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s Types of radiation damage
= Microscopic effects

= Macroscopic effects

= Annealing effects
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- ope CMS
Reminder: Silicon sensors @

Working Principle: Effective doping concentration:
« pn-junction with external reverse voltage applied |Neff
e p-type: Additional acceptors = depleted: neg. space charge
« n-type: Additional donors = depleted: pos. space charge

= ’ N, Donor — N, Acceptor

Depletion voltage:
eNegyd®
p-type sensors: n-implants in a p-type bulk Vdep =7

2¢¢,
« Electrons drift toward implants 0

fonising particle

« Holes drift toward backplane n+ implants with wms
. > -
« Driftvelocity: v = ux E . - —t

I | — = —  —  —
Sensor characteristics: - p-bulk
. Ve

e Full depletion voltage .

« Leakage current

« Capacitance v

« Charge collection efficiency p+ layer with full Al backplane contact /
H: Mobility d: Thickness £ Vacuum permittivity
FEl. field e: Elementary charge &, Relative permittivity of Si

Wehner, Master Thesis, 2011

*Defects can act as donors or acceptors (important for irradiated sensors)
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Types of radiation damage

CMS

Two types of radiation damage in detector materials:
= Bulk (crystal) damage - Non lonizing Energy Loss (NIEL)

= Displacement damage/ crystal defects
= Main focus of this study

= Surface damage - lonizing Energy Loss (IEL)
= Accumulation of charge in the SiO, oxide, traps at the interface

Sio.

Si

Region affected by lonizing Energy Loss

~ (IEL) — Surface damage

Region affected by Non lonizing Energy

"~ Loss (NIEL) — Bulk damage

M.Moll, Bethe Forum on Detector Physics 2014
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Microscopic effects of NIEL = @

= 3 main mechanisms:

= Coulomb elastic scattering (charged particles)
= Nuclear elastic scattering
= Nuclear inelastic scattering

= Dependence on energy of impact particle
= Point defects or defect clusters

; \ Vacancy .
particle— Sis ——E >25 eV 4—%’—» . — point defects
. l Interstitial (v-0,C-0, ..)

E, > 5 keV  point defects and clusters of defects

%°Co-gammas Electrons Protons Neutrons (elastic scattering)
* Compton Electrons « E,>255keV for displacement "
- = + E,>185 eV for displacement
with max. E, = 1 MeVv « E,> 8MeV forcluster E i EviaEEl p[
(no cluster production) L ENIOLCIUSIER
Only point defects Point defects and clusters Point defects and clusters  Mainly clusters

M.Moll, Bethe Forum on Detector Physics 2014
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Microscopic effects of NIEL

Simulation:

CMS

= [Initial distribution of vacancies in 1 umS after 10™ particles/cm2

= Keep in mind: The 'quality’ of the damage depends on particle type
and energy

March 27, 2024

10 MeV protons

36824 vacancies

24 GeV protons 1 MeV neutrons

4145 vacancies 8870 vacancies
- [ Ly 2 e |
r ;} " ]
__ 1 J —_
o . 3
C . A
: .
[ l‘ )’\.r”“:
R R A
RISV PV agk B Eov oA T
0 0.5 10 0.5 1
X (um) X (um)

M.Huhtinen, Simulation of non-ionising energy loss and defect formation in silicon. NIMA, 491, 2002
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CMS

NIEL scaling hypothesis

Normalisation of radiation damage arising from different particles

) | . j D(E) §(E) dE
k= D(1MeV neutrons) J. ¢(E)dE

=k hardness factor of a radiation field (/monoenergetic particle) with
respect to 1 MeV neutrons

= D(E) displacement damage cross section for a certain particle at
energy E

= D(1MeV neutrons) = 95 MeVmb

= f(E) energy spectrum of the radiation field

= ®(E) differential fluence at the energy E at the device level

Hypothesis: Damage function scales linearly with the NIEL

The integrals are evaluated for the interval [E,;,, E,...], with E,;, and E, . being the minimum
and maximum cut-off energy values, respectively, and covering all particle types present in the

radiation field
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Defects impact on detector properties > @

