β decays as probes for fundamental physics

DISCRETE 2024, Ljubliana

Dec 2024

Martín González-Alonso

IFIC, Univ. of Valencia / CSIC

• Then the **EW theory** and the SM came...

• Next?

• Beta decay = precision field (TH + EXP)

• SM: nuclear physics, hadronic physics (g_A), particle physics (V_{ud}).

• Then the **EW theory** and the SM came...

• Next?

- Beta decay = precision field (TH + EXP)
- SM: nuclear physics, hadronic physics (g_A), particle physics (V_{ud}).
- BSM!

• Then the **EW theory** and the SM came...

• Next?

- Beta decay = precision field (TH + EXP)
- SM: nuclear physics, hadronic physics (g_A), particle physics (V_{ud}).
- BSM!

• Theoretical framework?

• Specific NP model vs Effective Field Theories ("the same old approach" reloaded)

Which EFT?

- How to compare different nuclear beta decays?
 - → Effective Lagrangian at the **hadron** level!

$$\begin{aligned} -\mathcal{L}_{n \to p e^- \bar{\nu}_e} &= \bar{p} n \left(C_S \bar{e} \nu_e - C'_S \bar{e} \gamma_5 \nu_e \right) \\ &+ \bar{p} \gamma^\mu n \left(C_V \bar{e} \gamma_\mu \nu_e - C'_V \bar{e} \gamma_\mu \gamma_5 \nu_e \right) \\ &+ \frac{1}{2} \bar{p} \sigma^{\mu\nu} n \left(C_T \bar{e} \sigma_{\mu\nu} \nu_e - C'_T \bar{e} \sigma_{\mu\nu} \gamma_5 \nu_e \right) \\ &- \bar{p} \gamma^\mu \gamma_5 n \left(C_A \bar{e} \gamma_\mu \gamma_5 \nu_e - C'_A \bar{e} \gamma_\mu \nu_e \right) \\ &+ \bar{p} \gamma_5 n \left(C_P \bar{e} \gamma_5 \nu_e - C'_P \bar{e} \nu_e \right) + \text{h.c.} \end{aligned}$$

- How to compare with e.g. pion decays?
 - → Effective Lagrangian at the **quark** level!

$$\mathcal{L}_{d \to u \ell^- \bar{\nu}_{\ell}} = -\frac{4G_F V_{ij}}{\sqrt{2}} \left[\bar{\ell}_L \gamma_{\mu} \nu \cdot \bar{u} \gamma^{\mu} d_L + \sum_{\rho \delta \Gamma} \epsilon^{\Gamma}_{\rho \delta} \bar{\ell}_{\rho} \Gamma \nu \cdot \bar{u} \Gamma d_{\delta} \right]$$

 $C_i \sim FF \ge \epsilon_i$

- How to compare with LHC experiments?
 - → Effective Lagrangian at the **quark** level at the EW scale!

$$\mathcal{L}_{eff.} = \mathcal{L}_{SM} + rac{1}{\Lambda^2} \sum lpha_i \, \mathcal{O}_i$$

Which EFT?

- How to compare different nuclear beta decays?
 - → Effective Lagrangian at the **hadron** level!

[Lee & Yang'1956]

$$\mathcal{L}_{\text{Lee-Yang}} = -\bar{p}\gamma^{\mu}n\left(C_{V}^{+}\bar{e}\gamma_{\mu}\nu_{L} + C_{V}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}\gamma^{\mu}\gamma_{5}n\left(C_{A}^{+}\bar{e}\gamma_{\mu}\nu_{L} - C_{A}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}n\left(C_{S}^{+}\bar{e}\nu_{L} + C_{S}^{-}\bar{e}\nu_{R}\right) - \frac{1}{2}\bar{p}\sigma^{\mu\nu}n\left(C_{T}^{+}\bar{e}\sigma_{\mu\nu}\nu_{L} + C_{T}^{-}\bar{e}\sigma_{\mu\nu}\nu_{R}\right) + \bar{p}\gamma_{5}n\left(C_{P}^{+}\bar{e}\nu_{L} - C_{P}^{-}\bar{e}\nu_{R}\right) + \text{h.c.}$$

$$d\Gamma \approx f(C_i, M_F, M_{GT})$$

For some transitions and observables: $\mathcal{O} \approx f(C_i)$

Which EFT?

- How to compare different nuclear beta decays?
 - → Effective Lagrangian at the **hadron** level!

[Lee & Yang'1956]

$$\mathcal{L}_{\text{Lee-Yang}} = -\bar{p}\gamma^{\mu}n\left(C_{V}^{+}\bar{e}\gamma_{\mu}\nu_{L} + C_{V}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}\gamma^{\mu}\gamma_{5}n\left(C_{A}^{+}\bar{e}\gamma_{\mu}\nu_{L} - C_{A}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}n\left(C_{S}^{+}\bar{e}\nu_{L} + C_{S}^{-}\bar{e}\nu_{R}\right) - \frac{1}{2}\bar{p}\sigma^{\mu\nu}n\left(C_{T}^{+}\bar{e}\sigma_{\mu\nu}\nu_{L} + C_{T}^{-}\bar{e}\sigma_{\mu\nu}\nu_{R}\right) + \bar{p}\gamma_{5}n\left(C_{P}^{+}\bar{e}\nu_{L} - C_{P}^{-}\bar{e}\nu_{R}\right) + \text{h.c.}$$

$$d\Gamma \approx f(C_i, M_F, M_{GT})$$

For some transitions and observables: $\mathcal{O} \approx f(C_i)$ + small corrections

High precision measurements

 $S = (\chi^2 min/dof)^{1/2}$

Precision:

0(0.01 - 1)% !!

