

Target and target complex

- The Window to Hidden Sectors! -

The game changer on DM (1998 – 100 Myears)

Galaxy clusters after collision (Stars 2% of total mass)

Mass by gravitational lensing

v_{rel} ~4700 km/s

6° 58' 4.2"

X-ray emission from hot intracluster plasma (5-10% of total mass)

Most mass is intergalactic

Dark matter clouds 80-85%

Target and target complex review, CERN – 29 April 2024

R. Jacobsson

The game changer on DM (1998 – 100 Myears)

Galaxy clusters after collision (Stars 2% of total mass)

Mass by gravitational lensing

v_{rel} ~4700 km/s

X-ray emission from hot intracluster plasma (5-10% of total mass)

→ Rules out modified gravity for DM
→ DM massive particles to avoid blowing out small galactic structures
→ DM is non-self-interacting above ^σ/_m ~1cm²g⁻¹

80-85%

Dark matter clouds

Target and target complex review, CERN – 29 April 2024

Most mass is intergalactic

R. Jacobsson

Motivation for intensity and energy

Example of FIP physics case

0.5

5

m_N [GeV]

10

→ Maximize production of γ , q/g, c, bTarget and target complex review, CERN – 29 April 2024

50

Motivation for intensity and energy

Example of FIP physics case

Target and target complex review, CERN – 29 April 2024

R. Jacobsson

m_N [GeV]

Protons

 \rightarrow

SHiP: two-in-one

→ BDF luminosity with the optimised target and $4x10^{19}$ protons on Mo target per year currently available in the SPS

→ BDF@SPS $\mathcal{L}_{int}[year^{-1}] = \underline{>4 \times 10^{45} \text{ cm}^{-2}}$ (cascade not incl.)

= <u>10⁴² cm⁻²</u>

E.g. ~ 2×10^{17} charmed hadrons (>10 times the yield at HL-LHC)

Target and target complex review, CERN – 29 April 2024

 \rightarrow HL-LHC $\mathcal{L}_{int}[year^{-1}]$

Physics FoM of the target

 $N_{dec}(x) = N_0 e^{-x/\gamma \tau}$ $N_{int}(x) = N_0 e^{-x/\lambda_{int}}$

- Target design for signal/background optimisation:
 - *"induce hard interactions of all protons and secondaries in the densest possible medium":*
 - Very thick \rightarrow use full beam and secondary interactions (12 λ)
 - High-A/Z \rightarrow maximise production cross-sections
 - Short $\lambda \rightarrow$ stop pions/kaons before decay
- Signal
 - Proton DIS

 $\sigma_{pN} \propto \sigma_{pp} A^{2/3}$

- Electromagnetic processes $\sigma_{QN} \propto \sigma_{Qp} Z^2$
- Background (μ , ν from π , K, and neutrons)
 - *π*, *K* decay: *cτγ*(*π*)=7.8γ m, cτγ(K)=3.7γ m
 - Hadronic interaction $\lambda_{int}(\pi) = \frac{1}{n\sigma_{inel}} = \frac{A}{\sigma_{\pi p}A^{2/3}N_a\rho} \propto A^{1/3}$
 - (Electromagnetic)

 $X_0 \propto \frac{A}{Z^2}$

- Muon shield will suppress muon flux by six orders of magnitude
- Neutrino background suppressed by vacuum/helium in decay volume

Physics FoM of the target

- No simple metric but different target configurations can be quite easily compared for fast exploration
- Guidelines:
 - Highest density is most important
 - Highest density is most important in core of shower, i.e. first interaction lengths!...
 - Shower containment for hadronic comportant is important up to a radius where π/K "miss detector"
 - Water gaps are less critical as long as negligible contribution to combined interaction length
 - Beam spot size and sweep radius are secondary, mostly important to check containment
 - Optimise explicitly for signal, background optimisation is implicit (perhaps a longer target...)
- Use FLUKA for checking performance of different options
 - $p, \pi, K, \mu, n(x, y, x, \bar{p})$ to check rates and hadronic shower containment at scoring planes per interaction length

Target complex – SHiP interface

- Hadron stopper magnetization, first muon shield magnet, surrounding shielding blocks \odot
 - Ongoing discussion about possibility of moving first muon shield magnet into the hadron stopper

Hadron stopper magnetisation

First fully developed concept by RAL, now taken by TE-MSC

- · First concept based on classical coil from aluminium with helium gas cooling
- Longitudinal extent of coil/magnetisation to be revisited together with muon shield studies (9-12 months)

10

Overall SHiP operational schedule

- 2031-2032: Start at lower intensity for commissioning and crank up to 4E13 before LS4
- Yearly data taking run with muon shield off at low intensity for calibration/alignment
 - Run with no beam sweep?
- Worth considering spills of 7E13, annually > 4E19, if all goes well....