# Experiments with cold antimatter at CERN



Dr. Fredrik Parnefjord Gustafsson

# How did I end up here?

PostDoc at Stefan Meyer institute in Austria (2021-2022)

PhD in Nuclear physics, KU Leuven Belgium (2017-2021)



Physics at Lund university, Sweden (2011-2017)

INDS



# What is antimatter?

The Dirac equation (1928):

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$$
$$X^{2} = K$$

Two equally valid solutions:



Positive energy states consitent with matter.



Negative energy states consitent with anti-matter?

- > Antimatter perfectly cancel matter in energy with an equal mass but opposite charge.
- Anti-electron (positron) discovery in 1932 proved the existence of antimatter.



# Antimatter creation and annihilation



# For every matter particle there is an equivalent anti-matter particle...

Elements in our universe

Anti- elements in our universe?



# Where is all the antimatter?

 $(\cdot)$ 

### **Broken fundamental symmetry?**



- **C**, **P**, and **CP** are each broken in the standard model (Beta decay, Kaon decay etc..) ..not sufficient to explain antimatter/matter asymmetry...
- No process has been observed to break fundamental **CPT** symmetry yet.. **Example:**  $CPT \rightarrow (-CP)(-T) \rightarrow CPT$  (Invariant)

#### Where do we explore fundamental laws of nature?



#### The CERN accelerator complex Complexe des accélérateurs du CERN



LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n-ToF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // CHARM - Cern High energy AcceleRator Mixed field facility // IRRAD - proton IRRADiation facility // GIF++ - Gamma Irradiation Facility // CENF - CErn Neutrino platForm

#### **Standard Model of Elementary Particles**



#### Search for assymmetry at the LHCb experiment

# nature ARTICLES physics PUBLISHED ONLINE: 30 JANUARY 2017 | DOI: 10.1038/NPHYS4021

OPEN

HCh

Measurement of matter-antimatter differences in beauty baryon decays

The LHCb collaboration<sup>†</sup>

#### **Antinuclei production at the ALICE experiment**



#### Antimatter in space?

" [...] any observation of antihelium or even heavier antinuclei in space would indicate the existence of a large amount of antimatter elsewhere in the universe." STAR collaboration, Nature 473 (2013) CERN

#### Studying the difference between matter and antimatter

>The hydrogen atom is the **best understood physical system**.

>A neutral system is excellent for testing gravity.

>Any observed difference between the properties of H and  $\overline{H}$  would suggest a broken fundamental symmetry in our universe.



### **COLD** antimatter needed!



### The antimatter factory at CERN

Antiprotons from PS

Energy: 3.5 GeV

#### AD Antiproton Decelerator

Start: 2000 Length: 182 m Energy: 5.3 MeV

**ELENA** Extra Low **ENergy Antiproton** 

Start: 2021 Length: 30 m Energy: 0.1 MeV



#### Inside the antimatter factory at CERN







Trap Antihydrogen trapping Spectroscopy Gravity



Beam Antiprotonic atoms Collisions Spectroscopy



Beam Pulsed production of antihydrogen Test of gravity Antimatter bound states



Trap Mass spectroscopy  $\overline{p}$  magnetic moment



Trap Antimatter gravity



Movable trap for antiprotons Study of exotic nuclei

17

# **Trapping antiprotons**



Degrador or drift tube





#### Article

# A 16-parts-per-trillion measurement of the antiproton-to-proton charge-mass ratio

| https://doi.org/10.1038/s41586-021-04203-w | M. J. Borchert <sup>1,2,3</sup> , J. A. Devlin <sup>1,4</sup> , S. R. Erlewein <sup>1,4,5</sup> , M. Fleck <sup>1,6</sup> , J. A. Harrington <sup>1,5</sup> , T. Higuchi <sup>1,6</sup> ,<br>B. M. Latacz <sup>1</sup> , F. Voelksen <sup>1,7</sup> , E. J. Wursten <sup>1,4,5</sup> , F. Abbass <sup>8</sup> , M. A. Bohman <sup>1,5</sup> , A. H. Mooser <sup>5</sup> ,<br>D. Popper <sup>8</sup> , M. Wiesinger <sup>1,5</sup> , C. Will <sup>5</sup> , K. Blaum <sup>5</sup> , Y. Matsuda <sup>6</sup> , C. Ospelkaus <sup>2,3</sup> , W. Quint <sup>7</sup> ,<br>J. Walz <sup>8,9</sup> , Y. Yamazaki <sup>1</sup> , C. Smorra <sup>1,8</sup> & S. Ulmer <sup>1</sup> |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Received: 25 May 2021                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Accepted: 3 November 2021                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Published online: 5 January 2022           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# How do we make antihydrogen?