[Falkowski, MGA, Naviliat-Cuncic, JHEP 04 (2021) + some updates

Current data

=ŀ	(0+-	+0+) value	:5
	Parent	$\mathcal{F}t$ [s]	
	$^{10}\mathrm{C}$	3075.7 ± 4.4	
	$^{14}\mathrm{O}$	3070.2 ± 1.9	
	^{22}Mg	3076.2 ± 7.0	
	26m Al	3072.4 ± 1.1	
	$^{26}\mathrm{Si}$	3075.4 ± 5.7	
	$^{34}\mathrm{Cl}$	3071.6 ± 1.8	
	$^{34}\mathrm{Ar}$	3075.1 ± 3.1	
	$^{38m}\mathrm{K}$	3072.9 ± 2.0	
	^{38}Ca	3077.8 ± 6.2	
	$^{42}\mathrm{Sc}$	3071.7 ± 2.0	
	^{46}V	3074.3 ± 2.0	
	$^{50}\mathrm{Mn}$	3071.1 ± 1.6	
	$^{54}\mathrm{Co}$	3070.4 ± 2.5	
	62 Ga	3072.4 ± 6.7	
	74 Bb	3077 ± 11	

[Hardy-Towner'2020]

Neutron data

Observable	Value	S factor
τ_n (s)	878.64(59)	2.2
$ ilde{A}_n$	-0.11958(21)	1.2
$ ilde{B}_n$	0.9805(30)	
λ_{AB}	-1.2686(47)	
a_n	-0.10426(82)	
$ ilde{a}_n$	-0.1078(18)	

Latest data:

 $\begin{array}{l} \mbox{Perkeo-III, PRL122 (2019): } A_n \\ \mbox{aSPECT, PRC101 (2020): } a_n \\ \mbox{aCORN, PRC103 (2021): } a_n \\ \mbox{UCNt, PRL127 (2021): } \tau_n \\ \mbox{UCNt (2409.05560)*: } \tau_n \end{array}$

Parent	Type	Parameter	Value
⁶ He	GT/β^-	a	$-0.3308(30)^{a}$
$^{32}\mathrm{Ar}$	F/β^+	${ ilde a}$	0.9989(65)
38m K	F/β^+	${ ilde a}$	0.9981(48)
60 Co	GT/β^{-}	$ ilde{A}$	-1.014(20)
$^{67}\mathrm{Cu}$	GT/β^-	$ ilde{A}$	0.587(14)
114 In	GT/β^{-}	$ ilde{A}$	-0.994(14)
$^{14}O/^{10}C$	$F-GT/\beta^+$	P_F/P_{GT}	0.9996(37)
$^{26}Al/^{30}P$	$F-GT/\beta^+$	P_F/P_{GT}	1.0030(40)

Correlation coefficients

Precision:

0(0.01 - 1)% !!

[Falkowski, MGA, Naviliat-Cuncic, JHEP 04 (2021) + some updates

Current data (+ TH!!)

F[: (0+-	→0+) values
	Parent	$\mathcal{F}t$ [s]
	$^{10}\mathrm{C}$	3075.7 ± 4.4
	$^{14}\mathrm{O}$	3070.2 ± 1.9
	^{22}Mg	3076.2 ± 7.0
	^{26m}Al	3072.4 ± 1.1
	$^{26}\mathrm{Si}$	3075.4 ± 5.7
	$^{34}\mathrm{Cl}$	3071.6 ± 1.8
	$^{34}\mathrm{Ar}$	3075.1 ± 3.1
	$^{38m}\mathrm{K}$	3072.9 ± 2.0
	^{38}Ca	3077.8 ± 6.2
	$^{42}\mathrm{Sc}$	3071.7 ± 2.0
	$^{46}\mathrm{V}$	3074.3 ± 2.0
	$^{50}\mathrm{Mn}$	3071.1 ± 1.6
	$^{54}\mathrm{Co}$	3070.4 ± 2.5
	62 Ga	3072.4 ± 6.7
	$^{74}\mathrm{Rb}$	3077 ± 11

[Hardy-Towner'2020]

Th: QED + Isospin symmetry breaking corrections

$$\mathcal{F}t_i \equiv ft_i (1 + \delta'_R) (1 + \delta_{NS} - \delta_C)$$

Recent: nuclear structure-dep. corrections (NOW DOMINANT ERROR) [Seng, Gorchtein, & Ramsey-Musolf, PRD100 (2019)] [Gorchtein, PRL123 (2019)] [Also: Cirigliano et al. (PRL133, 2024), Gennari et al. (2405.19281), ...]

Correlation coefficients

Parameter

a

 \tilde{a}

 \tilde{a}

Ã

Ã

Ã

 P_F/P_{GT}

 P_F/P_{GT}

Value

 $-0.3308(30)^{a}$

0.9989(65)

0.9981(48)

-1.014(20)

-0.994(14)

0.9996(37)

1.0030(40)

0.587(14)

Type

 GT/β^{-}

 F/β^+

 F/β^+

 GT/β^{-}

 GT/β^-

 GT/β^{-}

 $F-GT/\beta^+$

 $F-GT/\beta^+$

Parent

⁶He

 $^{32}\mathrm{Ar}$

 38m K

 ^{60}Co

 ^{67}Cu

 114 In

 $^{14}O/^{10}C$

 $^{26}Al/^{30}P$

Neutron data

Observable	Value	S factor
τ_n (s)	878.64(59)	2.2
$ ilde{A}_n$	-0.11958(21)	1.2
$ ilde{B}_n$	0.9805(30)	
λ_{AB}	-1.2686(47)	
a_n	-0.10426(82)	
$ ilde{a}_n$	-0.1078(18)	
	0.1010(10)	