Leakage current - Depletion voltage - Trapping, CCE

Increase of . Creation of charged defects. Shallow levels
generation current upper band: donor ' trap e
Levels close to midgap  lower band: acceptors . trap h

are most effective : :>Neﬁ; VFD : — lower CCE

Ec

: % 4
e s
: donor : electrons
acceptor holes/ \
E, : : / b

Shockley-Read Hall statistics
(standard theory)
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Annealing mechanisms

= Migration and complex formation

CMS

@l

= Defects become mobile at a certain temperature and can migrate

through the silicon lattice

= Migrating defects can for example recombine with their counterparts
or form new defect complexes, e.g. V + O; — VO;

= Dissociation

= A defect complex can decay into its components if the vibrational

energy of the lattice is high enough

= One or more of the constituents can migrate until forming another

defect or disappearing into a sink

= All mechanisms need to overcome an
energetic barrier: Activation energy

SILICON
ATOMS

= All processes are temperature
dependent
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IMPURITY IN INTERSTITIAL SITE

l

I.‘

SILICON
INTERSTITIAL

/

5

N

FRENKEL
DEFECT

/ IMPURITY ON SUBSTITUTIONAL SITE
VACANCY

G. Lutz, Semiconductor radiation detectors, 2007
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Macroscopic effects - Leakage current

Increase with fluence
10! .

CMS

Decrease with annealing time
1 hpur ld‘ay 1 mpnth 1 year

* n-type FZ- 71025 KQem
o ntype FZ- 7KQem
® n-type FZ-4 Kem
o ntype FZ-3 KQrm
| w ptype EPI-2and 4Km

._.
<
o

v ntypeFZ-780km |

o ntype FZ-410 em

~ ntype FZ- 130 Cem

4 ntypeFZ-110Qem |

80 min 60°C  © mypeCZ- 140 Cem
o ptype EPL-380 Cxm

Al/V [Alen?]
5 5

3,
a[10"7 A/em ]
(=)}

106°C

109 ‘ ‘ ‘ ‘
[ U LN L o’

q [om]

Current related damage factor No reverse annealing for the leakage

Al
Vo,

o= current.

TR TERT
time [ min ]

Current increase is independent of Annealing is strongly temperature

silicon production process dependent.
(FZ, Epi, Cz) and impurity concen-
tration types and concentration.

It can be a fluence indicator.
M.Moll, Bethe Forum on Detector Physics 2014
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Macroscopic effects - Depletion voltage

Change of effective doping concentration

with fluence @,

with annealing

,g- R e
1000 i T
g Ny
I 1000
T s
N
E 1(5) igcﬂl)oq
g Neg—
> 1L 0 : : : :
T 10" 110 100 1000 10000
@, [102cm?] annealing time at 60°C [min]
= For n-type sensors: Type = Short term: Beneficial annealing
inversion, N changes from = Long term: Reverse annealing
EZiSIIctI;\rlxe tuo nﬁf:'::'e T)l:(c:irslicd:eld = Time constants are temperature
gup dependent
= Reason to change to p-type — Detectors need to be cooled to
sensors at HL-LHC detectors avoid entering reverse annealing

M.Moll, Bethe Forum on Detector Physics 2014
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Macroscopic effects - Trapping >

— T T T - T T
5 irradiati gyl w
2 0.5} 24 GeV/c proton irradiation s £ 025 24 G‘;V/f zr;nlo(;‘ madlauon TTT
= S * g = em? °
= o04f : 5 2= = 1
— 8 ® data for electrons e i
5 %)

o © data for holes P g 0 2 j/
g 03} ] £ 0 3 7@
-5 o 4
@ L £ T ’,
£ 02p b § L. :t\?
& . 5 015} s T
53 3 & 0. e .
g o1l 1 o Fitoteg
Y 2 o data for holes
4 0 E o data for electrons

I L L I
>
E 0 210" 410" 610" 810" 10 = 01

. 5 S0 51° 510
particle fluence - @y [cm™] annealing time at 60°C [min]
= Increasing inverse trapping time = increasing trapping probability

= Charge carrier trapping reduces the charge collection efficiency
(CCE) at fixed collection time in irradiated sensors - limiting factor
at high fluences

