Froggatt-Nielsen ALP

Alessandro Valenti

DISCRETE 2024

University of Basel

Based on 2407.02998 in collaboration with Admir Greljo, Aleks Smolkovič

N Universität Basel

Ljubljana December 3rd, 2024

What is the lowest FN scale compatible with present experimental constraints?

What is the lowest FN scale compatible with present experimental constraints? Answer: The current energy frontier

Froggat-Nielsen ALP

Outline

- 1. Introduction: flavor puzzle and Froggatt-Nielsen models
- 2. Z_N Froggatt-Nielsen
- 3. The minimal model: Z_4
 - Setup
 - Phenomenology
- 4. Conclusion

Outline

- 1. Introduction: flavor puzzle and Froggatt-Nielsen models
- 2. Z_N Froggatt-Nielsen
- 3. The minimal model: Z_4
 - Setup
 - Phenomenology
- 4. Conclusion

Standard Model

- $SU(3) \times SU(2) \times U(1)$ gauge theory, 3 generations
 - <u>Gauge sector</u>: $U(3)^5$ symmetric <u>Higgs sector (Yukawa</u>): $U(3)^5$ broken (partially)
 - Why is the breaking so hierarchical? The flavor puzzle

F,f

<u>FN idea:</u> $y_{ii}^f \longrightarrow x_{ii}^f e^{n_{ij}^f} \qquad x_{ii}^f \sim \mathcal{O}(1)$

 $[F_i] = Q_i^F \qquad [f_j] = Q_j^f \qquad [\epsilon] = 1$ $V(1)_{\rm FN}$ -breaking spurion Selection rules $\leftrightarrow n_{ij}^f \leftrightarrow$ flavor pattern

Froggat-Nielsen ALP

Froggatt-Nielsen

 $\mathscr{L}_{\mathrm{SM}} \supset \sum y_{ij}^f \bar{F}_{L,i} H f_{R,j} + \{\tilde{H}\} + \mathrm{h.c.}$

Froggatt-Nielsen

 $\begin{pmatrix} y_{ij}^f \longrightarrow x_{ij}^f e^{n_{ij}^f} \end{pmatrix} \qquad \Phi = \frac{v_{\Phi} + \rho}{\sqrt{2}} e^{i\frac{a}{v_{\Phi}}} \quad \left(\langle \Phi \rangle = \frac{v_{\Phi}}{\sqrt{2}}\right)$ $U(1)_{\rm FN}$ SSB \rightarrow ALP a

Froggatt-Nielsen

- If $U(1)_{\rm FN}$ has anomaly with QCD \longrightarrow Strong CP for free! flaxion/axiflavon

Froggat-Nielsen ALP

Calibbi, Goertz, Redigolo, Ziegler, Zupan (2016)

Ema, Hamaguchi, Moroi, Nakayama (2016)

Froggatt-Nielsen

- If $U(1)_{\rm FN}$ has anomaly with QCD \longrightarrow Strong CP for free!
- $\mathscr{L} \sim \epsilon^{n_{sd}} e^{ia/v_{\Phi}} \bar{s}_I H d_R + \text{h.c.}$ - Bound:

E787+E949 (2007) 95% CL

 $Br(K^+ \to \pi^+ a) < 9.5 \times 10^{-11}$

 $\Rightarrow v_{\Phi} \gtrsim 10^{12} \, \text{GeV} \times \epsilon^{n_{sd}}$

Can we lower this?

Froggat-Nielsen ALP

flaxion/axiflavon

Calibbi, Goertz, Redigolo, Ziegler, Zupan (2016)

Ema, Hamaguchi, Moroi, Nakayama (2016)

Camalich, Pospelov, Vuong, Ziegler, Zupan (2020)

Outline

1. Introduction: flavor puzzle and Froggatt-Nielsen models

2. Z_N Froggatt-Nielsen

3. The minimal model: Z_4

- Setup
- Phenomenology
- 4. Conclusion

Discrete Froggatt-Nielsen models

 $M_{\psi} \sim M_{\Phi} \sim M$

 $U(1)_{\rm FN} \rightarrow Z_N$ symmetry

 $\mathcal{L} \supset -\frac{1}{4} \frac{\lambda'_N}{M_{\Phi}^{N-4}} \left[\Phi^N + (\Phi^*)^N \right]$