 $S = (\chi^2 min/dof)^{1/2}$

Latest data:

 $\begin{array}{l} Perkeo-III, PRL122 \mbox{(2019): } A_n \\ aSPECT, PRC101 \mbox{(2020): } a_n \\ aCORN, PRC103 \mbox{(2021): } a_n \\ UCNt, PRL127 \mbox{(2021): } t_n \\ UCNt \mbox{(2409.05560)}^*: t_n \end{array}$

• β transitions between isobaric analog states in T = 1/2 isospin doublets (Nuclei with $p \leftrightarrow n$)

• β transitions between isobaric analog states in T = 1/2 isospin doublets (Nuclei with $p \leftrightarrow n$)

• Many per-mil level determinations of the Ft values! (Exp + Th) [e.g. Severijns et al, PRC78 (2008)]

¹⁹Ne

10 p (

9 n

• M_{GT} / M_F ratio needed:

$$\mathcal{O} \approx f\left(C_i, \frac{M_{GT}}{M_F}\right) \approx f(C_i, \rho)$$

 $e^+ \nu_e$

19F

9p

10 n

$$\rho = \frac{C_A^+}{C_V^+} \frac{M_{GT}}{M_F}$$
 (1 + corrections)

• We need 2 observables per transition (Ft value + correlation);

• β transitions between isobaric analog states in T = 1/2 isospin doublets (Nuclei with $p \leftrightarrow n$)

• Many per-mil level determinations of the Ft values! (Exp + Th) [e.g. Severijns et al, PRC78 (2008)]

¹⁹Ne

• M_{GT} / M_F ratio needed:

$$\mathcal{O} \approx f\left(C_i, \frac{M_{GT}}{M_F}\right) \approx f(C_i, \rho)$$

 $e^+ \nu_e$

19F

9 p

10 n

- We need 2 observables per transition (Ft value + correlation);
- SM analysis: [Naviliat-Cuncic & Severijns, PRL102 (2009)]
 V_{ud} can be extracted with 0.1% precision!
 Although (*currently*) not competitive, it's a nontrivial crosscheck;

$$ho = rac{C_A^+}{C_V^+} rac{M_{GT}}{M_F}$$
 (1 + corrections)

- β transitions between isobaric analog states in T = 1/2 isospin doublets (Nuclei with $p \leftrightarrow n$) ¹⁹Ne
- Many per-mil level determinations of the Ft values! (Exp + Th) \bigcirc [e.g. Severijns et al, PRC78 (2008)]
- M_{GT} / M_F ratio needed:

$$\mathcal{O} \approx f\left(C_i, \frac{M_{GT}}{M_F}\right) \approx f(C_i, \rho)$$

 $e^+ \nu_e$

19**F**

10 n

- We need 2 observables per transition (Ft value + correlation); ۲
- SM analysis: [Naviliat-Cuncic & Severijns, PRL102 (2009)] $oldsymbol{O}$ V_{ud} can be extracted with 0.1% precision! Although (*currently*) not competitive, it's a nontrivial crosscheck;
- What about BSM? [Falkowski, MGA, Naviliat-Cuncic, JHEP 04 (2021) 126]

Precision:

0(0.01 - 1)% !!

[Falkowski, MGA, Naviliat-Cuncic, JHEP 04 (2021) + some updates

Current data (+ TH!!)

Fermi or Gamow-Teller Nuclear decays

٨

Ft (0+-	+0+) val	ues	Corre	lation	coeffi	cients		Ne	utron dat	a
$\begin{array}{r} \hline \text{Parent} \\ \hline 10_{\text{C}} \\ 14_{\text{O}} \\ 2^{2} \text{Mg} \\ 2^{6m} \text{Al} \\ 2^{6} \text{Si} \\ 3^{4} \text{Cl} \\ 3^{4} \text{Ar} \\ 3^{8m} \text{K} \\ 3^{8} \text{Ca} \\ 4^{2} \text{Cl} \end{array}$	$ \begin{array}{c} \mathcal{F}t \ [s] \\ 3075.7 \pm 4.4 \\ 3070.2 \pm 1.9 \\ 3076.2 \pm 7.0 \\ 3072.4 \pm 1.1 \\ 3075.4 \pm 5.7 \\ 3071.6 \pm 1.8 \\ 3075.1 \pm 3.1 \\ 3072.9 \pm 2.0 \\ 3077.8 \pm 6.2 \\ 2071.7 \pm 0.6 \\ \end{array} $	Parent	$\begin{tabular}{ c c c }\hline \hline Parent \\ \hline {}^{6}He \\ {}^{32}Ar \\ {}^{38m}K \\ {}^{60}Co \\ {}^{67}Cu \\ {}^{114}In \\ \hline \mathcal{F}t \ [s] \end{tabular}$	$\begin{array}{c} \text{Type} \\ \text{GT}/\beta^- \\ \text{F}/\beta^+ \\ \text{GT}/\beta^- \\ \text{GT}/\beta^- \\ \text{GT}/\beta^- \end{array}$	$\begin{array}{c} \text{Parameter} \\ a \\ \tilde{a} \\ \tilde{a} \\ \tilde{A} \\ \tilde{A} \\ \tilde{A} \\ \tilde{A} \end{array}$ Correlation	$\begin{tabular}{ c c c c c } \hline Value \\ \hline -0.3308(30)^{a)} \\ 0.9989(65) \\ 0.9981(48) \\ -1.014(20) \\ 0.587(14) \\ -0.994(14) \\ 0.9996(37) \\ 1.0030 (40) \end{tabular}$		$\begin{array}{c} \text{Observable} \\ \hline \tau_n \text{ (s)} \\ \tilde{A}_n \\ \tilde{B}_n \\ \lambda_{AB} \\ a_n \\ \tilde{a}_n \end{array}$	Value 879.75(76) -0.11958(21) 0.9805(30) -1.2686(47) -0.10426(82) -0.1090(41)	S factor 1.9 1.2
$ \begin{array}{r} 4^{6}V \\ 5^{0}Mn \\ 5^{4}Co \\ ^{62}Ga \\ ^{74}Rb \end{array} $	$\begin{array}{c} 3071.7 \pm 2.0 \\ 3074.3 \pm 2.0 \\ 3071.1 \pm 1.6 \\ 3070.4 \pm 2.5 \\ 3072.4 \pm 6.7 \\ 3077 \pm 11 \end{array}$	¹⁷ F ¹⁹ Ne	2292.4(2.7) 1721.44(92)	$\tilde{A}_0 = \\ \tilde{A}_0 = - \\ \tilde{A}_$	$\tilde{A} = 0.960(82)$ -0.0391(14) -0.03875(91)	Latest da	ata.		S = ()	(² min/dof) ³
		²¹ Na ²⁹ P ³⁵ Ar ³⁷ K	4071(4) $4764.6(7.9)$ $5688.6(7.2)$ $4605.4(8.2)$	$\tilde{a} = 0.5502(60)$ $\tilde{A} = 0.681(86)$ $\tilde{A} = 0, \ \tilde{A} = 0.430(22)$ $\tilde{A} = -0.5707(19)$ $\tilde{B} = -0.755(24)$		Fenker et a Combs et a Hayen, PR Severijns e	al., 1 al., 2 D10 et al	PRL120 (20 2009.13700)3 (2021): fj I., PRC107 (018): A _{K-37} : A _{Ne-19} A/f _V values 2023)*	