= Charge loss due to trapping is parameterized by inverse trapping time

M.Moll, Bethe Forum on Detector Physics 2014, Data from [Krasel 2004]
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Summary - Radiation damage y @

= Bulk damage due to NIEL (diplacement defects)
= Increase of leakage current - higher shot noise, thermal runaway
= Increase of effective doping concentration - higher depletion voltages
= Increase of charge carrier trapping - charge collection decrease

= Annealing effects

= Leakage current decrease
= Beneficial annealing dominates short term: Depletion voltage

decrease, charge collection increase
= Reverse annealing dominates long term: Depletion voltage increase,

charge collection decrease

March 27, 2024 Bulk radiation tolerance and annealing studies



Introduction to HGCAL “ @]

= CMS will replace Calorimeter Endcaps (CE) for HL-LHC operation
= CE to be implemented in HGCAL (High Granularity Calorimeter) concept

= Silicon sensors will be used for the electromagnetic section and high
radiation regions of the hadronic section of the CE

= ~620m” silicon sensors produced on 8-inch wafers (3x area of ATLAS
tracker)

Key Parameters:

Coverage: 1.5< |n| < 3.0

~215 tonnes per endcap

Full system maintained at -30°C
~620m? Si sensors in ~26000 modules
~6M Si channels, 0.6 or 1.2cm? cell size
~370m? of scintillators in ~3700 boards
~240k scint. channels, 4-30cm? cell size
Power at end of HL-LHC:

~125 kW per endcap

March 27, 2024 Bulk radiation tolerance and annealing studies



Introduction to HGCAL

CMS /\\}

= 3 different thicknesses: 300 pm, 200 pm (Float zone) and 120 pm
(Epitaxial) - thinner sensors in high fluence regions
= Fluences of up to 1el6 neq/cm2

March 27, 2024

1600

1400

1200

1000

-200

CMS Simulation
Layer 11
150 cm~
l‘lwl
100 cm <

x [mm]

000

= 2 granularities:
High and Low
Density

= Hexagonal
Ssensors:
Optimal wafer
usage and tiling
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age - CMS,
Silicon test structures: Diode measurements

= Hexagonal sensor from circular wafer
= Remaining space used for small sized test structures, e.g. diodes

= 8-inch wafers ( 20 cm), diodes with 0.5 x 0.5 cm? active area

Full wafer silicon sensor

HGCAL| HPK Top;
UL (upper left) Halfmoon!

Test-structure diode contacted using two
needles (pad and guardring)

e W e
W e

HGCAL

LR (lower right) Halfmoon|
HPK Bottom|

March 27, 2024 ion tolerance and annealing studies 17
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Irradiation campaign goals

Epi50 p-on-n300V  ®  Epi50n-on-p 300V

80—

Up to which fluence
can we use which

thickness %

— Does the charge &

collection follow the @ - T - “ o
expected linear trend? 20¢ 208201 ym " 226.200 RN 148-133 ym '

10

— How does the leak- g 5 0 00"
0 LN

H 15 16
age currgnt and noise 10° ence, e 10
evolve with fluence?

New campaign: O 300 pm, O 200 ypm, O 120 pm
E. Curras Rivera, PhD Thesis 2017, HGCAL TDR

Which operation scenarios of HGCAL are feasible?
» Scintillators-+SiPMs vs silicon sensors: temperature scenario needs
to be good for both technologies
» Extraction of annealing time parameters at different temperatures
> Scaling factors between different annealing temperatures

March 27, 2024 Bulk radiation tolerance and annealing studies
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High fluence irradiation campaign overview @

= Test structures: Single pad diodes

= Neutron irradiation at JSI (Jozef Stefan Institute), Ljubljana, Slovenia
= 3 batches with 7 sensors each

= 3 annealing temperatures: 6.5°C, 20°C and 60°C - all ongoing!

