

Target Nb cladding R&D & Baseline Design Optimization

T. Griesemer, R. Franqueira Ximenes, M. Calviani, G. Mazzola, L. Esposito **MME:** G. Arnau Izquierdo, I. Aviles Santillana, M. Crouvizier, A. Gallifa Terricabras, S. Hoell, A.T. Perez Fontenla, A. Porret, O. Sacristan de Frutos, S. Sgobba

HI-ECN3 BDF target & target complex - initial review 29/04/2024

Baseline of BDF Final Target Design

Table 5.1: Baseline beam parameters of the BDF target operation

SY **Accelerator Systems**

éérn

Tantalum 2.5-Tungsten as Cladding for BDF

- Refractory metal
- Very resistant to multiple chemical agents
- Good corrosion resistance
- Shows good qualities to bond with BDF core materials W and TZM
- Usage as cladding material in a variety of other research facility targets e.g., ISIS, LANSCE, and KENS

What is cladding?

Why is cladding needed for BDF?

- Water-cooling can induce erosion, corrosion, and hydrogen embrittlement in TZM and W
- Layer between the water and the core material is needed to prevent direct contact with the water

How is cladding created?

- Diffusion bonding of cladding and core materials via Hot Isostatic Pressing (HIP)
- HIPing furnaces utilize high temperatures and pressure for a defined period

Advantages

SY

Accelerator Systems

- Core materials have no direct contact with water
- Reliable heat transfer from core material to water circuit

¹ LaurensvanLieshout (https://commons.wikimedia.org/wiki/File:Diffusion_welding_animation

Diffusion bonding process¹

Niobium Cladding R&D studies

SY

Accelerator Systems

Prior Ta2.5W cladding Study

Project Scope

- Comparing two Heating cycles (1200°C/150MPa and 1400°C/200MPa)
- Determining bonding quality of Ta2.5W vs Ta cladded on W and TZM, w/wo interface foil

Microstructural observations, tensile strength and conductivity measurements for some of the studied interfaces (<https://doi.org/10.1002/mdp2.101>)

SY

Accelerator Systems

layer!

Alternative Cladding Material Selection

- ➢ **Search for alternative cladding materials (Zircaloys, Nb-alloys): Nb, Nb1Zr, Nb10Hf1Ti (C103)**
	- Less activation, less decay heat
	- Refractory. Share outstanding thermo-mechanical properties of Ta and good corrosion-erosion resistance

SY

lPreliminary 'Bondability' Study of Nb alloys

▪ **Phase diagrams:**

- Good solubility of Nb and Ta with W and Mo
- No major showstoppers regarding intermetallic phases

▪ **Diffusivity**:

- Nb shows as much diffusivity into W and Mo as Ta.
- However, diffusion length is very small for the HIP time scale. \rightarrow Creep dominates bonding rather than chemical diffusion.
- **Ductility**:
	- Nb identical to Ta (ε at break >20% ASTM B393, B654)
- **Creep**

SY

Decay heat of Nb-alloys

• Decay heat calculated with **FLUKA.CERN**

NbZr cladding - Max power density per decay time

SY

Accelerator Systems

29/04/2024 T. Griesemer | HI-ECN3 BDF target & target complex - initial review

FLUKA

Nb-alloys cladding R&D

vears

vear:

SY **Accelerator Systems**

CERN

Safety Factor under Operational Conditions

No Residual stress considered here!

Material Pw [kW] Max. Τ σ $_{\sf vw}$ **| <u>σ₁</u> [°C] [MPa] σy | UTS @ 200 °C [MPa] Safety factor B**
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK Ta2.5W 14.4 ¹⁵⁶ ¹²⁷ ²²⁷ **²** TZM 170 123 460 **4** Pure Nb $\begin{array}{|c|c|c|c|c|}\n12.3 & 133 & 79 & 149 & 2\n\hline\n\end{array}$ TZM <mark>14.8 165</mark> 120 460 4 Nb1Zr 12.3 ¹³⁶ ⁷² ¹⁷⁰ **2.5** TZM 166 121 460 **4** Nb C103 12.4 138 63 254 4 TZM 167 121 460 4 **B**
 BLOCK
 BLOCK
 BLOCK
 BLOCK Ta2.5W 19.6 ¹¹¹ ⁸⁰ ²²⁷ **³** W 144 <u>96 142</u> 1.5 Pure Nb 20.3 ¹¹¹ ⁷⁰ ¹⁴⁹ **²** W 2002 155 120 142 1 Nb1Zr 20.2 ¹¹⁴ ⁷² ¹⁷⁰ **2.5** W 156 117 142 **1** Nb C103 20.2 ¹¹⁶ ⁷¹ ²⁵⁴ **3.5** W 157 116 142 **1**

UTS & σ_1 for W, Yield strength & von Mises stress for TZM, Ta2.5W, Nb-alloys **Clad Block #4 TZM//Nb1Zr Core Block #4 TZM//Nb1Zr Core Block #14 W//Nb1Zr** Material properties from BDF prototype Target batch characterization

SY

Accelerator Systems

Unit: MPa

Min: 13.71

72.276

65.768

59.261

52.754

46.246

39.739

33.232

26.724

20.217

13.71

Time: 1

67.923

59.075

 \blacksquare 41.378

50.226

29/04/2024 T. Griesemer | HI-ECN3 BDF target & target complex - initial review

 -10.3

 -22.2

 -34.2

 -46.2

Consideration of Residual Stresses under Operation

- Blocks are HIPed and during cool-down process **residual stresses** build up
- Material specific **'lock-in' temperature** of 500 °C is considered based on [1] to simulate the residual stresses
- ➢ Residual stress for Nb1Zr in the same order of magnitude as Ta
	- \rightarrow still far from elongation at break

✓

Residual stresses after HIPing (lock-in temperature 500 °C) and beam impact of Block #14; without residual stress is presented in parentheses

[1] D. Wilcox et al. "Stress levels and failure modes of tantalum-clad tungsten targets at ISIS". In: J. Nucl. Mater. 506 (Nov. 2017), pp. 76–82.