Standard Model fit:

$$\mathcal{L}_{\text{Lee-Yang}} = -\bar{p}\gamma^{\mu}n\left(C_{V}^{\dagger}\bar{e}\gamma_{\mu}\nu_{L} + C_{V}^{\dagger}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}\gamma^{\mu}\gamma_{5}n\left(C_{A}^{\dagger}\bar{e}\gamma_{\mu}\nu_{L} - C_{A}^{\dagger}\bar{e}\gamma_{\mu}\nu_{R}\right)$$
$$= -\bar{p}n\left(C_{S}^{\dagger}\bar{e}\nu_{L} + C_{S}^{\dagger}\bar{e}\nu_{R}\right) - \frac{1}{2}\bar{p}\sigma^{\mu\nu}n\left(C_{T}^{\dagger}\bar{e}\sigma_{\mu\nu}\nu_{L} + C_{T}^{\dagger}\bar{e}\sigma_{\mu\nu}\nu_{R}\right)$$
$$+ \bar{p}\gamma_{5}n\left(C_{P}^{\dagger}\bar{e}\nu_{L} - C_{P}^{\dagger}\bar{e}\nu_{R}\right) + \text{h.c.}$$

[Falkowski, MGA, Naviliat-Cuncic, JHEP 04 (2021) 126 + updates]

 $\begin{array}{c} v^2 C_V^+ \\ v^2 C_A^+ \end{array}$

 $ho_{
m F}$

 $ho_{
m Ne}
ho_{
m Na}
ho_{
m P}$

 $ho_{
m Ar}
ho_{
m K}$

	(0.98576(22))	$\rightarrow C_V^+ = 0.98$	576	6(22) C	$G_F/\sqrt{2}$	$\overline{2}$				
	-1.25754(39) -1.2955(13)									
=	$\begin{array}{c} 1.60157(75) \\ -0.7127(11) \\ -0.5380(21) \end{array}$		1. - -	-0.27 1. -	0.36 -0.1 1.	-0.63 0.17 -0.23	0.41 -0.11 0.15	0.26 -0.07 0.09	0.33 -0.09 0.12	-0.23 0.06 -0.08
	-0.2834(25)	Correlation ₌	-	-	-	1.	-0.26	-0.17	-0.21	0.15
)	(0.5787(20))	matrix	_	_	_	_	1.	0.11 1.	0.14 0.09	-0.1 -0.06
-			_	-	-	-	_	-	1.	-0.08
	$a \approx -1.2757 \frac{M_{GT}}{M_{GT}}$		-	-	-	-	-	-	-	1.)

$$ho pprox -1.2757 rac{M_{GT}}{M_F}$$

Impressive precision!

 $\mathcal{L}_{n \to p e \nu}^{eff} = - C_V^+ \bar{p} \gamma^\mu n \bar{e} \gamma_\mu \nu_L - C_A^+ \bar{p} \gamma^\mu \gamma_5 n \bar{e} \gamma_\mu \nu_L$

$\frac{Axial \ charge}{\langle p|\bar{u}\gamma_{\mu}\gamma_{5}d|n\rangle}$

9A = 1.2642(93) CalLat, Nature'18 + update 9A = 1.2460(280) FLAG'21 NEW: 9A = 1.2630(100) FLAG'24

р

[Falkowski, MGA, Naviliat-Cuncic, JHEP 04 (2021) 126 + updates]