= Leakage current and capacitance vs voltage (IV/CV) and charge collection
(CC) measurement results

est-structure diode on

Sample overview per batch

2e15 4e15 6e15 8e15 1.5e16
Thickness\Fluence neq\cm2 neq\t:m2 neq\cm2 ne..‘\t:m2 neq\t:m2

March 27, 2024 Bulk radiation tolerance and annealing studies



Experimental setup: Early steps

= HGCAL needed

annealing campaign
= Cover large phase space
» Thickness (3)

Fluence (5)

vVvyvy

Frequency

= Original version of Particulars
setup after assembly
(CC laser setup)

= Added cooling and humidity
control — sensor box

Voltage (100-900 V)
Annealing time

setup for 24/7

Co-funded by EP RD programme

CMS

March 27, 2024
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Experimental setup: Early steps

s HGCAL needed

annealing campaign
= Cover large phase space
» Thickness (3)

> Fluence (5)
>
| 4
>

Frequency

= Original version of Particulars
setup after assembly
(CC laser setup)

Voltage (100-900 V)
Annealing time

setup for 24/7

Frost without se
= Added cooling and humidity \h\

control — sensor box

CMS

March 27, 2024
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Experimental setup: Final version

= Upgraded it to IV4+CV+4CC setup
= Switchbox to change measurement type automatically

= Sensors are glued and wirebonded to a PCB, placed on a cooled copper
holder, connected via SMA connectors

Particulars Setup

HV-Filter |

!
Dry air sl{pply Laser Optics|| |
E 1

X, y and z-stage*

)

=
Arduino (Control board)

March 27, 2024 Bulk radiation tolerance and annealing studies



Leakage current vs fluence

CMS

= [nitial = first post irradiation measurement = no additional annealing

= Expected increase with fluence

= Observe 10% leakage current difference in samples of same irradiation

round, potentially linked to fluence inhomogenities along irradiation tube.

Observed for the first time

= Offsets for different thicknesses - observed before (difference in electric
field at same voltage)

March 27, 2024

Volume-normalised leakage current at 600V
—18F

£1s

-
© N

1(600V)/V [mA/c
o

Fluence [neq/cm?]

T 3
L ¥ 300um sensors * 120um sensors *_
X 200um sensors
- * _
¥ ox
- 32 X -
v
I 1 1 1
0.2 0.4 0.8 15
lel6
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Saturation voltage from CV measurements > @

= Only extractable for thin sensors/ lower fluences without assumptions on
saturation capacitance absolute value

= Frequency and temperature dependence - "saturation" instead of
"depletion" voltage

s Further measurements all done at 2kHz and —20°C

CV measurement example Frequency dependence
2
I Depl. voltage vs frequency
120 pm, 6el5 n,,/cm 600 Depi-voltage vs
Material: FZ
- 1‘521 . 5501 Temperature: —20°C
N L 3 Fluence: 1.0e15 nyqfcm?
¢ 200 - = 5001 )
& s
1750 = Iy
= E’ 450 {
< 1.50F 34 °
Q > 4001
~125F ER-1
g 3501
1.00F | g 300! Anneatlwngfwzm;"@) 60°C
0.75F = 4 ~110min
2501 4 ~250min
0.50F | ~380 min
200! Zesomin
0.25F - NB737_3_LL1_6el5_noadd_CV_data_LowT
0 200 400 600 Frequency f [Hz]

800
Voltage [V]
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Saturation voltage vs fluence y @

= Small variance (10%) in extracted values

= In agreement with expected fluence variation (visible in leakage

current)

Saturation voltage vs fluence Saturation voltage vs current
— 1000 T T T T T =700 T T T ]
> E - 200um Batch1  -Bi~ 120um Batch 1 > 3]
o r ES 200um Batch2 B~ 120um Batch 2 o Current ~ Actual fluence - ]
=) [ = 200um Batch 3 120um Batch 3 o600 = F——t—
© 800 — © & ]
£ 8000 o = ]
S [ < 500 !
c [ = c ]
O 600~ 2]  L400F Il
g ! g - ]
2 L 2 300F E
g 400? B 7 ﬁ E

[ 200F E
200 B E
[ 100F g8 120um Batch 1 120um Batch 3 ]
L T T S I T I b 12?“”‘ BatCh\z L L 1 I E
0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0 8 10 12 14 16 18
Target Fluence [neg/cm?] lel6 1(600V)/V [mA/cm?3]
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Charge collection measurements > @

= Transient Current Technique (TCT): Infrared laser @1kHz from the top

= Laser calibrated to 40 MIP (Minimal lonizing Particle) equivalent using
unirradiated 300pm sample