SY

Material characterization (Nb, Nb1Zr, C103)

 400

- **.** Investigations showed that pure Nb was not fully annealed
- **EXECT:** Difficulties procuring Nb alloys from CERN member states
- In general, multiple issues occurred from Nb alloys which were procured from Chinese suppliers
	- → Importance of **Material Certificate 3.1** and knowledge about the manufacturing process / parameters

EDMS 2752630

✓

SY

Nb alloy cladding R&D - Prototype Capsules

SY CÉRN **Accelerator Systems**

Thermo-mechanical Testing at the Interface

Nb R&D Study Conclusions

- **Decay Heat** ✓
- **Radio Protection** \rightarrow Nb-94 (Half-life of 2000 years) \rightarrow Long-term storage / dismantling ✗
	- Thermal and mechanical properties (Nb1Zr)
	- Strength of bonding interfaces (Nb1Zr)
- Thermal contact resistance of bonding interface ✓
	- Safety factor under operational conditions (simulations)
	- Residual stresses under operational conditions (simulations)
	- Bondability and manufacturing (prototype capsules)
		- \rightarrow LOCA of tantalum-cladded BDF not as critical as expected
		- → Lower cost Nb alloys may have **higher dismantling/waste disposal cost** after irradiation due to long-lived isotopes

SY

Accelerator Systems

✓

✗

✗

✓

✓

W Optimization Study of the Baseline Design (in 2023)

SY

Idea: Non-diluted Beam

- **BDF** sweep is using a beam sigma of $(x,y) = (8 \text{ mm}, 8 \text{ mm})$
- Idea for a no-sweep beam came as a mean to simplify the optics and eventually reduce the number of fatigue cycles in the target \rightarrow 75 % less per pulse
- **First investigation by Giuseppe M. & Luigi E. (SY-STI)**
	- Ta2.5W-cladded target, same spill length and ppp parameters as CDS report
	- Non-diluted beam impact on the center with different spot sizes
- **Investigation by Rebecca R. & Mathew F. (BE-ABT)**
	- Using the current optics in ECN3
	- Concluded non-diluted beam for the FCN3 beam line of **(x,y) = (~34.9mm, 33.7mm)**

SY

Material Safety Margins Beam Sweep vs. Non-diluted Beam

SY

Accelerator Systems

Non-diluted Beam vs. Sweep Beam

Advantages of non-diluted Beam Impact

- Lower stresses in the critical blocks
	- \rightarrow Higher safety factors
- **Longer lifetime due to less material fatigue** (4 sweep turns vs. 1 impact during in one pulse)

 \triangleright From thermo-mechanical point of view: \rightarrow Only positive effects

➢ **Potential to utilize more tungsten?**

SY

Replacing the last TZM Block(s) with W

- Can we replace the last TZM Blocks #13 or #12 with W?
- Purpose: Increase the amount of W by replacing TZM to get a denser target
- Simulations performed with non-diluted Beam (35 mm) + Ta2.5W cladding

SY

Replacing the first TZM Block with W

- Can we replace the first TZM Block #1 with W?
- Simulations performed with non-diluted Beam (35 mm) + Ta2.5W cladding

➢ **#1 W with 40 mm thickness**

SY

Combining Block #1 W and Block #13 W

- **Safety margin is high enough** when replacing the TZM Blocks #1 and #13 with W
- Same nuclear interaction length as baseline (12) with more W interaction length 780 mm \rightarrow 885 mm
- Improves the physic performance of the target

 \rightarrow Denser and shorter target is feasible when using Block #1 W (40 mm) & Block #13 W (25 mm)

SY

Conclusion & Outlook

- Robust BDF baseline design with Ta2.5W-cladded Blocks
- Niobium alloys also show good results \rightarrow But are Nb-isotopes a showstopper?
- Non-diluted beam shows sufficient safety factor and causes lower material fatigue
- Possibilities to optimize the current baseline design by replacing TZM Blocks with W and create a denser and shorter target with the same nuclear interaction length

➢ More room for optimization?

- ➢ Possible to remove the water channels in direct contact with the blocks?
	- \rightarrow Eliminating the need of cladding the blocks
	- → Allowing **less conservative material failure criteria**

SY

home.cern

BDF Materials vs. Common Metals

Refractory Metals

Tungsten W

Common Metals

Stainless Steel (316L)

- T. Conductivity [W/(m·K)]: 15
- Young Modulus [GPa]: 197

-
- Young Modulus [GPa]: 210

Tantalum Ta

Copper (OFE-Cu C10200)

- Density [g/cm3]: 8.9
- Melting point [°C]: 1080
- T. Conductivity [W/(m·K)]: 395
- Young Modulus [GPa]: 122

Aluminium (Al AW-5083)

¹Thermal Conductivity and Youngs Modulus at RT Source: Rui Franqueira Ximenes (TCD Extended Section Meeting, March 2022)

SY

Accelerator Systems

29/04/2024 T. Griesemer | HI-ECN3 BDF target & target complex - initial review

• Melting point [°C]: 2623