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Reminder: Silicon sensors

Wehner, Master Thesis, 2011

*Defects can act as donors or acceptors (important for irradiated sensors)
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Types of radiation damage

Two types of radiation damage in detector materials:
• Bulk (crystal) damage - Non Ionizing Energy Loss (NIEL)

• Displacement damage/ crystal defects
• Main focus of this study

• Surface damage - Ionizing Energy Loss (IEL)
• Accumulation of charge in the SiO2 oxide, traps at the interface

M.Moll, Bethe Forum on Detector Physics 2014
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Microscopic effects of NIEL

• 3 main mechanisms:
• Coulomb elastic scattering (charged particles)
• Nuclear elastic scattering
• Nuclear inelastic scattering

• Dependence on energy of impact particle
• Point defects or defect clusters

M.Moll, Bethe Forum on Detector Physics 2014
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Microscopic effects of NIEL

Simulation:
• Initial distribution of vacancies in 1 µm3 after 1014 particles/cm2

• Keep in mind: The ’quality’ of the damage depends on particle type
and energy

10 MeV protons 24 GeV protons 1 MeV neutrons

M.Huhtinen, Simulation of non-ionising energy loss and defect formation in silicon. NIMA, 491, 2002.

March 27, 2024 Bulk radiation tolerance and annealing studies 7



NIEL scaling hypothesis

Normalisation of radiation damage arising from different particles

• κ hardness factor of a radiation field (/monoenergetic particle) with
respect to 1 MeV neutrons

• D(E) displacement damage cross section for a certain particle at
energy E

• D(1 MeV neutrons) = 95 MeVmb
• f(E) energy spectrum of the radiation field
• Φ(E ) differential fluence at the energy E at the device level

Hypothesis: Damage function scales linearly with the NIEL

The integrals are evaluated for the interval [Emin, Emax ], with Emin and Emax being the minimum
and maximum cut-off energy values, respectively, and covering all particle types present in the

radiation field
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Defects impact on detector properties
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Annealing mechanisms

• Migration and complex formation
• Defects become mobile at a certain temperature and can migrate

through the silicon lattice
• Migrating defects can for example recombine with their counterparts

or form new defect complexes, e.g. V + Oi → VOi
• Dissociation

• A defect complex can decay into its components if the vibrational
energy of the lattice is high enough

• One or more of the constituents can migrate until forming another
defect or disappearing into a sink

• All mechanisms need to overcome an
energetic barrier: Activation energy

• All processes are temperature
dependent

G. Lutz, Semiconductor radiation detectors, 2007
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Macroscopic effects - Leakage current

Increase with fluence

Current related damage factor
α = ∆I

V Φeq

Current increase is independent of
silicon production process
(FZ, Epi, Cz) and impurity concen-
tration types and concentration.
It can be a fluence indicator.

Decrease with annealing time

No reverse annealing for the leakage
current.
Annealing is strongly temperature
dependent.

M.Moll, Bethe Forum on Detector Physics 2014
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Macroscopic effects - Depletion voltage
Change of effective doping concentration

with fluence Φeq

• For n-type sensors: Type
inversion, Neff changes from
positive to negative, electric field
building up from the backside

• Reason to change to p-type
sensors at HL-LHC detectors

with annealing

• Short term: Beneficial annealing
• Long term: Reverse annealing
• Time constants are temperature

dependent
→ Detectors need to be cooled to
avoid entering reverse annealing

M.Moll, Bethe Forum on Detector Physics 2014
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Macroscopic effects - Trapping

• Increasing inverse trapping time = increasing trapping probability
• Charge carrier trapping reduces the charge collection efficiency

(CCE) at fixed collection time in irradiated sensors - limiting factor
at high fluences

• Charge loss due to trapping is parameterized by inverse trapping time

M.Moll, Bethe Forum on Detector Physics 2014, Data from [Krasel 2004]
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Summary - Radiation damage

• Bulk damage due to NIEL (diplacement defects)
• Increase of leakage current - higher shot noise, thermal runaway
• Increase of effective doping concentration - higher depletion voltages
• Increase of charge carrier trapping - charge collection decrease

• Annealing effects
• Leakage current decrease
• Beneficial annealing dominates short term: Depletion voltage

decrease, charge collection increase
• Reverse annealing dominates long term: Depletion voltage increase,

charge collection decrease
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Introduction to HGCAL

• CMS will replace Calorimeter Endcaps (CE) for HL-LHC operation
• CE to be implemented in HGCAL (High Granularity Calorimeter) concept
• Silicon sensors will be used for the electromagnetic section and high

radiation regions of the hadronic section of the CE
• ∼620 m2 silicon sensors produced on 8-inch wafers (3x area of ATLAS

tracker)
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Introduction to HGCAL

