EXPERIMENTAL INVESTIGATION ON STEERING OF ULTRARELATIVISTIC PARTICLE BEAMS THROUGH AXIALLY ORIENTED BENT CRYSTALS

L. Bandiera INFN Ferrara bandiera@fe.infn.it

CERN - Ukraine 2024: "Past - Present - Future" Conference, Kyiv Ukraine, May 29, 2024

The crystal lattice

A strong electrostatic potential

Channeling: trapping of charged particles

Channeling: trapping of charged

 particles

Bending a crystal: A way to steer a particle beam

E. Tsyganov, 1976

Bending a crystal: A way to steer a particle beam

INFN

8.3 Tesla supermagnet - 15 m long

Deflection of $50 \mu \mathrm{rad}$ at 6.5 TeV is equivalent to a 300 T dipole magnet bending!

Axial Channeling in a Bent Crystal

- Stochastic Deflection proposed by A.A. Greenenko and N.F. Shul'ga in 1991 [Pis'ma Zh. Eksp. Teor. Fiz. 54 (1991) 520]
- Experimentally observed by H8-RD22/UA9 collaboration at CERN in 2008 for protons and in 2009 for π-mesons

In case of axial alignment, most of the particles are deflected through multiple scattering by atomic strings (Stochastic Deflection) rather than by axial channeling (or hyperchanneling)

Stochastic deflection mechanism

Over-barrier

Greenenko-Shul'ga condition: $\alpha<\alpha_{s t}=\frac{2 R \psi_{c}^{2}}{l_{0}}$
$\alpha_{s t}$ is the maximum angle achievable through SD ;
α is the crystal bending angle;
R is crystal curvature radius;
ψ_{c} is the critical angle of axial channeling;
I_{0} is the mean free path of the particle between successive collisions with strings of atoms in a crystal.

First result with high-energy positively charged particles

Angular distribution for $\mathbf{4 0 0} \mathbf{G e V} / \mathrm{c}$ protons deflected at a perfect alignment with the $\{111\}$ axis of a bent Si crystal*

Deflection efficiency > 90\%
*W. Scandale et al., Phys. Rev. Lett. 101 (2008) 164801

Crystal parameters:
(110) Bent Planes
<111> Bent Axes ($\psi_{c} \approx 21 \mu \mathrm{rad}$)
Length L = 2 mm
Radius R = 40 m

FOR POSITIVE PARTICLES: Relaxation of axial-to-planar channeling in skew planes!

First result with high-energy positively charged particles

«We decided to investigate this phenomenon... experimentally, but also theoretically...
\rightarrow We started a collaboration with N. Shul'ga and his team..

Angular distribution for $\mathbf{4 0 0} \mathbf{G e V} / \mathrm{c}$ protons deflected at a perfect alignment with the $\{111\}$ axis of a bent Si crystal*

Deflection efficiency > 90\%
*W. Scandale et al., Phys. Rev. Lett. 101 (2008) 164801

Crystal parameters:
(110) Bent Planes
<111> Bent Axes ($\psi_{c} \approx 21 \mu \mathrm{rad}$)
Length L = 2 mm
Radius $\mathrm{R}=40 \mathrm{~m}$

INFN Ferrara \&UNIFE - KIPT Collaboration during the years

- 2011 - V. Guidi (UNIFE) visited KIPT
- 2012 - N. Shul'ga visited UNIFE as Copernicus Visiting Scientist for eminent scientist
- 2013 I was a guest at the KIPT Akhiezer Institute for Theoretical Physics for a month during my PhD
- During the years S. Fomin, A.Shchagin, V. Truten and I. Kyryllin (several times) visited INFN Ferrara and UNIFE
- ...The collaboration with the KIPT group, also including S. Shul'ga, S. Trofymenko, and M. Bondarenko, is ongoing

My visit to Kharkiv in October-November 2013

Experiment at CERN Super Proton Synchrotron extracted lines

Super-Proton Synchrotron

- Circumference $: 6.9 \mathrm{~km}$
-2.5 km of secondary beam lines.
- protons for fixed target physics at $400 \mathrm{GeV} / \mathrm{c}$
- protons for LHC at $450 \mathrm{GeV} / \mathrm{C} / \mathrm{c} 400 \mathrm{GeV} / \mathrm{c}$
proton equivalent
- machine studies for SPS
- machines strdies for LHC
- Injector for the LHC

On the extracted beamline from the Super Proton Synchrotron, "clean" beams of $p, e^{ \pm}, \mu^{ \pm}$and $\pi^{ \pm}$ are available $->$ ideal facility for the studies with bent crystals at high-energy ($10-400 \mathrm{GeV}$).

Experiment at H 8 line of CERN SPS: $400 \mathrm{GeV} / \mathrm{c}$ protons

Crystal is mounted on an highprecision goniometer ($\sim 1 \mu \mathrm{rad}$ resolution).

