

High Field Magnets

eRMC/RMM Dipole Magnets Past, present and future

Author: J.C. Perez,

Acknolegements to: S. Izquierdo, E. Gautheron, E. Rochepault, D. Tommasini

Thursday May 16th 2024

JC Perez TE-MSC

Table of contents

- Initial strategy
- eRMC & RMM program
- Magnet design
- Coils production and magnet assembly
- eRMC tests results
- RMM magnet assembly and tests results
- Conclusion & next steps

The origin

CERN CH-1211 Geneva 23 Switzerland the Large Hadron Collider project		NC Project Document No. FCC-ST-0001 (p or Suppler/Contractor Document No. TE/BE/EN/PH EDMS Document No. Date: 2015-03-25		
Wo FUTUPI	ork Package Descript			
FOTORE CIRCOLAR COLLIDER				
MAGN	IETS TECHNOLO	OGIES		
Abstract This document describes the FCC Magnet Technologies Work Package. The objective of this WP is to identify, develop and demonstrate the technologies to manufacture the high field magnets required for the FCC-bb collider ring.				
Prepared by :	Checked by :	Approval Leader :		
Michael Benedikt (CERN) Michael.Benedikt@cern.ch Davide.Tommasini(CERN) Davide.Tommasini@cern.ch	Marta BAJKO (CERN) Amalia BALLARINO (CERN) Luca BOTTURA (CERN) Vittorio PARMA (CERN) Gija DE RIJK (CERN) Stephan RUSSENSCHUCK (CERN) Frédéric SAVARY (CERN) Jean Philippe TOCK (CERN)	Michael Benedikt <u>Michael benedikt0cern.ch</u> Frank Zimmermann Frank zimmermann@cern.ch		
	Approval List :			

Kick-off meeting held in March 2015

ORGANIZATION

The FCC magnets Technology Program is divided into 4 Tasks. The tasks will be managed by a "core team" of CERN staff within the organizati sections in the MSC Group, integrated by fellows and students as needed.

Task 0: Coordination (D.Tommasini)

- Task 1: Strand development & procurement (A.Ballarino)
- 1.1 Material R&D
- 1.2 Industrial development & procurement
- 1.3 Characterization of electromechanical performance
- Task 2: Wound conductor test facilities (J.Perez, F.Lackner)
- 2.1 Enhanced Short Model Coil (quicker lead time)
- 2.2 Impregnated wound conductor insert

Task 3: 16T RMM with 50 mm cavity (S.Izquierdo)

- 3.1 Design
- 3.2 Manufacture & Test
- Task 4: 16T Demonstrator with 50 mm aperture (D.Schoerling)
- 4.1 Design
- 4.2 Manufacture & Test

Courtesy D. Tommasini

The initial strategy

- 1) Be representative of a regular straight section, first on a small aperture, thereafter on the 50 mm FCC aperture.
- 2) Allow the exploration of a wide parameter space, in particular the assembly parameters. Ability to act, in quantity, quality and sequencing of assembly, on transversal and longitudinal compression.
- 3) Adopt an "easy" structure, to simplify the understanding of what is being done and to allow fast re-assembly.
- 4) Allow, in the same structure and with similar design, to adopt "graded" coils as a second stage.
- 5) Minimize, by design, performance limitations coming from the coil ends. We want to study the straight section.
- 6) The ends will be specifically addressed by DEMO.
- 7) Maximize the probability of being successful at the first attempt:
 - fully exploit the past and present experience, **at any level** (technicians in the design meetings);
 - every design and constructional detail discussed collegially (every Monday morning);
 - every design and constructional detail cross-validated with FE models and/or with tailored experiments;
 - pay a specific attention to every transition, in the design, the manufacture and the assembly;
 - master, as much as possible, every assembly step;
 - perform the first assembly with conservative parameters.

Courtesy D. Tommasini

eRMC & RMM program

eRMC and RMM are the base for the development of the technology needed for the 14 +T dipole program at CERN for HFM activities

eRMC

Enhanced Racetrack Model Coil 16 T midplane field

- Demonstrate field on the conductor
- Coil technology development

RMM

Racetrack Model Magnet 16 T in a 50 mm cavity

- Demonstrate field on the aperture
- Mechanics (including inner coil support)

Nb₃Sn HFM development @ CERN

OD = *Outer diameter L* = *Magnet length*

AP = Aperture $B_{ult} = Ultimate field, defined as the maximum design field for the magnet structure$

eRMC & RMM design strategy

- Demonstrate the field
 - Design based on the "available" critical current density (~20% lower than FCC target at 18 T, 4.2 K)
 - As field quality is not an objective, profit from the use of an iron pole to decrease the ratio between the field in the aperture and in the coil to ~ 1
- Study the mechanics

