Baryon Number Violation Involving Tauons

[JH & Dima Watkins, 2405.18478]

Julian Heeck

DISCRETE 2024, Ljubljana

12/3/2024

Why baryon number violation?

• Tests prediction/symmetry of Standard Model:

- Testable signatures in many extensions (GUTs, SUSY,...).
- Needed for spontaneous generation of matter asymmetry.

BNV is special: *most sensitive* probe of new physics because it probes decay of **stable** [*sic*] matter!

(LNV & LFV have to use unstable particles.)

[Recent review: Perez, Pocar, **JH** *et al.*, arXiv:2208.00010]

See also talks by Vasja Susič & Patrick Stengel.

DISCRETE '24

Best example: proton decay

- First suggested in GUTs, predict $\tau_p \sim m_X^4/m_p^5$. [Pati & Salam '73; Georgi & Glashow, '74]
- Violates $\Delta B = \Delta L = \Delta L_e = 1$.
- *All matter* contains protons, easy to observe for long times.
- Current best: Super-KamiokaNDE.
 - 50k ton water tank & 13k PMTs for Cherenkov radiation.
 - Running for two decades, observing 10³⁵ protons:

 $au({
m p}
ightarrow{
m e}^+\pi^0)>10^{34}\,{
m yr}.~~$ [Super-K, 2010.16098]

– Implies $m_X > 10^{15}\,\text{GeV}!$

Best example: proton decay

- Super-Kamiokande: $\tau(p \rightarrow e^{+}\pi^{0}) > 10^{34} \, \text{yr}.$ $m_{X} > 10^{15} \, \text{GeV!}$
- Similarly: $\tau(p \rightarrow \mu^+ \pi^0) \gtrsim 10^{34} \text{ yr}, \quad \tau(n \rightarrow \bar{\nu}_{e,\mu,\tau} \pi^0) \gtrsim 10^{33} \text{ yr}.$ [Super-K, '13] What about τ^+ ?

u

u

Х

d

• Tauon heavier than proton:

 $\mathsf{BR}(\tau\to\bar{\mathsf{p}}\pi^0)<10^{-5}~\text{[Cleo, '99]}~~\Rightarrow~\mathsf{m}_{\mathsf{X}}>10^3\,\text{GeV}.$

 Tauon limits weaker, but probe *different* couplings; could even be dominant ΔB channel due to flavor symmetry.

Proton decay = lepton flavor violation

 $\Delta B = \Delta L = 1$

Proton decay = lepton flavor violation

 $\Delta B = \Delta L = 1$

Proton decay = lepton flavor violation

 $\Delta B = \Delta L = 1$

Currently being probed: Old results: Doable:

 $\Delta B = \Delta L = 1$

Currently being probed: Old results: Doable:

$\Delta B = \Delta L_{\tau} = 1$ operators

- d=6 operators: $y^1 duQL_{\tau} + y^2 QQQL_{\tau} + y^3 QQu\tau_R + y^4 duu\tau_R$
- All induce $\tau^- \to \bar{p}\pi^0, \bar{p}\eta$.
- But y¹ and y² immediately give $n \to \bar{\nu}_{\tau} \pi^{0}, \bar{\nu}_{\tau} \eta$: $\tau(n \to \bar{\nu}_{\tau} \pi^{0}) \simeq 10^{-8} s \left(\frac{10^{-5}}{BR(\tau \to \bar{p}\pi^{0})}\right) \simeq 10^{33} yr \left(\frac{3 \times 10^{-54}}{BR(\tau \to \bar{p}\pi^{0})}\right)$
- Neutron decays into tau neutrinos give far better limits.