= 300 events per voltage, each event average of 50 waveforms

= Integration over pulse — histogram — mean of Gauss-fit = Collected
charge

Charge collection histogram
Recorded waveform (averaged) € €

. ‘ ‘ : 8 150 1
g 600 Example Waveform ] =  Example histogram 1
= Unirradiated sensor {0} [ Unirradiated sensor
3 200um, 180V w [ 200um, 180V ]
2 4001 ] 100 -
= I ]
1S
< 200 ] 1
g 50| .
=2 - 1
n

O s - -7 : [
1 Il Il 1 0 | | |
R es[(r)1 o 0 1000 2000 3000
Collected Charge [mVns]
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Charge collection measurements > @

Non-irradiated sensors Irradiated sensors
&g 60 [ <E- 2el5, 300um &
— B e e e = 4el5, 300um ]
O 140 - I I g\ <F- 4el5, 200um bl
= <%— T = = = 6e15, 200um 1
o /% - B 50 | ge1s, 200um ]
o120 ,,%/ o =<E- 6el5, 120um ¥, Roe o ]
© 2 “E- 1.5e16, 120um o ]
< % T 4ol 3 “F-F A
G 100F /% Bt et Cwiete BB g —,?% ]
° ST ] peip: ]
9 =C o P 1
= 80 4 3 30 xz Jt ]
9] Q ,I'/r ___<F 3
] fi © B = ]
S 60F ra 4 o Fos ]
S e = EE T o ]
N 4 ] o= 1
£ ~F- 120um Sensor 1 120um Sensor 2 10 f,ff B
201~ 3~ 200um Sensor 1 200um Sensor 27] == ]
<F- 300um Sensor1 ¥~ 300um Sensor 2 ) ]
| | | | | | | |

%% 100 200 300 400 500 600 700 200 400 600 800

Voltage [V] Voltage [V]

Used for crosschecks and reference Further analysis focuses on charge
measurements collection and efficiency at specific
voltages (400V, 600V, 800V)

Dotted lines: Expected charge for different thicknesses
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Charge collection vs fluence

Collected Charge [fC]

CMS

= Without additional annealing for all 3 batches

= Expected decrease of charge with fluence (increased trapping
probability)

= Efficiency = normalised by collected charge of unirradiated sensors

= Thinner sensors perform better at the same fluence despite lower
starting values

= Very small variations in results between batches (<5%)

Charge collection: 600V Charge collection efficiency: 600V
T T — 1007 S —— ———
140 = X -H8- 300um sensors -~ 200um sensors  -H8- 120um sensors
z
1200 -+ 300um sensors ] 2 gl ]
- 200um sensors 9
&+ 120um sensors 2 %
100 = E
w
o 60— -
<y
8of- B o
=
O 4of 3l 2 i
60 g °
g i H HE
® L]
40 1 [ESE i % 201 4
] S
]
200, L) . L . M| [ I . L . -
107 1076 107 10™°
Fluence [neq/cm?] Fluence [neq/cm?]

Dotted lines: Expected charge for unirradiated sensors/ 50% efficiency
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Charge collection vs fluence cms @

= Comparison with previous studies (measured in SSD group setup in
2021 and 2023)

= After 80-90 min annealing at 60°C
= Broad fluence range covered

= Results from different campaigns are well in agreement

Charge collection: 600V Charge collection efficiency: 600V

S, o T T T T T — 100 ——— ——— —
Y 140 -+ 300um, 23 Campaign 300um, Old campaign | S L 1
P [ ~- 200um, 23 Campaign 200um, Old campaign 5 F % 4
o r - 120um, 23 Campaign ~ -#- 120um, Old campaign r ]
5 120 pal paian ] g 8or N
c [ S I 1
o S 1
- 100E E T ]
ST = 60F ]
O [ S r et 1

Q 80 - =

S o I 1
(S = 40 = i B
60 1 8 T 1
r oTE % o | FE H ]
sof = 1 Er 1
[ e el b @ 300um, 23 Campaign 300um, OId campaign B
E e | (o] L - 200um, 23 Campaign 200um, Old campaign 4
20; @ ] I -H- 120um, 23 Campaign -}~ 120um, Old campaign 4

N R L ol SR R
Fluence [neq/cm?] Fluence [neq/cm?]