Discrete Froggatt-Nielsen models

Froggat-Nielsen ALP

$$\rightarrow Z_N \text{ symmetry}$$

$$\frac{\lambda'_N}{M_{\Phi}^{N-4}} \left[\Phi^N + (\Phi^*)^N \right]$$

$$\left(\frac{\nu_{\Phi}}{M_{\Phi}} \right)^{N-4} \sim \lambda'_N \nu_{\Phi}^2 \epsilon^{N-4} \qquad \left(\lambda'_N \sim \frac{\prod_k N_{\Phi}^2}{16\pi} \right)^{N-4}$$

 $K \rightarrow \pi a$ not kinematically allowed! (Strong CP solved externally)

Discrete Froggatt-Nielsen models

Simplest setup:

Hierarchies

 $M_{\psi} \sim M_{\Phi} \sim M$

 $U(1)_{\rm FN} \rightarrow Z_N$ symmetry

hies:
$$\left(\frac{\Phi}{M}\right)^{n_{ij}^{f}} \bar{F}_{L}Hf_{R} \longrightarrow \left(\frac{\Phi^{*}}{M}\right)^{N-n_{ij}^{f}} \bar{F}_{L}Hf_{R}$$

 $\Phi^{m} \sim (\Phi^{*})^{N-m}$
Exception: Require max $[n_{ij}^{f}] \leq N/2$

Theory constraints:

1. Stability $V(\Phi) = -m^2 |\Phi|^2$

$$+\frac{\lambda}{2} |\Phi|^4 - \frac{1}{4} \frac{\lambda'_N}{M_{\Phi}^{N-4}} [\Phi^N + (\Phi^*)^N] + \frac{1}{4} \frac{\lambda'_N}{M_{\Phi}^{N-4}} [\Phi^N + (\Phi^N + (\Phi^*)^N] + \frac{1}{4} \frac{\lambda'_N}{M_{\Phi}^{N-4}} [\Phi^N + (\Phi^N +$$

 $0 \le m_{\rho}^2 \le \lambda v_{\Phi}^2$ $0 \le m_a^2 \le \left(\frac{N}{N-2}\right)\lambda v_{\Phi}^2$

Theory constraints:

1. Stability

2. QCD contribution

- Theory constraints:
- **1.** Stability
- **2.** QCD contribution
- **3.** QG contribution

 $V_{\Phi} \supset -\frac{1}{4} \frac{1}{M_{P}^{N-4}} \left[\Phi^{N} + (\Phi^{*})^{N} \right]$ $m_a^2 \gtrsim 8\pi^2 \left(\frac{N^2}{2^{N/2}}\right) \left(\frac{v_{\Phi}}{M_P}\right)^{N-4} v_{\Phi}^2$ (no fine-tuning)

Theory constraints:

Outline

1. Introduction: flavor puzzle and Froggatt-Nielsen models

2. Z_N Froggatt-Nielsen

3. The minimal model: Z_4

- Setup
- Phenomenology

4. Conclusion

3. The minimal model: Z_{4}

 $q_{1,2,3} \sim (2,1,0) \quad \bar{e}_{1,2,3} \sim (2,1,0)$

	$(0.55\epsilon^2)$	$2.5\epsilon^2$	$(0.73 - 1.8i)\epsilon^2$	
$Y_d =$	0	0.049ϵ	0.10ϵ	$Y_{u} =$
	0	0	0.011	

 $\begin{cases} y_{t,b,\tau} \sim 1 \\ y_{c,s,\mu} \sim \epsilon \\ y_{u,d,e} \sim \epsilon^2 \end{cases}$

 $|\epsilon \simeq 4.4 \times 10^{-3}|$

Minimal model: Z_4

 $\begin{pmatrix} 0.25\epsilon^2 & z_{u_2}\epsilon^2 & z_{u_3}\epsilon^2 \\ 0 & 0.57\epsilon & y_{u_3}\epsilon \\ 0 & 0 & 0.71 \end{pmatrix} \qquad Y_e = \begin{pmatrix} 0.15\epsilon^2 & 0 & 0 \\ z_{e_2}\epsilon^2 & 0.14\epsilon & 0 \\ z_{e_3}\epsilon^2 & y_{e_3}\epsilon & 0.01 \end{pmatrix}$