$\Delta B = \Delta L_{\tau} = 1$ operators

- d=6 operators: $y^1 duQL_{\tau} + y^2 QQQL_{\tau} + y^3 QQu\tau_R + y^4 duu\tau_R$
- All induce $\tau^- \to \bar{p}\pi^0, \bar{p}\eta$.
- But y¹ and y² immediately give $n \rightarrow \bar{\nu}_{\tau} \pi^{0}, \bar{\nu}_{\tau} \eta$:

$$\tau(\mathbf{n} \to \bar{\nu}_{\tau} \pi^{0}) \simeq 10^{-8} \,\mathrm{s}\,\left(\frac{10^{-5}}{\mathrm{BR}(\tau \to \bar{\mathbf{p}}\pi^{0})}\right) \simeq 10^{33} \,\mathrm{yr}\,\left(\frac{3 \times 10^{-54}}{\mathrm{BR}(\tau \to \bar{\mathbf{p}}\pi^{0})}\right)$$

- Neutron decays into tau neutrinos give far better limits.
- How about y^3 and y^4 ? Right-handed tauons \rightarrow no ν_{τ} .
 - Can still go through off-shell tauon: $p \longrightarrow \chi \overline{\tau} \overline{\nu_{\tau}}$

$$\tau(\mathbf{p} \to \pi^+ \bar{\nu}_{\tau}) \simeq \frac{16\pi (m_{\mathbf{p}}^2 - m_{\tau}^2)^2}{f_{\pi}^2 G_{\mathsf{F}}^2 m_{\mathbf{p}}^3 m_{\tau}^2 \beta^2} \left| \mathbf{y}^3 - \mathbf{y}^4 \right|^{-2} \simeq 6 \, \mathrm{s} \, \left(\frac{10^{-5}}{\mathsf{BR}(\tau \to \bar{\mathbf{p}}\pi^0)} \right)$$

11

[Hou, Nagashima, Soddu, PRD '05][see also Crivellin & Hoferichter, PLB '23, for $p \rightarrow \pi^0 e^+ v v$ etc, which are weaker.]DISCRETE '24Julian Heeck

$\Delta B = \Delta L_{\tau} = 1$ operators

- d=6 operators: $y^1 duQL_{\tau} + y^2 QQQL_{\tau} + y^3 QQu\tau_R + y^4 duu\tau_R$
- Set $y^1 = y^2 = 0$ and $y^3 = y^4$ to eliminate nucleon decays?
- Chiral perturbation theory: [Claudson, Wise, Hall, '82]

$$y^{3}QQu\tau_{R} = y^{3}\beta \left[p\tau_{R} - \frac{i\pi^{0}}{\sqrt{2}f_{\pi}}p\tau_{R} - \frac{i\pi^{+}}{f_{\pi}}n\tau_{R} + \frac{i\eta}{\sqrt{6}f_{\pi}}p\tau_{R} + \dots \right]$$
$$y^{4}duu\tau_{R} = -y^{4}\beta \left[p\tau_{R} - \frac{i\pi^{0}}{\sqrt{2}f_{\pi}}p\tau_{R} - \frac{i\pi^{+}}{f_{\pi}}n\tau_{R} - \frac{i\sqrt{3}\eta}{\sqrt{2}f_{\pi}}p\tau_{R} + \dots \right]$$

• $y^3 = y^4$ only eliminates *two-body* nucleon decays:

DISCRETE '24

$\Delta B = -\Delta L_{\tau} = 1$ operators

- d=7 operators: $z^1 dud\bar{H}\bar{L}_{\tau} + z^2 QQd\bar{H}\bar{L}_{\tau} + z^3 ddQ\bar{H}\bar{\tau}_R + z^4 dddH\bar{L}_{\tau}$
- z^1 and z^2 immediately give $n \rightarrow \nu_{\tau} \pi^0, \nu_{\tau} \eta$.
- z^3 and z^4 have s quark and no v_{τ} :

$$\tau(\mathbf{n} \to \mathbf{K}^{+} \pi^{-} \nu_{\tau}) \simeq 7000 \, \mathrm{yr} \, \left(\frac{7 \times 10^{-8}}{\mathrm{BR}(\tau \to \Lambda \pi^{-})}\right)_{z^{4}=0}$$

$$\tau(\mathbf{n} \to \mathbf{K}^{+} \pi^{-} \nu_{\tau}) \simeq 2 \times 10^{5} \, \mathrm{yr} \, \left(\frac{7 \times 10^{-8}}{\mathrm{BR}(\tau \to \Lambda \pi^{-})}\right)_{z^{3}=0}$$

Only old inclusive limits: [**JH** & Takhistov, PRD '20]

[Belle, '06]

How about dss operator?