Dotted lines: Expected charge for unirradiated sensors/ 50% efficiency
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1(600V)/V [mA/cm?]

CMS

Annealing behavior: Leakage current

= Volume-normalised leakage current at 600V

= Expected decrease for all annealing temperatures visible

= To be used to extract leakage current annealing time constant and
temperature scaling factors once campaign is completed

6.5°C annealmg

20°C annealing

60°C annealing

20 —20 200w . .
B 300um, 2615megiem? = . 300um, 2e15negem? T B 300um, 2e15n.g/cm?

17.5E-5- 300um, detsmegm? 1 Swsf s00um, detsnagemt 3 S 1755 0um, dersnaert ]
Bl 200um, de15n,ylcm? g - 200um, 4e15n.gfcm? g @ 200um, -

15.0F % 200um, 6e15ngicm? 3 Tisof 200um, GelSneg/em? T 15.0f [ 200um, 6e15neglcmt | El

12.5F-F- 1200, Ge15nlcm? 1 Busp 120um, 6e15negem? S 125F-B- 120um, Ge1Snegiem? H E
- 120um, 15e16ne/cm? e = 120um, 1.5e16n./cm? 5} B 120um, 1.5e16n,/cm?

100F 1 Troof E%‘H 1 Tof H E

sof ——F— * E sof i EESTT E sof E

25 C ¥ 3 25F il Hl*fﬁi B 25F = Hﬁﬁl‘ﬁﬁiﬁhf
[ SIS S R] e s = = F =5 LI alliamnc =%

000 b g 06t i b b 005 167 g

10 10
6.5°C Annealing Time [d]
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107 107
20°C Annealing Time [h]

07 0
60°C Annealing Time [min]

radiation tolerance and annealing studies



Annealing behavior: Saturation voltage > @

Expected behavior for both temperatures: First decrease during
beneficial and then increase during reverse annealing - increase of
acceptor-like defects

= Difference in time scale clearly visible (hours vs minutes), 60°C
annealing further progressed

= Directly correlates with the effective doping concentration

o . o .
20" C Annealing 60" C Annealing
— 2000 T T = 2000 T T T
> BE 200um,4e15 B 120um,6e1s § = PR 200um, 4e15 B 120um, 6el5
© 1750 200um, Ge15 B 120um, 1516 ] © 1750 200um, 6e15 [ 120um, 1.5e16 ]
S i =B
5 15000 4 S 1500F E
= 13>
E P E
5 1250F 4 §12%0
=1 i =
£ 1000F g £ 1000F E
‘(-6 y | Jré
& 750f %A ¥ 1 &
500 X E "
] ] A
2500 1 sof <1 b e ]
L L | i 0 I L L Il
Qo 10 10 107 150 101 162 R

20°C Annealing Time [h] 60°C Annealing Time [min]
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Annealing behavior: Charge collection > @

=« 60°C annealing

= Expected increase of charge during beneficial annealing and
expected decrease afterwards during reverse annealing

= The maximum seems to be reached around 110-120 min for FZ,
90 min for EPI - in agreement with other studies on p-type sensors

= At 600V, there is a second bump for the 6elb neq/cm2 120 ym sensor

Efficiency at 400 V Efficiency at 600 V

~— 100 T T T T — 10 T T T
X L - 300um, 2e15n.q/cm? 200um, 8e15nge/cm? X b - 300um, 2e15n.e/cm? 200um, 8e15neg/cm? 4
Ei r 300um, 4e15n.g/cm? - 120um, 6el5neqlcm? E', r 300um, 4e15neg/cm? - 120um, 6el5neqlcm? 1
c [ ¥4+ 200um, 4e15neg/cm?  -JB- 120um, 1.5€16ne4/cm? c [ -®1- 200um, 4e15neg/cm? Pt 120um1,5€15ﬂgqlcmz ]
@ 80 ) B @ 80 : -
S 200um, 6e15ngg/cm’ S| 200um, 6e15ne4/cm’ %—E ]
£ | E ot P ]
oL w L ]
o 60 o 60 N
o + o .
=4 2
@ o -
St S r
5 4o o5 4or
O 2 L
=1 =
[SH 5 L
<L o |
S 201 © 201
o - &) b i

ol Lot v v i

10° 107 107 103 10° 107 2 103
60°C Annealing Time [min] 60°C Annealing Time [min]
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Annealing behavior: Charge collection