$EFT with v_{L} \qquad [e.g. from SMEFT]$

$$\begin{aligned} \mathcal{L}_{\text{Lee-Yang}} &= -\bar{p}\gamma^{\mu}n\left(C_{V}^{\dagger}\bar{e}\gamma_{\mu}\nu_{L} + C_{V}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}\gamma^{\mu}\gamma_{5}n\left(C_{A}^{\dagger}\bar{e}\gamma_{\mu}\nu_{L} - C_{A}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) \\ &- \bar{p}n\left(C_{S}^{\dagger}\bar{e}\nu_{L} + C_{S}^{-}\bar{e}\nu_{R}\right) - \frac{1}{2}\bar{p}\sigma^{\mu\nu}n\left(C_{T}^{\dagger}\bar{e}\sigma_{\mu\nu}\nu_{L} + C_{T}^{-}\bar{e}\sigma_{\mu\nu}\nu_{R}\right) \\ &+ \bar{p}\gamma_{5}n\left(C_{P}^{\dagger}\bar{e}\nu_{L} - C_{P}^{-}\bar{e}\nu_{R}\right) + \text{h.c.} \end{aligned}$$

BSM x recoil

Good approximation for the EFT with $v_L & v_R$ if the couplings with v_R are not large

 $SM + small + (small)^2$

EFT with v_L

$$\mathcal{L}_{\text{Lee-Yang}} = -\bar{p}\gamma^{\mu}n \left(C_{V}^{+}\bar{e}\gamma_{\mu}\nu_{L} + C_{V}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}\gamma^{\mu}\gamma_{5}n \left(C_{A}^{+}\bar{e}\gamma_{\mu}\nu_{L} - C_{A}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) \\ - \bar{p}n \left(C_{S}^{+}\bar{e}\nu_{L} + C_{S}^{-}\bar{e}\nu_{R}\right) - \frac{1}{2}\bar{p}\sigma^{\mu\nu}n \left(C_{T}^{+}\bar{e}\sigma_{\mu\nu}\nu_{L} + C_{T}^{-}\bar{e}\sigma_{\mu\nu}\nu_{R}\right) \\ \mathbf{S} \text{ and T affect the angular distributions, the spectrum & the width!!} \\ \frac{d\Gamma(\mathbf{J})}{dE_{e}d\Omega_{e}d\Omega_{\nu}} \sim \xi(E) \left\{1 + a\frac{\mathbf{p}_{e}\cdot\mathbf{p}_{\nu}}{E_{e}E_{\nu}} \left(b\frac{m_{e}}{E_{e}}\right)A\frac{\mathbf{p}_{e}}{E_{e}}\frac{\mathbf{J}}{J} + (B + b_{B}\frac{m_{e}}{E_{e}})\frac{\mathbf{p}_{\nu}}{E_{\nu}}\frac{\mathbf{J}}{J}\right\} \\ b_{(B)} = \#C_{S}^{+} + \#C_{T}^{+} \quad \text{Fierz term [1937]}$$

EFT with v_L

EFT with $v_{\rm L}$

EFT with $\nu_{\rm L}$

PS: Combining with s→ulv one can access the NP contamination of \hat{V}_{ud} ("CKM unitarity test") [e.g. Cirigliano, Díaz-Calderón, Falkowski, MGA & Rodríguez-Sánchez, JHEP'22]

EFT with $\nu_{\rm L}$

 $\langle p \, | \, \bar{u} \Gamma d \, | \, n \rangle$

FLAG'21

[Falkowski, MGA, Naviliat-Cuncic, JHEP'21; Cirigliano, Díaz-Calderón, Falkowski, MGA & Rodríguez-Sánchez, JHEP'22]

[Falkowski, MGA, Naviliat-Cuncic, JHEP'21; Cirigliano, Díaz-Calderón, Falkowski, MGA & Rodríguez-Sánchez, JHEP'22]

[Falkowski, MGA, Naviliat-Cuncic, JHEP'21; Cirigliano, Díaz-Calderón, Falkowski, MGA & Rodríguez-Sánchez, JHEP'22]

EFT with $v_{\rm L}$

$$\mathcal{L} = -\frac{4G_F V_{ij}}{\sqrt{2}} \left[\bar{\ell}_L \gamma_\mu \nu \cdot \bar{u} \gamma^\mu d_L + \sum_{\rho \delta \Gamma} \epsilon^{\Gamma}_{\rho \delta} \ \bar{\ell}_{\rho} \Gamma \nu \cdot \bar{u} \Gamma d_\delta \right]$$

 ϵ_T

Going to higher energies...

$$\frac{d\,\vec{\epsilon}(\mu)}{d\log\mu} = \left(\frac{\alpha(\mu)}{2\pi}\gamma_{\rm ew} + \frac{\alpha_s(\mu)}{2\pi}\gamma_s\right)\,\vec{\epsilon}(\mu),$$

M. González-Alonso

EFT for β decays

[Cirigliano, MGA, Jenkins'2010; Cirigliano, MGA, Graesser'2012]

Beta decays sensitive to a few EFT coefficients at tree-level

$$\begin{split} \frac{\delta G_F}{G_F} &= 2 \ [\hat{\alpha}_{\varphi l}^{(3)}]_{11+22} - [\hat{\alpha}_{ll}^{(1)}]_{1221} - 2[\hat{\alpha}_{ll}^{(3)}]_{1122-\frac{1}{2}(1221)} \ ,\\ V_{1j} \cdot \epsilon_L^{j\ell} &= 2 \ V_{1j} \ \left[\hat{\alpha}_{\varphi l}^{(3)} \right]_{\ell \ell} + 2 \ \left[V \hat{\alpha}_{\varphi q}^{(3)} \right]_{1j} - 2 \ \left[V \hat{\alpha}_{lq}^{(3)} \right]_{\ell \ell 1j} ,\\ V_{1j} \cdot \epsilon_R^{j} &= - [\hat{\alpha}_{\varphi \varphi}]_{1j} \ ,\\ V_{1j} \cdot \epsilon_{s_L}^{j\ell} &= - [\hat{\alpha}_{lq}]_{\ell \ell j1}^* \ ,\\ V_{1j} \cdot \epsilon_{s_R}^{j\ell} &= - \left[V \hat{\alpha}_{qde}^{\dagger} \right]_{\ell \ell 1j} ,\\ V_{1j} \cdot \epsilon_T^{j\ell} &= - \left[\hat{\alpha}_{lq}^{\dagger} \right]_{\ell \ell j1}^* \ , \qquad \hat{\alpha} = \alpha \frac{v^2}{\Lambda^2} \end{split}$$