- "Acceptable" fit ($O(10^{-2})$ tuning) - Pattern similar to $U(2)_{q+e}$ models Antusch, Greljo, Stefanek, Thomsen (2023)

3. The minimal model: Z_{A}

Minimal model: Z_{4}

Froggat-Nielsen ALP

<u>**UV completion:**</u> $VLQ Q_2^a, Q_1 + VLL E_2^a, E_1$ $Z_4 \sim (0, 1) (0, 1)$

 $\mathscr{L}_{\mathrm{UV}} \supset -z_i^d \,\bar{q}_3 H d_i - z_i^u \,\bar{q}_3 \tilde{H} u_i - z_i^e \,\bar{\ell}_3 H e_i$ $+x_1^q \Phi \bar{q}_1 Q_1 + x_{12}^{qa} \Phi \bar{Q}_1 Q_2^a + x_2^{qa} \Phi \bar{q}_2 Q_2^a - y_i^{da} \Phi \bar{Q}_2^a H d_i - y_i^{ua} \Phi \bar{Q}_2^a \tilde{H} u_i$ $+x_1^e \Phi \bar{E}_1 e_1 + x_{12}^{ea} \Phi \bar{E}_2^a E_1 + x_2^{ea} \Phi \bar{E}_2^a e_2 - y_i^{ea} \bar{\ell}_i H E_2^a$

3. The minimal model: Z_{4}

Froggat-Nielsen ALP

up quarks, leptons analogous (with appropriate replacements)

3. The minimal model: Z_4

Phenomenogy: tower of EFTs

Froggat-Nielsen ALP

3. The minimal model: Z_{4}

Phenomenogy: tower of EFTs

 $(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{d}\gamma^{\mu}d) \quad (H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{u}\gamma^{\mu}u) \quad (H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{\ell}\gamma^{\mu}\ell)$

SMZ

 $\begin{array}{ll} (\bar{d}\gamma_{\mu}d)(\bar{d}\gamma^{\mu}d) \\ (\bar{d}\gamma_{\mu}d)(\bar{u}\gamma^{\mu}u) \\ (\bar{u}\gamma_{\mu}u)(\bar{u}\gamma^{\mu}u) \end{array} \end{array} \begin{array}{l} (\bar{\ell}\gamma_{\mu}\ell)(\bar{d}\gamma^{\mu}d) \\ (\bar{\ell}\gamma_{\mu}\ell)(\bar{u}\gamma^{\mu}u) \end{array} (\bar{\ell}\gamma_{\mu}\ell)(\bar{\ell}\gamma^{\mu}\ell) \end{array}$

3. The minimal model: Z_{4}

Phenomenogy: tower of EFTs

$(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{d}\gamma^{\mu}d) \quad (H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{u}\gamma^{\mu}u) \quad (H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{\ell}\gamma^{\mu}\ell)$

 $\begin{array}{ll} (\bar{d}\gamma_{\mu}d)(\bar{d}\gamma^{\mu}d) \\ (\bar{d}\gamma_{\mu}d)(\bar{u}\gamma^{\mu}u) \\ (\bar{u}\gamma_{\mu}u)(\bar{u}\gamma^{\mu}u) \end{array} \end{array} \begin{array}{l} (\bar{\ell}\gamma_{\mu}\ell)(\bar{d}\gamma^{\mu}d) \\ (\bar{\ell}\gamma_{\mu}\ell)(\bar{u}\gamma^{\mu}u) \end{array} (\bar{\ell}\gamma_{\mu}\ell)(\bar{\ell}\gamma^{\mu}\ell) \end{array}$

 $v_{\Phi} \sim \epsilon M_{Q,E}$

3. The minimal model: Z_{A}

Phenomenogy: tower of EFTs

$(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{d}\gamma^{\mu}d) \quad (H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{u}\gamma^{\mu}u) \quad (H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{\ell}\gamma^{\mu}\ell)$

 $\begin{array}{ll} (\bar{d}\gamma_{\mu}d)(\bar{d}\gamma^{\mu}d) \\ (\bar{d}\gamma_{\mu}d)(\bar{u}\gamma^{\mu}u) \\ (\bar{u}\gamma_{\mu}u)(\bar{u}\gamma^{\mu}u) \end{array} \end{array} \begin{array}{l} (\bar{\ell}\gamma_{\mu}\ell)(\bar{d}\gamma^{\mu}d) \\ (\bar{\ell}\gamma_{\mu}\ell)(\bar{u}\gamma^{\mu}u) \end{array} (\bar{\ell}\gamma_{\mu}\ell)(\bar{\ell}\gamma^{\mu}\ell) \end{array}$