CMS

= No decrease of charge at 800V for the 120 pm sensors

= Saturation/ increase again for higher fluences of the thicker sensors

= Electric field effects: As this is only present at higher voltages, it
hints to the onset of some charge multiplication due to high electric

fields - Ongoing study, needs to be confirmed with further
measurements
Charge collection efficiency: 800V Charge collection efficiency: 120 pm sensors
< 1001 T T T T < 1001 T T T T i
e L g i - % i
80 - 80 A

2 8o % 2 87 Jee: ﬂmﬂ% 1
& E %= = Y ]
w L w L ﬂ%ﬂ .
g aoj % 60? — % XX 33?
& 5 5,
< L e L 4
O O ol e ]
j r 13 r 7
S ot S ot
2 [ - 300um, 2e15n.4/cm? 200um, 8e15nge/cm? < r
8 205 300um, 4el5nq5/cm? - 120um, 6el5nce/cm? 8 20?«%' 6e15neg/cm?, 400V -BR- 1.5e16ne4/cm?, 400V il

| - 200um, 4e15ne/cm?  JBl- 120um, 1.5e16neq/cm? | -+ 6e15ne4/cm?, 600V 1.5e16neq/cm?, 600V 4

L 200um, 6e15n./cm? L 6e15ne4/cm?, 800V 1.5e16neq/cm?, 800V 4

0 \\H\H\u L \\\HH\] Lol Lol L \\\HH\Q L \\\HH\] Lol Lol T
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Dotted lines: Expected charge for 50% efficiency
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Ongoing works = @

= Fits to access leakage current annealing time constant once enough
data is recorded - fluence variation might pose an issue for the fits

= Fits to extract beneficial and reverse annealing time constants (CV)
- need for more data during reverse annealing for both parameters -
limited data sets for saturation voltages might pose an issue for the fits

= Extraction of scaling factors between annealing temperatures for
both beneficial and reverse annealing™*

= Comparison of the maximum charge increase during beneficial
annealing for different temperatures*

= Comparison of the extracted minimum from CV measurements and
maximum in charge collection at different temperatures*

= Comparison of proton and neutron irradiation damage: Proton
irradiation campaign planned

*once enough data is recorded for lower temperatures
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Conclusions > @

= Ongoing broad annealing study covering a fluence range of
2el5 neq/cm2 to 1.5e16 neq/cm2 at 3 annealing temperatures:
6.5°C, 20°C and 60°C

= |V, CV and Charge Collection measurements done for each step

= Observed expected behaviour:

= Leakage current increase with fluence, decrease with annealing

= Charge collection decrease and saturation voltage increase with
fluence

= Beneficial annealing: Charge increase, saturation voltage decrease

= Reverse annealing: Charge decrease, saturation voltage increase

= Further results, including the extraction of annealing time constants
and scaling factors are expected within the upcoming months
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CMS

Irradiation at JSI Ljubljana

= Well established irradiation site used by RD50 community
= Same irradiation channel used for all test structure irradiations

= Estimation of fluence precision: within £10%
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Hamburg model

CMS

Change of effective doping concentration with respect to before annealing:

—

sk
:g | Ny =gy Qg
=
z = = - Ne L
<, i 2Py |

Neo
0

i i0 00 1000 10000
annealing time at 60°C [min]

ANgsr = Negrg — Negr ()

Long term reverse annealing

Ny (t) = gy Peg(1 —exp (—t/Ty)
Build-up of acceptors during long-
term annealing - first order process

Ne(t) = Na(t) + Ne + Ny (t)

Short term annealing

Na(t) = gaq>eq exp (—t/7,)

First order decay of acceptors
introduced (proportional to ®)

during irradiation

Stable damage

Ne = NCO(]-_eXp (_C¢eq))+gc¢eq
Introduction of stable acceptors and
incomplete "donor removal"