Strand and cable parameters

- 1 mm diameter wire, cu/sc =1
 - RRP 120/127
 - 62-64 μm
 - RRP 150/169
 - 54-55 μm©
 - 40-strand cable
 - Bare width x thickness: 20.9 x 1.82 mm
 - SS core 14 mm wide and 25 µm thick
 - Assumed growth during HT : 3% (thickness), 1% (width)

Cable insulation

- Baseline: 0.150 +0.00/-0.02 mm Mica-Glass Insulation
- Uls insulated without any particular issue.
- Good control on the insulation thickness

Thursday May 16th 2024

Magnetic design

eRMC

- Two double-layers with 45 turns each wounded around a magnetic pole
- $B_p/B_o = 1.097$

RMM

(eRMC double layers +)

- Middle double layer with 42 turns each wound around a titanium closed cavity
- Coil aperture radius = 31 mm
- Closed aperture radius = 25 mm
- $B_p/B_o = 1.097$

	Units	eRMC	RMM
Nominal current (I _{nom})	kA	13.1	11.4
Overall current density	A/mm ²	282	245
Bore field	т	15.7	16.0
Peak field at I _{nom}	т	16.0	16.2
Stored energy at Inom	MJ/m	1.5	2.1

Courtesy B. Bordini, J. Fleiter and A. Bonasia

 $^{2}1-B/B_{ss}$

Thursday May 16th 2024

JC Pere

10

Mechanical design

- Mechanical structure capable to load the magnet up to 18 T, with enough margin to perform an experimental exploration of the different parameters relevant to magnet performance.
- Critical structure components during optimization:
 - Yield strength of the iron yoke during assembly (design criteria σ_{eq_warm} < 180 MPa) and tensile strength at cold ($\sigma_{1 \text{ cold}}$ < 200 MPa)
 - After a mechanical characterization of ARMCO samples, these limits have been raised to $\sigma_{eq_warm} < 230$ MPa; $\sigma_{1_cold} < 370$ MPa)
 - Bending of the horizontal pads during bladders operation (Nitronic).

Coil production

Coil winding operation

Reacted coil

Impregnated coil

Coil instrumentation

- Quench heaters and voltage taps integrated in the so-called trace, using the same technology as for MQXF/SMC/RMC/FRESCA2...
 - Trace has been designed accounting with the possibility to install a spot heater for quench protection studies.

 Hall sensors and PCB probes have been produced, both for eRMC and RMM configuration to characterize the field.

Courtesy C. Petrone

JC Perez TE-MSC

Magnet Structure

- In order to explore different assembly parameters:
 - Full aluminum shell and half-length shell options available.
 - Aluminum and Stainless-Steel rods available for the longitudinal loading.
- A first assembly with dummy aluminum coils was done, using full length shell and aluminum rods for structure validation.
- The same configuration was later used for eRMC1 and RMM1

Mechanical assembly test (1/2)

Instrumented Aluminum Dummy Coils

Coil rotation tooling and ground insulation

Coil Pack

Shell-yoke preassembly

Mechanical assembly test (2/2)

Shell-yoke rotation

Magnet pre-assembly, including yoke keys (to be removed before the first loading step)

Magnet including axial loading system

eRMC 1a powering tests results

- eRMC1 magnet was assembled using coils #101 & #102
- The magnet reached 13.77 kA (Bp 16.5 T) pre-defined as maximum current at 1.9 K for eRMC configuration
- The magnet reached 98% of SS at 4.5 K
- Strong quench current-ramp rate dependency
- 20 A/s showed to be too high dI/dt
- Good memory after the thermal cycle: Only one training quench

Courtesy S. Ferradas & G. Willering

JC Perez TE-MSC

RMM1 magnet configuration

- Close cavity Ø 50 mm
 - L_{cavity total}: 526 mm
- L_{cavity 50 mm}: 431 mm

S2ACW S1CWT

RMM is a big dipole

RMM magnet assembly

Thursday May 16th 2024

RMM1a powering tests results

Training RMM1a

RMM 1a, b & c

- Reduction of the longitudinal rods diameter to avoid interference with the iron yoke for RMM1b assembly
- Transverse preload increase for conservative preload study
- · Most of the quenches are located in eRMC coils
- The shim thickness of eRMC coils will be increased for RMM1d assembly

JC Perez TE-MSC

Conclusion & next steps

- RMM is used for exploration of high field in the straight section of a dipole block configuration
- Field record of 16.5 T (87.5 % of the short sample limit at 1.9 K)
- No sign of conductor degradation after several assemblies and powering tests
- Next steps:
 - Study of conservative transverse preload on RMM1 on going
 - Production of 3 new eRMC coils will start in summer 2024
 - Assembly and tests of eRMC2 by end 2024
 - RMM2 will be tested during Q1_2025

Thank you for your attention!