• 3 different thicknesses: 300 µm, 200 µm (Float zone) and 120 µm
(Epitaxial) - thinner sensors in high fluence regions

• Fluences of up to 1e16 neq/cm2

• 2 granularities:
High and Low
Density

• Hexagonal
sensors:
Optimal wafer
usage and tiling
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Silicon test structures: Diode measurements

• Hexagonal sensor from circular wafer
• Remaining space used for small sized test structures, e.g. diodes
• 8-inch wafers ( 20 cm), diodes with 0.5 × 0.5 cm2 active area

Full wafer silicon sensor

Test-structure diode contacted using two
needles (pad and guardring)
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Irradiation campaign goals

Up to which fluence
can we use which
thickness
→ Does the charge
collection follow the
expected linear trend?
→ How does the leak-
age current and noise
evolve with fluence?

New campaign: O 300 µm, O 200 µm, O 120 µm
E. Curras Rivera, PhD Thesis 2017, HGCAL TDR

Which operation scenarios of HGCAL are feasible?
▶ Scintillators+SiPMs vs silicon sensors: temperature scenario needs

to be good for both technologies
▶ Extraction of annealing time parameters at different temperatures
▶ Scaling factors between different annealing temperatures
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High fluence irradiation campaign overview

• Test structures: Single pad diodes
• Neutron irradiation at JSI (Jozef Stefan Institute), Ljubljana, Slovenia
• 3 batches with 7 sensors each
• 3 annealing temperatures: 6.5◦C, 20◦C and 60◦C - all ongoing!
• Leakage current and capacitance vs voltage (IV/CV) and charge collection

(CC) measurement results

Test-structure diode on PCB

Sample overview per batch
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Experimental setup: Early steps

• HGCAL needed setup for 24/7
annealing campaign

• Cover large phase space
▶ Thickness (3)
▶ Fluence (5)
▶ Voltage (100-900 V)
▶ Annealing time
▶ Frequency

...
• Original version of Particulars

setup after assembly
(CC laser setup)

• Added cooling and humidity
control → sensor box

Co-funded by EP RD programme
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Experimental setup: Final version
• Upgraded it to IV+CV+CC setup
• Switchbox to change measurement type automatically
• Sensors are glued and wirebonded to a PCB, placed on a cooled copper

holder, connected via SMA connectors
Particulars Setup
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Leakage current vs fluence
• Initial = first post irradiation measurement = no additional annealing
• Expected increase with fluence
• Observe 10% leakage current difference in samples of same irradiation

round, potentially linked to fluence inhomogenities along irradiation tube.
Observed for the first time

• Offsets for different thicknesses - observed before (difference in electric
field at same voltage)

Volume-normalised leakage current at 600 V
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Saturation voltage from CV measurements

• Only extractable for thin sensors/ lower fluences without assumptions on
saturation capacitance absolute value

• Frequency and temperature dependence - "saturation" instead of
"depletion" voltage

• Further measurements all done at 2 kHz and −20◦C

CV measurement example
120 µm, 6e15 neq/cm2
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Saturation voltage vs fluence

• Small variance (10%) in extracted values
• In agreement with expected fluence variation (visible in leakage

current)

Saturation voltage vs fluence
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Charge collection measurements

• Transient Current Technique (TCT): Infrared laser @1kHz from the top
• Laser calibrated to 40 MIP (Minimal Ionizing Particle) equivalent using

unirradiated 300µm sample
• 300 events per voltage, each event average of 50 waveforms
• Integration over pulse → histogram → mean of Gauss-fit = Collected

charge

Recorded waveform (averaged)
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Charge collection measurements

Non-irradiated sensors
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Charge collection vs fluence
• Without additional annealing for all 3 batches
• Expected decrease of charge with fluence (increased trapping

probability)
• Efficiency = normalised by collected charge of unirradiated sensors
• Thinner sensors perform better at the same fluence despite lower

starting values
• Very small variations in results between batches (<5%)

Charge collection: 600 V
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Charge collection vs fluence
• Comparison with previous studies (measured in SSD group setup in

2021 and 2023)
• After 80-90 min annealing at 60◦C
• Broad fluence range covered
• Results from different campaigns are well in agreement

Charge collection: 600 V
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Annealing behavior: Leakage current

• Volume-normalised leakage current at 600V
• Expected decrease for all annealing temperatures visible
• To be used to extract leakage current annealing time constant and

temperature scaling factors once campaign is completed

6.5◦C annealing
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Annealing behavior: Saturation voltage

• Expected behavior for both temperatures: First decrease during
beneficial and then increase during reverse annealing - increase of
acceptor-like defects

• Difference in time scale clearly visible (hours vs minutes), 60◦C
annealing further progressed