M.Moll, Bethe Forum on

March 27, 2024

Bulk radiation tolerance and annealing studies

Detector Physics 2014



Initial results: Charge collection M @

= Higher charge at 800V than at 600V (Slide 9) as expected
= 120um sensors stay above 50% efficiency up to 1.5e16 nm/cm2

= Slightly larger spread between sensors

Charge collection efficiency: 800V
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Charge collection: 800V

=
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Dotted lines: Expected charge for unirradiated sensors/ 50% efficiency
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Ch ison/Set lidati y @
Comparison of measurements at 600V after 80min annealing in two different setups
Ok T A RS ) T = 300um, Partidulars 300um, 55D
= F El 1000 =& 200um, Particulars 200um, 55D_]
g r 300um, SSD 3 300um, Particulars g =K 120um, Particulars ¥~ 120um, SSD
© 120 200um, SSD %= 200um, Particulars ] 9 gk 3

< t —>¢- 120um, SSD K- 120um, Particulars 4 2
o L B =
100 4 W ogob B
21 1 e ® O %
I ]
9] r 1 =
g 80— — _fg 70 4
5 o = ]
o * 1 2
60 * B ]
[ 17 8
x - i 501 ¥ X !
a0f > x 4 3 T
L 4 O *
L " * ] 401 3
201 ‘1‘0‘15 L L Y ‘1‘0‘]5 L L ] L ‘1‘0‘15 L L L ‘1‘0“5 L n n
Fluence [neq/cm?] Fluence [neq/cm?]

= Dotted lines represent unirradiated sensor measurements
= Results agree well within uncertainties between SSD and Particulars setups

= Measurement series used to validate a new Particulars-Setup as new
standard IV/CV/TCT setup for upcoming campaigns
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. . . cMS
Annealing behavior: Charge collection
= 20°C annealing
= Expected increase of charge during beneficial annealing
= Start of decrease of charge during reverse annealing (ongoing
measurements!)
= The maximum is harder to extract than for 60°C annealing -
between 400-600h (16-25d)
= At 800V, for 120pum sensors no clear decrease
Efficiency at 400 V Efficiency at 800 V
gl F B! 300um,2‘515ncq/cm2 2(‘)0um,89]5ncqlcm1 gmc ! !
a [ 300um, 4el5n/icm? - 120um, 6e15ne,/cm? 3 &
1#1- 200um, 4e15nc,/cm?  -JBl- 120um, 1.5e16n.q/cm? - ‘ii‘ ,ii
-§ 8or 200um, 6e15neg/cm? 7 _§ 801 - kG 1 g
L N i L Mﬁf i
o 60 T A o 60 = =
t = E =T
5 x g L EEERL
5 aof * B S 40 S yi‘* ]
® Ot N e
3l _ " g
é r L 3 '*’*"“Qk*_* é - 300um, 2€15n,/cm? 200um, 8e15n,/cm?
S 20— * ] S 201" 300um, de15ne/cm? - 120um, 6e15neg/cm? 7
L - 200um, 4e15n,/cm? - 120um, 1.5e16ncq/cm?
L 200um, 6e15ncq/cm?®
| | | 0 | |
10T 102 103 104 10! 102 103 10%
20°C Annealing Time [h 20°C Annealing Time [h
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Annealing behavior: Charge collection

CMS

= 6.5°C annealing

= Expected increase of charge during beneficial annealing

= No clear start of decrease yet (ongoing measurement)

= Large uncertainty of the maximum beneficial annealing time
(uncertain in-reactor annealing correction) - not clearly visible yet

Efficiency at 400 V Efficiency at 800 V
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5 r 300um, 4e15n./cm? -} 120um, 6e15n.4/cm? a r 7]
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Saturation voltage vs fluence

= Small variance (10%) in extracted values

CMS

= In agreement with expected fluence variation (visible in leakage

current)

Saturation voltage vs fluence

Saturation voltage vs current
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Annealing behaviour: Damage parameter

CMS

= Extracted from leakage current vs fluence at each annealing step -

[
V—Olq)

= Expected course: Decrease of damage parameter with annealing time

= Limited amount of samples and fluence uncertainty: Large
uncertainties on extracted damage parameters
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