

The Signal and Background: LLP

You will go through event displays containing:

- **Signal** from LLP as:
 - Displaced Vertex + Invisible particles : DV + MET
 - > Displaced Vertex + Muon: **DV** + μ

Background: "misreconstructed" tracks or jets, beam/gas collision, cosmic rays etc.

Invariant mass: a tool for discovery

From **Special Relativity**, the energy of a relativistic particle of mass *m* and momentum *p* is:

$$E = \sqrt{(pc)^2 + (mc^2)^2}$$

If we use a system where c = 1:

$$E^2 = p^2 + m^2 \to m^2 = E^2 - p^2$$

The quantity *m* can be calculated for one particle but also for a system of particles. **This quantity is conserved in relativistic interactions.**

So, consider e.g. a Z⁰ decaying in two leptons: $Z \rightarrow l_1 l_2$. The mass of the particles should be the same on the left and on the right:

 $m(Z) = m(l_1 l_2) = \sqrt{E(l_1 l_2)^2 - p(l_1 l_2)^2} \rightarrow m_Z = \sqrt{(E_1 + E_2)^2 - (\vec{p_1} + \vec{p_2})^2}$

Invariant mass: a tool for discovery

From **Special Relativity**, the energy of a relativistic particle of mass *m* and momentum *p* is:

$$E = \sqrt{(pc)^2 + (mc^2)^2}$$

If we use a system where c = 1:

$$E^2 = p^2 + m^2 \rightarrow m^2 = E^2 - p^2$$

The quantity *m* can be calculated for one particle but also for a system of particles. **This quantity is conserved in relativistic interactions.**

So, consider e.g. a Z⁰ decaying in two leptons: $Z \rightarrow l_1 l_2$. The mass of the particles should be the same on the left and on the right:

$$m(Z) = m(l_1 l_2) = \sqrt{E(l_1 l_2)^2 - p(l_1 l_2)^2} \rightarrow m_Z = \sqrt{(E_1 + E_2)^2 - (\overrightarrow{p_1} + \overrightarrow{p_2})^2}$$

As a consequence, we can **measure the mass of a "parent" particle** by reconstructing the energy and momentum of "daughter"

Leonardo Benucci - Working Experience Week at CERN - 25-29 March 2024

Invariant mass: a tool for discovery

From **Special Relativity**, the energy of a relativistic particle of mass *m* and momentum *p* is:

$$E = \sqrt{(pc)^2 + (mc^2)^2}$$

If we use a system where c = 1:

$$E^2 = p^2 + m^2 \rightarrow m^2 = E^2 - p^2$$

The quantity *m* can be calculated for one particle but also for a system of particles. **This quantity is conserved in relativistic interactions.**

So, consider e.g. a Z⁰ decaying in two leptons: $Z \rightarrow l_1 l_2$. The mass of the particles should be the same on the left and on the right:

$$m(Z) = m(l_1 l_2) = \sqrt{E(l_1 l_2)^2 - p(l_1 l_2)^2} \rightarrow m_Z = \sqrt{(E_1 + E_2)^2 - (\overline{p_1} + \overline{p_2})^2}$$

As a consequence, we can **measure the mass of a "parent" particle** by reconstructing the energy and momentum of "daughter"

Stage 1: Displaced vertices

Webpage : <u>https://www.zooniverse.org/projects/reinforce/new-particle-search-at-cern/classify</u> (no need to Register)

Stage 2: Particle Identification

This stage uses a web event display called HYPATHIA

Leonardo Benucci - Working Experience Week at CERN - 25-29 March 2024

Stage 2: Particle Identification

This stage uses a web event display called HYPATHIA

This will help you to get familiar with:

- ATLAS event displays and measures of charge and pT
- How to explore details in the r-phi and r-z view
- > How to identify μ / e / γ / converted γ
 - When interacting with matter, a high energy photon can transform in a e⁺e⁻ pair (photo-conversion)

Stage 3a: Higgs Identification

This uses a different link from HYPATHIA

Background: "misreconstructed" electrons/photons and production from other Standard Model processes

Leonardo Benucci - Working Experience Week at CERN - 25-29 March 2024

→ $H \rightarrow \gamma\gamma *$: one photon and one converted with m($\gamma\gamma *$) ~ m_H

Background: "misreconstructed" electrons/photons and production from other Standard Model processes

To be more likely to come from a Higgs:

- > Photons have to be quite energetic: $pT(\gamma) > 50 \text{ GeV}$
- Reconstructed invariant mass should fit a window:

120<m(γγ)<130 GeV

Background: "misreconstructed" electrons/photons and production from other Standard Model processes