• Directly correlates with the effective doping concentration
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Annealing behavior: Charge collection
• 60◦C annealing
• Expected increase of charge during beneficial annealing and

expected decrease afterwards during reverse annealing
• The maximum seems to be reached around 110-120 min for FZ,

90 min for EPI - in agreement with other studies on p-type sensors
• At 600 V, there is a second bump for the 6e15 neq/cm2 120 µm sensor

Efficiency at 400 V
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Annealing behavior: Charge collection
• No decrease of charge at 800 V for the 120 µm sensors
• Saturation/ increase again for higher fluences of the thicker sensors
• Electric field effects: As this is only present at higher voltages, it

hints to the onset of some charge multiplication due to high electric
fields - Ongoing study, needs to be confirmed with further
measurements

Charge collection efficiency: 800 V
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Charge collection efficiency: 120 µm sensors
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Ongoing works

• Fits to access leakage current annealing time constant once enough
data is recorded - fluence variation might pose an issue for the fits

• Fits to extract beneficial and reverse annealing time constants (CV)
- need for more data during reverse annealing for both parameters -
limited data sets for saturation voltages might pose an issue for the fits

• Extraction of scaling factors between annealing temperatures for
both beneficial and reverse annealing*

• Comparison of the maximum charge increase during beneficial
annealing for different temperatures*

• Comparison of the extracted minimum from CV measurements and
maximum in charge collection at different temperatures*

• Comparison of proton and neutron irradiation damage: Proton
irradiation campaign planned

*once enough data is recorded for lower temperatures
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Conclusions

• Ongoing broad annealing study covering a fluence range of
2e15 neq/cm2 to 1.5e16 neq/cm2 at 3 annealing temperatures:
6.5◦C, 20◦C and 60◦C

• IV, CV and Charge Collection measurements done for each step
• Observed expected behaviour:

• Leakage current increase with fluence, decrease with annealing
• Charge collection decrease and saturation voltage increase with

fluence
• Beneficial annealing: Charge increase, saturation voltage decrease
• Reverse annealing: Charge decrease, saturation voltage increase

• Further results, including the extraction of annealing time constants
and scaling factors are expected within the upcoming months
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Thank you for the attention
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Backup
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Irradiation at JSI Ljubljana

• Well established irradiation site used by RD50 community
• Same irradiation channel used for all test structure irradiations
• Estimation of fluence precision: within ±10%
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Hamburg model

Change of effective doping concentration with respect to before annealing:
∆Neff = Neff ,0 − Neff (t)

Short term annealing
NA(t) = gaΦeq exp (−t/τa)
First order decay of acceptors
introduced (proportional to Φ)
during irradiation

Long term reverse annealing
NY (t) = gY Φeq(1 − exp (−t/τY )
Build-up of acceptors during long-
term annealing - first order process

Neff (t) = NA(t) + NC + NY (t)

Stable damage
NC = NC0(1−exp (−cΦeq))+gcΦeq
Introduction of stable acceptors and
incomplete "donor removal"

M.Moll, Bethe Forum on Detector Physics 2014
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Initial results: Charge collection

• Higher charge at 800V than at 600V (Slide 9) as expected
• 120um sensors stay above 50% efficiency up to 1.5e16 neq/cm2

• Slightly larger spread between sensors

Charge collection: 800 V
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Charge comparison/Setup validation

Comparison of measurements at 600V after 80min annealing in two different setups
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Annealing behavior: Charge collection
• 20◦C annealing
• Expected increase of charge during beneficial annealing
• Start of decrease of charge during reverse annealing (ongoing

measurements!)
• The maximum is harder to extract than for 60◦C annealing -

between 400-600h (16-25d)
• At 800V, for 120µm sensors no clear decrease

Efficiency at 400 V
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Annealing behavior: Charge collection

• 6.5◦C annealing
• Expected increase of charge during beneficial annealing
• No clear start of decrease yet (ongoing measurement)
• Large uncertainty of the maximum beneficial annealing time

(uncertain in-reactor annealing correction) - not clearly visible yet

Efficiency at 400 V
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Saturation voltage vs fluence

• Small variance (10%) in extracted values
• In agreement with expected fluence variation (visible in leakage

current)

Saturation voltage vs fluence
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Saturation voltage vs current

8 10 12 14 16 18
I(600V)/V [mA/cm3]

0

100

200

300

400

500

600

700

Sa
tu

ra
tio

n 
Vo

lta
ge

 [V
]

Current ~ Actual fluence

120um Batch 1
120um Batch 2

120um Batch 3

March 27, 2024 Bulk radiation tolerance and annealing studies 43



Annealing behaviour: Damage parameter

• Extracted from leakage current vs fluence at each annealing step -
I
V = αΦ

• Expected course: Decrease of damage parameter with annealing time
• Limited amount of samples and fluence uncertainty: Large

uncertainties on extracted damage parameters
60◦C annealing
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