For ΔB with top quarks, see talk by Antonio Rodríguez-Sánchez.

DISCRETE '24

$\Delta B = -\Delta L_{\tau} = 1$ operators

- d=7 operator: dssH $\bar{L}_{\tau} \propto \bar{\tau} \Xi^- + \dots$
- No neutrinos, two s quarks.
- Two-body tau decays but five-body nucleon decays!
- Off-shell τ and K, double suppression by G_F :

$$\tau(\mathbf{p} \to \mathbf{K}^+ \mu^+ \nu_\mu \pi^- \nu_\tau) \simeq \mathcal{O}(10^{28}) \operatorname{yr} \left(\frac{10^{-8}}{\mathrm{BR}(\tau \to \Xi\pi)} \right)$$

[JH & Watkins, 2405.18478]

• ΔB tau decays most competitive in hyperon channels.

New channels for Super-K & Belle II

 $\blacktriangleright N\pi$

More $\Delta B = \Delta L = 1$ operators

- d=10 operator: $QQu\ell\bar{\ell}LH/\Lambda^6 \rightarrow u_Ld_Lu_R\overline{\tau_R}\ell_{\alpha}\ell_{\beta}v/\Lambda^6$.
- For $\{\alpha, \beta\} \in \{e, \mu\}$: different lepton flavor content than d=6, not related to d=6 operators. [Hambye & JH, PRL '18]
- Still proton decays $p \rightarrow \ell^+ \ell'^{\pm} \pi^{\mp} \nu_{\tau}$ more sensitive:

$$\tau(\mathbf{p} \rightarrow \mathbf{e}_{\alpha}^{+} \mathbf{e}_{\beta}^{+} \pi^{-} \nu_{\tau}) \simeq 2 \times 10^{4} \text{ yr} \left(\underbrace{\frac{3 \times 10^{-8}}{\mathsf{BR}(\tau^{-} \rightarrow \mathsf{pe}_{\alpha}^{-} \mathbf{e}_{\beta}^{-})}}_{\text{Only old inclusive limits:}} \right) \begin{bmatrix} \mathsf{JH} \& \mathsf{Watkins}, \\ \mathsf{2405.18478} \end{bmatrix}$$

 Common pattern: Nucleon decays into ν_τ far more sensitive than τ decays, but lacking exclusive or inclusive searches at Super-K. Could easily improve bounds by orders of magnitude! [JH & Takhistov, PRD '20]

DISCRETE '24

Summary

- $\Delta B = 1$ decays are our most sensitive probe of new physics via clean two-body decays into electrons, muons, neutrinos.
- $\Delta B = 1$ with tauons more involved: [JH & Watkins, 2405.18478] $\tau^- \rightarrow \bar{p}\pi^0$ clean, but can't compete with $p \rightarrow \pi^+ \nu_{\tau}$ through virtual tau.
- Finetuning can't *eliminate* nucleon decays, but can push them into *untested* multi-body channels.
- Don't be discouraged to look for ΔB tau decays!
- Be encouraged to broaden nucleon decay searches.

Explore every corner of our lamppost!