Beta decays sensitive to a many EFT coefficients at loop-level

[Dawid, Cirigliano & Dekens, JHEP'24]

Running:

- 1-loop SMEFT / WEFT RGEs known [Jenkins et al'13, Aebischer et al'17, Jenkins et al.'17, MGA et al.'17 ...]
- Multi-loop QCD RGE effects important for S, P, T operators [MGA, Martin Camalich & Mimouni'17]

E		and the second second	_					
	$\left(\epsilon_L \right)$)	(1)	0	0	0	0	$\left(\epsilon_L \right)$
	ϵ_R		0	1.0046	0	0	0	ϵ_R
	ϵ_S	=	0	0	1.72	2.46×10^{-6}	-0.0242	ϵ_S
	ϵ_P		0	0	2.46×10^{-6}	1.72	-0.0242	ϵ_P
	$\left(\epsilon_T \right)$	$(\mu = 2 \text{ GeV})$	0	0	-2.17×10^{-4}	-2.17×10^{-4}	0.825	$f \left(\epsilon_T \right)_{(\mu = Z)}$

$ \begin{pmatrix} w_{ledq} \\ w_{\ell equ} \\ w_{\ell equ}^{(3)} \end{pmatrix}_{(\mu = m_Z)} = $	$\left(\begin{array}{c} 1.19\\ 0.\\ 0.\end{array}\right)$	$0. \\ 1.20 \\ -0.00381$	$0. \\ -0.185 \\ 0.959 $	$\begin{pmatrix} w_{ledq} \\ w_{\ell equ} \\ w_{\ell equ}^{(3)} \end{pmatrix}_{(\mu = 1 \text{ TeV})}$)
--	---	--------------------------	--------------------------	--	---

- Comparison & combination with EWPO, NC processes, LHC data, etc.
- The CKM unitarity test is particularly interesting (tensions; only effect in the U(3)⁵ limit; very precise)

[See also Cirigliano, Jenkins & MGA, NPB'10; Crivellin, Hoferichter & Manzari, PRL'21, Breso-Pla, Falkowski, MGA & Monsalvez-Pozo, JHEP'23; Dawid, Cirigliano & Dekens, JHEP'24; ...]

$$Q_{Hud} = i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_p\gamma^{\mu}d_r) + \text{h.c.}$$

[Cirigliano, Dekens, de Vries & Mereghetti, JHEP'24]

	$[c_{\ell q}^{(3)}]_{1111}$
CHARM	-80 ± 180
APV	27 ± 19
QWEAK	7.0 ± 12
PVDIS	-8 ± 12
SAMPLE	-8 ± 45
$d_j \to u\ell\nu$	0.38 ± 0.28
LEP-2	3.5 ± 2.2

$$\mathcal{O}^{(3)}_{\ell q} = (\bar{\ell} \gamma_\mu \tau^I \ell) (\bar{q} \gamma^\mu \tau^I q)$$

[Falkowski, MGA & Mimouni, JHEP'17]

\bullet Scalar & tensor udev interactions: β decays vs LHC DY

[Cirigliano, MGA & Graesser'13] [See also de Blas et al'13, Greljo-Marzocca'17, Allwincher et al.'22, ...]

[Falkowski, MGA, Naviliat-Cuncic, JHEP 04 (2021) 126]

EFT with $v_L \& v_R$

 $\mathcal{L}_{\text{Lee-Yang}} = -\bar{p}\gamma^{\mu}n\left(C_{V}^{\dagger}\bar{e}\gamma_{\mu}\nu_{L} + C_{V}^{\dagger}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}\gamma^{\mu}\gamma_{5}n\left(C_{A}^{\dagger}\bar{e}\gamma_{\mu}\nu_{L} - C_{A}^{\dagger}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}n\left(C_{S}^{\dagger}\bar{e}\nu_{L} + C_{S}^{\dagger}\bar{e}\nu_{R}\right) - \frac{1}{2}\bar{p}\sigma^{\mu\nu}n\left(C_{T}^{\dagger}\bar{e}\sigma_{\mu\nu}\nu_{L} + C_{T}^{\dagger}\bar{e}\sigma_{\mu\nu}\nu_{R}\right)$

Back to 1956

$$\mathcal{L}_{\text{Lee-Yang}} = -\bar{p}\gamma^{\mu}n\left(C_{V}^{+}\bar{e}\gamma_{\mu}\nu_{L} + C_{V}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}\gamma^{\mu}\gamma_{5}n\left(C_{A}^{+}\bar{e}\gamma_{\mu}\nu_{L} - C_{A}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}n\left(C_{S}^{+}\bar{e}\nu_{L} + C_{S}^{-}\bar{e}\nu_{R}\right) - \frac{1}{2}\bar{p}\sigma^{\mu\nu}n\left(C_{T}^{+}\bar{e}\sigma_{\mu\nu}\nu_{L} + C_{T}^{-}\bar{e}\sigma_{\mu\nu}\nu_{R}\right)$$