Two bent crystals were mounted on a high-precision goniometer with the possibility to be aligned in either horizontal or vertical direction:

$$
\mathrm{R}_{1}=30.30 \mathrm{~m} \text { and } \mathrm{R}_{2}=6.90 \mathrm{~m}
$$

Experimental results - $400 \mathrm{GeV} / \mathrm{c}$ protons

- Incidence angle $\sqrt{\theta_{X, \text { in }}{ }^{2}+\theta_{Y, \text { in }}{ }^{2}} \leq 5 \mu \mathrm{rad}$
- Total steering: 98% of the beam is deflected with an horizontal angle >0
- (a) About 30% of the beam deflected at the nominal bending angle α_{1} (axial alignment); other protons relaxed in skew (110) planes.
- (b) $>80 \%$ in the (110) skew planes and splitted at the crystal exit by 250 urad. Lack of dechanneling from skew planes, since protons are captured in a skew planar channel without approaching close to atomic strings
L. Bandiera, A. Mazzolari, I. V. Kirillin, N. F. Shul'ga,...et al. Eur. Phys. J. C 76 (2016) 80

Comparison with simulation

The code* solves the equation of motion in the field of the continuum potential through numerical integration and also accounts for the contribution of incoherent scattering with atomic nuclei and electrons.

Theoretical interpretation and Monte Carlo simulation
developed by I. Kyryllin and N. F. Shul'ga
*NF Shul'ga, IV Kirillin, and VI Truten. Phys. Lett. B, 702(1):100-104, 2011.
L. Bandiera, A. Mazzolari, I. V. Kirillin, N. F. Shul'ga,...et al. Eur. Phys. J. C 76 (2016) 80

Relaxation Length

- It is clear that the escape velocity from SD to skew planes increases while R decreases;
- Exponential form between the two peaks in the distributions.

By assuming that the rate of particle escaping from stochastic deflection is proportional to the number of particles that are in this regime, N :

$$
N(l)=N_{0} e^{-C l}=N_{0} e^{-l / l_{R}}
$$

Therefore, the number of particles captured under channeling regime in all the skew planes

$$
N_{p l}(l)=N_{0}\left(1-e^{-l / l_{R}}\right)
$$

The relaxation length I_{R} determines the maximum crystal length for efficient steering of particles at the full bending angle $\alpha=L / R$.
L. Bandiera, A. Mazzolari, I. V. Kirillin, N. F. Shul'ga,...et al. Eur. Phys. J. C 76 (2016) 80

Relaxation Lenath vs R for positive particles

Condition A If $L \leq I_{R}$-> efficient beam deflection as for the crystal with $R_{1}=30.3 \mathrm{~m}$; Condition B If $L \gg I_{R}$ and $L \ll I_{\text {Dechannling }}$-> beam splitting in the strongest skew planes as for the crystal with $R_{2}=6.9 \mathrm{~m}$.
L. Bandiera, A. Mazzolari, I. V. Kirillin, N. F. Shul'ga,...et al. Eur. Phys. J. C 76 (2016) 80

Possible Applications

Case $A: L \leq I_{R}$ - the crystal behaves as a total beam steerer that can be exploited for beam manipulation, e.g. for collimation/extraction;

Case B : $L \gg I_{R}$ and $L \ll I_{D}$, the crystal behaves as a beam splitter, which be exploited to set up an extracted beam layout on two experimental channels (with adjustable beam intensity) in just one extraction point.

L. Bandiera, I. Kirillin, \qquad et al. Nucl. Instrum. Meth. B 402 (2017) 296-29

First investigation on steering of $120 \mathrm{GeV} / \mathrm{c}$ electrons and positrions through an axially oriented bent crystal

The Greenenko-Shul'ga conditions

$$
\alpha<\alpha_{s t}
$$

for positive particles
standard condition

$$
\alpha_{s t}=\frac{2 R \psi_{c}^{2}}{l_{0}}
$$

First investigation on steering of ultrarelativistic electrons and positrions through an axially oriented bent crystal

The Greenenko-Shul'ga conditions

$$
\alpha<\alpha_{s t}
$$

for positive particles standard condition

$$
\alpha_{s t}=\frac{2 R \psi_{c}^{2}}{l_{0}} \quad \alpha_{s t}=\frac{L_{s t}}{R}=\frac{\psi_{m}^{2}}{l / R+\xi R}
$$

I is the mean length of the path that the particle crosses during scattering on one atomic string;
ξ is a constant of proportionality between the mean square angle of incoherent multiple scattering on atomic thermal vibrations, electronic subsystem atoms, etc., and the thickness of the crystal.
L. Bandiera, I. V. Kyryllin,... N. F. Shul'ga,.. et al. Eur. Phys. J. C 81 (2021) 238

Theoretical interpretation and Monte Carlo simulation developed by I. Kyryllin and N. Shul'ga from KIPT

Deflection efficiency vs axis choice and curvature Radius

L. Bandiera, I. V. Kyryllin,... N. F. Shul'ga,.. et al. Eur. Phys. J. C 81 (2021) 238

L. Bandiera, I. V. Kyryllin,... N. F. Shul'ga,.. et al. Eur. Phys. J. C 81 (2021) 238

Deflection of more than 90% of the electron beam. APPLICATION: Since planar deflection could be highly inefficient to steer TeV negative beams, axial deflection could be really a good option.

Conclusion and future perspectives

- An investigation on the mechanism of relaxation of axially confined $400 \mathrm{GeV} / \mathrm{c}$ protons to planar channeling and the first investigation of stochastic deflection for electrons and positrons in a bent crystal was carried out at the extracted lines from CERN Super Proton Synchrotron;
- The experimental results were compared to computer simulations, showing a good agreement;
- The necessary conditions for the exploitation of axial confinement or its relaxation for particle beam manipulation in high-energy accelerators, e.g. for beam steering or splitting, have been identified.
- In particular, stochastic deflection has proven to be more versatile than planar channeling, allowing for the efficient steering of negative particles as well. This approach should be investigated further for potential use in the collimation of future e+/e- Colliders and for the Muon Collider.