# Trapping antihydrogen



# Spectroscopy of (anti-)hydrogen

> 1S → 2S > 1S → 2P > 1S Hyperfine splitting

Ahmadi et al., *Nature 548, 66* (2017) Ahmadi et al., *Nature* 557, 71 (2018) Ahmadi et al., *Nature* 561, 211 (2018) Ahmadi et al., *Nature 578, 375* (2020)



$$v_{HFS}$$
 ( $\overline{H}$ )= 1,420.4 (5) MHz

Goal: Measuring the ground-state hyperfine splitting in a near field-free region below 1 p.p.m



## **In-beam GS-HFS spectroscopy at ASACUSA**



In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy

M. Diermaier, C. B. Jepsen, B. Kolbinger, C. Malbrunot, O. Massiczek, C. Sauerzopf, M. C. Simon, J. Zmeskal & <u>E. Widmann</u> 🖂

## **CPT with particle/antiparticle comparisons**



#### Measurement of the gravitational influence on antimatter

$$\overline{g} = 0.75 \pm 0.13 (stat + sys) \pm 0.16 (sim)g$$



#### Observation of the effect of gravity on the motion of antimatter

E. K. Anderson, C. J. Baker, W. Bertsche <sup>III</sup>, N. M. Bhatt, G. Bonomi, A. Capra, I. Carli, C. L. Cesar, M. Charlton, A. Christensen, R. Collister, A. Cridland Mathad, D. Duque Quiceno, S. Eriksson, A. Evans, N. Evetts, S. Fabbri, J. Fajans <sup>III</sup>, A. Ferwerda, T. Friesen, M. C. Fujiwara, D. R. Gill, L. M. Golino, M. B. Gomes Gonçalves, ... J. S. Wurtele + Show authors

Nature 621, 716–722 (2023) Cite this article



## The AEGIS experiment





#### **Techniques for pro** Sympathetic coolin antiprotons: Using electrons or laser cooled anior



Science

#### **Science & Environment**



Yzombard, Pauline, et al. "Laser cooling of mole anions." *Physical review letters* 114.21 (2015): 2



#### American company makes historic Moon landing

Intuitive Machines completes the first ever lunar touchdown by a privately built spacecraft.

Jonathan Amos Science correspondent

Science & Environment · 37min



Fossil reveals 240 million year-old 'dragon'

Science & Environment · 3h

Whale song mystery solved by scientists

Science & Environment · 1d

UK quits treaty that lets oil firms sue government

20h · ₱ 66 Science & Environment

How AI is helping the rearch for ertraterrestrial life Busness · 1d · 📮 285

Frozen antimatter may reveal origins of Universe

cience & Environment · 16

Science & Environment · 1d

ntarctica drone takes

Moment giant

### Forming matter-antimatter bound states?



## **Antiprotonic bound states**







Article

Anna Sótér<sup>17</sup>, Hossein Aghai-Khozani<sup>1,8</sup>, Dániel Barna<sup>2,3</sup>, Andreas Dax<sup>2,9</sup>, Luca Venturelli<sup>4,5</sup> & https://doi.org/10.1038/s41586-022-04440-7 Masaki Hori<sup>1,6</sup> Received: 14 June 2021

e-

# Antiproton annihilation on nucleus



### Simulation of trappable nuclear recoil fragments



G. Kornakov et al., PRC 107, 034314 (2023)

#### Novel technique for making exotic elements..

## Searching for dark matter using antiprotons?



# **Antifusion with antideuterons?**







# Summary and outlook

AD is a is currently the only facility in the world capable of producing cold antiprotons for precision studies of antihydrogen.

Multiple experiments are benchmarking the difference between matter and antimatter: Fundamental symmetries and gravity.

Antiprotonic atoms provide an avenue for precision studies of nuclear, atomic physics and aid in the search for dark matter candidates.



# Thank you for your attention

On behalf of the AEGIS collaboration





#### Ongoing work for antiprotonic atom studies at AEGIS



### Cooling of antiprotons using anionic molecules? The BOREALIS experiment

Indirect laser cooling of antiprotons to mK level and below using anionic molecules



anions." *Physical review letters* 114.21 (2015): 213001.







CMS

#### <u>Antiprotonic atom cascade</u>: Nuclear resonance effects for probing QCD



Gustafsson, Fredrik P., Daniel Pęcak, and Tomasz Sowiński. "The spin-flipinduced quadrupole resonance in odd-\$ A \$ exotic atoms." *arXiv preprint arXiv:2401.06063* (2024).



### The ALPHA experiment

# Forming antihydrogen

![](_page_43_Figure_1.jpeg)