Mirrors are very important

$$\mathcal{L}_{\text{Lee-Yang}} = -\bar{p}\gamma^{\mu}n\left(C_{V}^{+}\bar{e}\gamma_{\mu}\nu_{L} + C_{V}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}\gamma^{\mu}\gamma_{5}n\left(C_{A}^{+}\bar{e}\gamma_{\mu}\nu_{L} - C_{A}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}n\left(C_{S}^{+}\bar{e}\nu_{L} + C_{S}^{-}\bar{e}\nu_{R}\right) - \frac{1}{2}\bar{p}\sigma^{\mu\nu}n\left(C_{T}^{+}\bar{e}\sigma_{\mu\nu}\nu_{L} + C_{T}^{-}\bar{e}\sigma_{\mu\nu}\nu_{R}\right)$$

$$\mathcal{L}_{\text{Lee-Yang}} = -\bar{p}\gamma^{\mu}n\left(C_{V}^{+}\bar{e}\gamma_{\mu}\nu_{L} + C_{V}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}\gamma^{\mu}\gamma_{5}n\left(C_{A}^{+}\bar{e}\gamma_{\mu}\nu_{L} - C_{A}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}n\left(C_{S}^{+}\bar{e}\nu_{L} + C_{S}^{-}\bar{e}\nu_{R}\right) - \frac{1}{2}\bar{p}\sigma^{\mu\nu}n\left(C_{T}^{+}\bar{e}\sigma_{\mu\nu}\nu_{L} + C_{T}^{-}\bar{e}\sigma_{\mu\nu}\nu_{R}\right)$$

$$C_V^+ = \frac{V_{ud}}{v^2} g_V \sqrt{1 + \Delta_R^V} (1 + \epsilon_L + \epsilon_R), \qquad C_V^- = \frac{V_{ud}}{v^2} g_V \sqrt{1 + \Delta_R^V} (\tilde{\epsilon}_L + \tilde{\epsilon}_R),$$

$$C_A^+ = -\frac{V_{ud}}{v^2} g_A \sqrt{1 + \Delta_R^A} (1 + \epsilon_L - \epsilon_R), \qquad C_A^- = \frac{V_{ud}}{v^2} g_A \sqrt{1 + \Delta_R^A} (\tilde{\epsilon}_L - \tilde{\epsilon}_R),$$

$$C_T^+ = \frac{V_{ud}}{v^2} g_T \epsilon_T, \qquad C_T^- = \frac{V_{ud}}{v^2} g_T \tilde{\epsilon}_T,$$

$$C_S^+ = \frac{V_{ud}}{v^2} g_S \epsilon_S, \qquad C_S^- = \frac{V_{ud}}{v^2} g_S \tilde{\epsilon}_S,$$

 ν SMEFT / model

 τ_n "anomaly"

Heavy NP cannot explain the beam vs. bottle tension PS: 3.70 between the last 2 bottle points...

 $\tau_n \sim |C_V|^2 \left(1 + 3\left(\frac{C_A}{C_V}\right)^2\right)$

 τ_n "anomaly"

 $\tau_n \sim |C_V|^2 \left(1 + 3\left(\frac{C_A}{C_V}\right)^2\right)$

Heavy NP cannot explain the beam vs. bottle tension PS: 3.70 between the last 2 bottle points...

What about a dark decay? [Fornal & Grinstein, PRL120 (2018)]

 τ_n "anomaly"

Heavy NP cannot explain the beam vs. bottle tension PS: 3.70 between the last 2 bottle points...

What about a dark decay? [Fornal & Grinstein, PRL120 (2018)]

$$\tau_n \sim |C_V|^2 \left(1 + 3\left(\frac{C_A}{C_V}\right)^2\right)$$

 τ_n "anomaly"

$$\tau_n \sim |C_V|^2 \left(1 + 3\left(\frac{C_A}{C_V}\right)^2\right)$$

 τ_n "anomaly"

$$\tau_n \sim |C_V|^2 \left(1 + 3\left(\frac{C_A}{C_V}\right)^2\right)$$

τ_n "anomaly"

$$\tau_n \sim |C_V|^2 \left(1 + 3\left(\frac{C_A}{C_V}\right)^2\right)$$

τ_n "anomaly"

A dark channel doesn't work either [Dubbers et al, PLB791 (2019); Czarnecki-Marciano-Sirlin, PRL120 (2018)]

$$\tau_n \sim |C_V|^2 \left(1 + 3\left(\frac{C_A}{C_V}\right)^2\right)$$

PS: SM + BSM would alter this...

[e.g. Falkowski, MGA, Naviliat-Cuncic, JHEP'21]

And so much more...

• EFT at NLO in recoil [Falkowski, MGA, Palavric & Rodríguez-Sánchez, JHEP'24]

• First bound on pseudoscalar interactions from β decays:

• Many more operators appear at NLO in recoil. E.g. weak-magnetism:

First extraction of nucleon weak-magnetism from data! [OK with CVC prediction: ~4.6]

• CPV in β decay [Falkowski & Rodríguez-Sánchez, EPJC'22]

- Interplay with EDMs (huge fine tunning)
- FSI effects give you access to CP-conserving NP! (ongoing exp. efforts, e.g. MORA)

$$\frac{d\Gamma}{dE_e d\Omega_e d\Omega_\nu} = F(E_e) \left\{ 1 + \ldots + \frac{D}{\frac{\langle J \rangle \cdot (\boldsymbol{p}_e \times \boldsymbol{p}_\nu)}{JE_e E_\nu}} \right\}$$

• Operators with $\nu_{\mu} \& \nu_{\tau}$ (\rightarrow interplay with neutrino oscillations) [Falkowski, MGA, Tabrizi, JHEP'19]

Conclusions

- (Sub) permil-level precision in β decays (exp + th) \rightarrow some internal tensions lead to inflated errors...
- Great laboratory for nuclear, hadronic and particle physics
- Progress in many fronts:
 - Experiments!
 - Lattice QCD;
 - Rad. corrections.
 - Nuclear-structure dependent corrections.
 - Inclusion of new data (mirror decays);
 - WEFT, SMEFT, RH v, RGEs, recoil effects, LHC, ...