Backup

Standard Model Effective Field Theory

- $d_{\min} \geq \frac{9}{2} |\Delta B| + \frac{3}{2} |\Delta L|$. [Kobach '16; Helset, Kobach, '19]
- BNV sensitive to d >> 6, unlike any other experiment.
- ΔB dominated by d = 6, unless forbidden by symmetry! [Weinberg, '80]
- Some symmetry/hierarchy has to exist, otherwise $\Lambda\sim \langle H\rangle^2/M_\nu\sim 10^{14} GeV ~~ Fast ~~ Fast ~~ proton~~ decay!$

DISCRETE '24

 $\mathsf{U}(1)_{\mathsf{B}} \times \mathsf{U}(1)_{\mathsf{L}} \times \mathsf{U}(1)_{\mathsf{L}_{\mu}-\mathsf{L}_{\tau}} \times \mathsf{U}(1)_{\mathsf{L}_{\mu}+\mathsf{L}_{\tau}-2\mathsf{L}_{\mathsf{e}}}.$

DISCRETE '24

All 38 two-body nucleon decay modes

Channel	$\Gamma^{-1}/10^{30}{ m yr}$	Year
$p \to e^+ + \gamma$	41000	2018
$p \to e^+ + \pi^0$	16000	2016
$p \to e^+ + \eta$	10000	2017
$p \to e^+ + \rho^0$	720	2017
$p \to e^+ + \omega$	1600	2017
$p \to e^+ + K^0$	1000	2005
$p \to e^+ + K^{*,0}$	84	1999
$p \to \mu^+ + \gamma$	21000	2018
$p \to \mu^+ + \pi^0$	7700	2016
$p \to \mu^+ + \eta$	4700	2017
$p \to \mu^+ + \rho^0$	570	2017
$p \to \mu^+ + \omega$	2800	2017
$p \to \mu^+ + K^0$	1600	2012
$p \rightarrow \nu + \pi^+$	390	2013
$p \to \nu + \rho^+$	162	1999
$p \rightarrow \nu + K^+$	5900	2014
$p \rightarrow \nu + K^{*,+}$	130	2007

Many of these limits are decades old.

$n \to e^- + \pi^+$	65	1988
$n \to e^- + \rho^+$	62	1988
$n \to e^- + K^+$	32	1991
$n \to e^- + K^{*,+}$		
$n \to e^+ + \pi^-$	5300	2017
$n \to e^+ + \rho^-$	217	1999
$n \to e^+ + K^-$	17	1999
$n \to e^+ + K^{*,-}$		
$n \to \mu^- + \pi^+$	49	1988
$n \to \mu^- + \rho^+$	7	1988
$n \to \mu^- + K^+$	57	1991
$n \to \mu^+ + \pi^-$	3500	2017
$n \to \mu^+ + \rho^-$	228	1999
$n \to \mu^+ + K^-$	26	1999
$n \rightarrow \nu + \gamma$	550	2015
$n \rightarrow \nu + \pi^0$	1100	2013
$n \rightarrow \nu + \eta$	158	1999
$n \to \nu + \rho^0$	19	1988
$n \rightarrow \nu + \omega$	108	1999
$n \rightarrow \nu + K^0$	130	2005
$n \to \nu + K^{*,0}$	78	1999

[JH & Takhistov, PRD '20]

DISCRETE '24

Underground detectors

	Super-K	JUNO	Hyper-K	DUNE
Location	Japan	China	Japan	USA
Geometry	Cylinder	Sphere	Cylinder	Cuboid (4 modules)
	42m height \times 39m diameter	35.4m diameter	$60m$ height \times 74m diameter	$58.2\mathrm{m}$ \times 14.0m \times 12.0m
Detector Material	Water	LABs	Water	Liquid Argon
Working Principle	Cherenkov	Scintillation	Cherenkov	Scintillation
Fiducial Mass	22.5kt	20kt	187kt	$40 \mathrm{kt}$
# protons	$8 imes 10^{33}$	7×10^{33}	6×10^{34}	1×10^{34}
# neutrons	$6 imes 10^{33}$	5×10^{33}	5×10^{34}	1×10^{34}
Approx. Start Year	1996	2024	2027	2028

[adapted from Dreiner ++, 2403.18502]

- Hyper-K has generically the best sensitivity, will probe up to $au_{\rm p}({\rm p}
 ightarrow {\rm e}^+ \pi^0) \sim 10^{35}\,{
 m yr}.$ [Hyper-K, 2203.02029]
- JUNO & DUNE could be useful for specific channels.