particle production and low-p_T heavy flavour

Parton energy loss

Anisotropy due to energy loss and path length differences

More energy loss along long axis than short axis

 $\Delta E_{med} \sim \alpha_S \hat{q} L^2$

Out-of-equilibrium: high-p_T processes