Observables:

- Rare meson decays
- Rare lepton decays
- Meson mixings

3. The minimal model: Z_{4}

Phenomenogy: tower of EFTs

$(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{d}\gamma^{\mu}d) \quad (H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{u}\gamma^{\mu}u) \quad (H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{\ell}\gamma^{\mu}\ell)$

 $\begin{array}{ll} (\bar{d}\gamma_{\mu}d)(\bar{d}\gamma^{\mu}d) \\ (\bar{d}\gamma_{\mu}d)(\bar{u}\gamma^{\mu}u) \\ (\bar{u}\gamma_{\mu}u)(\bar{u}\gamma^{\mu}u) \end{array} \end{array} \begin{array}{l} (\bar{\ell}\gamma_{\mu}\ell)(\bar{d}\gamma^{\mu}d) \\ (\bar{\ell}\gamma_{\mu}\ell)(\bar{u}\gamma^{\mu}u) \end{array} (\bar{\ell}\gamma_{\mu}\ell)(\bar{\ell}\gamma^{\mu}\ell) \end{array}$

Observables:

- ...

- Rare meson decays
- Rare lepton decays
- Meson mixings

3. The minimal model: Z_4

Phenomenogy: tower of EFTs

VLF ALP

See also:

.

Björkeroth, Chun, King (2018)

Bauer, Schnell, Plehn (2016)

Bauer, Neubert, Renner, Schnubel, Tamm (2017,2020,2022)

 $\mathscr{L} \supset \sum_{ii} c_{ii}^f \bar{f}_{L,i}(\rho + ia) f_{R,j} + \text{h.c.} + \text{h.o.}$ $f=u,d,e c_{ij} = \frac{1}{v_{\Phi}} \left[(U_L^{f\dagger} Q^F U_L^f) \hat{m}^f - \hat{m}^f (U_R^{f\dagger} Q^f U_R^f) \right]_{ij}$

3. The minimal model: Z_{4}

• VLF
• ALP
$$\mathscr{L} \supset \sum_{f=u,d,e} c_{ij}^{f}$$

See also:
Björkeroth, Chun, King (2018)
Bauer, Schnell, Plehn (2016)
Bauer, Neubert, Renner, Schnubel, Tamm (2017,2020,2022)

- c^{u} , $(c^{e})^{t}$ analogous

Froggat-Nielsen ALP

. . . .

Phenomenogy: tower of EFTs

 $f_{L,i}(\rho + ia)f_{R,i} + h.c. + h.o.$ $= \frac{1}{v_{\Phi}} \left[(U_L^{f\dagger} Q^F U_L^f) \hat{m}^f - \hat{m}^f (U_R^{f\dagger} Q^f U_R^f) \right]_{ii}$ $c^{d} \sim \begin{pmatrix} m_{d} & m_{s} \frac{m_{d}}{m_{s}} & m_{b} \frac{m_{d}}{m_{b}} \\ m_{d} \frac{m_{d}}{m_{s}} & m_{s} & m_{b} \frac{m_{s}}{m_{b}} \\ m_{d} \frac{m_{s}}{m_{s}} & m_{d} \frac{m_{s}}{m_{b}} \end{pmatrix}$ - $m_a \sim \lambda_4 v_{\Phi}$ free parameter $\frac{m_d}{m_d} \frac{m_d}{m_b} \frac{m_s}{m_b} \frac{m_b^2}{m_b^2}$ $(\lambda_{\Delta} \sim 1 \text{ natural expectation})$

3. The minimal model: Z_4

Froggat-Nielsen ALP

Phenomenogy: tower of EFTs

$\mathscr{L} \supset \sum_{ij} c_{ij}^f \bar{f}_{L,i}(\rho + ia) f_{R,j} + \text{h.c.} + \text{h.o.}$

3. The minimal model: Z_{4}

Rare lepton decays

3. The minimal model: Z_{4}

$$f_{x,i}(\rho + ia)f_{R,j} + h.c. + h.o.$$

3. The minimal model: Z_{Λ}

Phenomenogy: tower of EFTs

• VLF • ALP

- f=u,d,e
 - $+ \ell_i \to \ell_i \gamma$

 - + ...
 - + Cosmology
 - + Astrophysics
 - + Haloscopes + ...