- In some Higgs production mechanisms there are no other processes than γγ production
- In some other ones, additional jet and tracks can be present

Your own Higgs Identification

To maximize the outcome of possible H $\rightarrow \gamma\gamma$ candidates, ATLAS uses a **Machine-Learning algorithm** :

- > It goes through many (really many!) events and **gives a rating** to the most signal-like ones
- > It can be much more effective than a "traditional" selection based on simple cuts
- > ...but only if it is **trained**: it should learn what a signal has to look like
- → You can help the training by rating the event display !
- \rightarrow You can give $\star \star \star \star \star$ to:

Photon	m(γγ)
pT > 45 GeV	120 <m<130 gev<="" td=""></m<130>

Your own Higgs Identification

To maximize the outcome of possible H $\rightarrow \gamma\gamma$ candidates, ATLAS uses a **Machine-Learning algorithm** :

- > It goes through many (really many!) events and **gives a rating** to the most signal-like ones
- > It can be much more effective than a "traditional" selection based on simple cuts
- > ...but only if it is **trained**: it should learn what a signal has to look like
- → You can help the training by rating the event display !
 → You can give ★★★★★★ to:

- \rightarrow You fill tables like <u>this one</u> with m($\gamma\gamma$) from 100 events and produce the histogram (invariant mass plot)
- \rightarrow You can declare the mass of the Higgs candidate as Mean $\pm \sigma/n$
- → You should be ready to show examples of rating for each category

> Muon selection. To be more likely to come from the signal, it has to:

- be quite energetic: pT > 45 GeV
- "impact parameter" large enough: |d₀|>2 mm

> Muon selection. To be more likely to come from the signal, it has to:

- be quite energetic: pT > 45 GeV
- "impact parameter" large enough: |d₀|>2 mm

> **DV selection**. To be more likely to come from the signal, it has to:

- > Be quite fare from the primary vertex: $r_{DV} > 140$ mm
- ...but not too far not to be confused with cosmics or interactions with detector material: r_{DV} < 180 mm</p>

The 140<r_{DV}<180 mm region is basically background-free

P

- > Muon selection. To be more likely to come from the signal, it has to:
 - be quite energetic: pT > 45 GeV
 - "impact parameter" large enough: |d₀|>2 mm

> **DV selection**. To be more likely to come from the signal, it has to:

- > Be quite fare from the primary vertex: r_{DV} > 140 mm
- ...but not too far not to be confused with cosmics or interactions with detector material: r_{DV} < 180 mm</p>
- m_{DV} is the "invariant mass" associated with the DV. It corresponds to the mass of a parent particle, which decayed into the particles associated with the DV. A large m_{DV} reduces the probability that the muon of the DV originates from interactions with detector material. Here m_{DV} > 20 GeV

DV + MET

- Missing energy selection. To be more likely to come from the signal, it has to:
 - be quite energetic: MET > 250 GeV
- > **DV selection**. To be more likely to come from the signal, it has to:
 - > Be quite fare from the primary vertex: r_{DV} > 140 mm
 - ...but not too far not to be confused with cosmics or interactions with detector material: r_{DV} < 180 mm</p>
 - m_{DV} is the "invariant mass" associated with the DV. It corresponds to the mass of a parent particle, which decayed into the particles associated with the DV. A large m_{DV} reduces the probability that the muon of the DV originates from interactions with detector material. Here m_{DV} > 20 GeV

Stage 3b: LLP Identification

This uses a different link from HYPATHIA

Stage 3b: LLP Identification

To maximize the outcome of possible LLP candidates, ATLAS uses a **Machine-Learning algorithm** :

MET

- > It goes through many (really many!) events and **gives a rating** to the most signal-like ones
- > It can be much more effective than a "traditional" selection based on simple cuts

or

> ...but only if it is **trained**: it should learn what a signal has to look like

You can help the training by rating the event display !	
---	--

 \rightarrow You can give $\star \star \star \star \star$ to:

Muon	DV
pT > 45 GeV	140 <rdv<180 mm<="" td=""></rdv<180>
d0 > 2 mm	mDV > 20 GeV

	→ Next		×	ninini	r‡r
+/-	рт [GeV]	d ₀ [mm]	φ [rad]	θ [rad]	
	133.82	0.01	-2.27	0.22	

→ All the other ratings have to be justified by you

MET > 250 GeV

DV

140<rDV<180 mm

mDV > 20 GeV

Leonardo Benucci - Working Experience Week at CERN - 25-29 March 2024

LLP in real research

Brussels III