Backup slides

$$\delta au_n, \delta {\cal F}t ~\sim~ - b ~\langle {m_e \over E_e}
angle$$

EFT with v_L

uperallowed

0.05

 C_{S}^{+} / C_{V}^{+}

0.10

0.15

-0.15 -0.10 -0.05 0.00

Driven by Ft(0->0), τη, Αη!

 C_S^+ / C_V^+

0.02

0.04

-0.04 -0.02 0.00

$$\mathcal{L}_{\text{Lee-Yang}} = -\bar{p}\gamma^{\mu}n\left(C_{V}^{+}\bar{e}\gamma_{\mu}\nu_{L} + C_{V}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}\gamma^{\mu}\gamma_{5}n\left(C_{A}^{+}\bar{e}\gamma_{\mu}\nu_{L} - C_{A}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}n\left(C_{S}^{+}\bar{e}\nu_{L} + C_{S}^{-}\bar{e}\nu_{R}\right) - \frac{1}{2}\bar{p}\sigma^{\mu\nu}n\left(C_{T}^{+}\bar{e}\sigma_{\mu\nu}\nu_{L} + C_{T}^{-}\bar{e}\sigma_{\mu\nu}\nu_{R}\right)$$

Beta decays & flavor

[Cirigliano, Díaz-Calderón, Falkowski, MGA & Rodríguez-Sánchez, JHEP04 (2022) 152]

- BSM turned on => These processes do not probe the same quantity:
 - Beta decays \rightarrow udev
 - Pion decays \rightarrow udev & ud $\mu\nu$
 - Kaon decays \rightarrow usev & us $\mu\nu$
 - Tau decays \rightarrow udtv & ustv

u e, μ, τ s, d v

$$\begin{split} \mathscr{L}_{\text{WEFT}} \supset & -\sum_{D=d,s} \sum_{\ell=e,\mu,\tau} \frac{V_{uD}}{v^2} \Biggl\{ & \left(1 + \epsilon_L^{D\ell}\right) \ \bar{\ell} \gamma_\mu P_L \nu_\ell \cdot \bar{u} \gamma^\mu (1 - \gamma_5) D \\ & + \epsilon_R^D \bar{\ell} \gamma_\mu P_L \nu_\ell \cdot \bar{u} \gamma^\mu (1 + \gamma_5) D \\ & + \epsilon_T^{D\ell} \frac{1}{4} \bar{\ell} \sigma_{\mu\nu} P_L \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) D \\ & + \epsilon_S^{D\ell} \ \bar{\ell} P_L \nu_\ell \cdot \bar{u} D \\ & - \epsilon_P^{D\ell} \ \bar{\ell} P_L \nu_\ell \cdot \bar{u} \gamma_5 D \Biggr\} + \text{hc} \end{split}$$

 $R_{us}^{(\tau)} = \frac{\Gamma(\tau \mapsto X_{us}\nu_{\tau})}{\Gamma(\tau \mapsto e\bar{\nu}_{c}\nu_{\tau})}$

• Cross-correlations due to CKM, FFs, and lepton-universal RH currents (SMEFT)

NEW: Lattice calculation! ETMC, PRL132 (2024): $R_{us}^{(\tau)}/V_{us}^2 = 3.407(22)_{th} \xrightarrow{\exp} V_{us} = 0.2189(7)_{th}(18)_{exp}$ in perfect agreement with the OPE-based extraction plotted above: $V_{us} = 0.2184(11)_{th}(18)_{exp}$

• SM limit:

Beta decays & flavor

$$+\epsilon_{R}^{D} \bar{\ell} \gamma_{\mu} P_{L} \nu_{\ell} \cdot \bar{u} \gamma^{\mu} (1+\gamma_{5}) D$$

$$+\epsilon_{T}^{D\ell} \frac{1}{4} \bar{\ell} \sigma_{\mu\nu} P_{L} \nu_{\ell} \cdot \bar{u} \sigma^{\mu\nu} (1-\gamma_{5}) D$$

$$+\epsilon_{S}^{D\ell} \bar{\ell} P_{L} \nu_{\ell} \cdot \bar{u} D$$

$$-\epsilon_{P}^{D\ell} \bar{\ell} P_{L} \nu_{\ell} \cdot \bar{u} \gamma_{5} D \bigg\} + hc$$

[Cirigliano, Díaz-Calderón, Falkowski, MGA & Rodríguez-Sánchez,

JHEP04 (2022) 152]

$$\begin{split} \hat{V}_{us} &\equiv V_{us} \left(1 + \epsilon_{L}^{se} + \epsilon_{R}^{s} \right) \\ \hat{\epsilon}_{L}^{dse} &\equiv \epsilon_{L}^{de} + \frac{\hat{V}_{us}^{2}}{1 - \hat{V}_{us}^{2}} \epsilon_{L}^{se} \\ \hat{\epsilon}_{R}^{de} \\ \hat{$$

 $\epsilon_L^{D\ell/e} \equiv \epsilon_L^{D\ell} - \epsilon_L^{De}$

Most complete information to date about CC interactions between light quarks & leptons

- Large correlations!

- 3σ preference for NP

Beta decays & flavor

• SM limit:

• Models:

Belfatto et al 1906.02714 Kirk 2008.03261 Belfatto Berezhiani 2103.05549 Branco et al 2103.13409, ...