Froggat-Nielsen ALP

 $\mathscr{L} \supset \sum c_{ii}^f \bar{f}_{L,i}(\rho + ia)f_{R,j} + \text{h.c.} + \text{h.o.}$

+ $\mu \rightarrow e$ conversion

BBN ($\Gamma_a \gtrsim H(T_{BBN})$, X-rays, ... SN1987, ...

3. The minimal model: Z_4

3. The minimal model: Z_4

Outline

- 1. Introduction: flavor puzzle and Froggatt-Nielsen models
- 2. Z_N Froggatt-Nielsen
- 3. The minimal model: Z_4
 - Setup
 - Phenomenology
- 4. Conclusion

- FN models remain some of the most popular flavor models • Discrete FN models allow massive ALP, lower FN scale • Z_4 : minimal, predictive framework with simple UV completion Phenomenology: interplay between VLF and ALP crucial

- FN models can live at few TeV scale!

Thank you for your attention!

Froggat-Nielsen ALP

Backup

 $\mathscr{L}_{\mathrm{UV}} \supset \sum_{k} y_{k} \Phi \bar{\Psi}_{L,k+1} \psi_{R,k} \longrightarrow \frac{\lambda'_{N}}{M_{\Phi}^{N-4}} \sim \frac{1}{M_{w}^{N-4}} \frac{\Pi_{k} y_{k}}{16\pi^{2}}$

 $-\epsilon^{N/2} \sim (y_{e}/y_{t}) \longrightarrow \text{large } N \text{ disfavored } (\epsilon \sim (y_{e}/y_{t})^{2/N})$

 Z_N potential

 $V(\Phi) = -m^2 |\Phi|^2 + \frac{\lambda}{2} |\Phi|^4 - \frac{1}{4} \frac{\lambda'_N}{M_{\Phi}^{N-4}} [\Phi^N + (\Phi^*)^N] + \dots$

$q_{1.2.3} \sim (2,1,0)$ $\bar{u}_{1.2.3} \sim (2,1,0)$ $\bar{d}_{1.2.3}(2,2,2,2)$ $\ell_{1,2,3} \sim (4,4,4) \quad \bar{e}_{1,2,3} \sim (0,1,2)$

 $\epsilon \simeq 6.6 \times 10^{-2}$

Z_8 model

$\begin{cases} \hat{y}_{ii}^{d,e} \sim (\epsilon^4, \epsilon^3, \epsilon^2) \\ \hat{y}_{ii}^{u} \sim (\epsilon^4, \epsilon^2, 1) \end{cases} Y_d \simeq \begin{pmatrix} 0.55\epsilon^4 \ 2.5\epsilon^4 \ (0.73 - 1.84i)\epsilon^4 \\ 0 \ 0.74\epsilon^3 \ 1.51\epsilon^3 \\ 0 \ 0 \ 2.4\epsilon^2 \end{pmatrix}, \quad Y_u \simeq \begin{pmatrix} 0.25\epsilon^4 \ z_{u_2}\epsilon^3 \ z_{u_3}\epsilon^2 \\ y_{u_1}\epsilon^3 \ 0.57\epsilon^2 \ y_{u_3}\epsilon \\ x_{u_1}\epsilon^2 \ x_{u_2}\epsilon \ 0.71 \end{pmatrix}$ $Y_e \simeq egin{pmatrix} 0.15\epsilon^4 & 0 & 0 \ z_{e_2}\epsilon^4 & 2.1\epsilon^3 & 0 \ z_{e_3}\epsilon^4 & y_{e_3}\epsilon^3 & 2.3\epsilon^2 \end{pmatrix}.$

Z_g model

UV completion:

 $[L_N] = 0, \quad [L_{N-1}^a] = -1, \quad [L_{N-2}^i] = -2, \quad [L_{N-3}^i] = -3$

 $[Q_2^a] = 0, \quad [Q_1] = 1,$ $[U_2^a] = 0, \quad [U_1] = -1,$ $[D_2^i] = 0, \quad [D_1^i] = -1.$

Froggat-Nielsen ALP

