

Semileptonic Measurements from Belle and Belle II

UNIVERSITÄT BONN

DISCRETE 2024

Florian Bernlochner

1

Florian Bernlochner (florian.bernlochner@uni-bonn.de)

Puzzles...

It may look cute, but that might be deceiving...

Puzzles...

It may look cute, but that might be deceiving...

Obs.	Current World Av./Data	Current SM Prediction	Significance
$\overline{\mathcal{R}(D)}$	0.340 ± 0.030	0.299 ± 0.003	1.2σ
$\mathcal{R}(D^*)$	0.295 ± 0.014	0.258 ± 0.005	2.5σ $\int^{5.10}$
$P_{\tau}(D^*)$	$-0.38\pm0.51^{+0.21}_{-0.16}$	-0.501 ± 0.011	0.2σ
$F_{L,\tau}(D^*)$	$0.60 \pm 0.08 \pm 0.04$	0.455 ± 0.006	1.6σ
$\mathcal{R}(J\!/\!\psi)$	$0.71 \pm 0.17 \pm 0.18$	0.2582 ± 0.0038	1.8σ
$\mathcal{R}(\pi)$	1.05 ± 0.51	0.641 ± 0.016	0.8σ
$\overline{\mathcal{R}(D)}$	0.337 ± 0.030	0.299 ± 0.003	1.3σ
$\mathcal{R}(D^*)$	0.298 ± 0.014	0.258 ± 0.005	2.5σ \int 5.00

F. Bernlochner, Manuel Franco Sevilla, Dean J. Robinson, Guy Wormser, Review of Modern Physics, arXiv:2101.08326 [hep-ex]

The question of tagging:

At e^+e^- -B-Factories we can leverage the known initial collision kinematics

Can gain even more information, if we reconstruct

second B decay
$$\widehat{=}$$
 tagging

Idea comes in many flavors:

- Inclusive tagging

- Hadronic tagging

- SL tagging

Efficiency

e.g. with hadronic tagging the full event kinematics but not the neutrino is reconstructed

E.g. if just one final state particle is missing, then with $Y = X\ell'$

 $\cos \theta_{BY} = \frac{2E_B E_Y - m_B^2 - m_Y^2}{2|\mathbf{p}_B||\mathbf{p}_V|} \in [-1,1]$

Exclusive Tagging in a nutshell

From arXiv:2008.06096 [hep-ex]

Reconstruct B-Mesons in **several stages**:

start with detector stable particles; then progress to simple composite states; combine the composite states to build more complexity

Each **stage** trains a **Boosted Decision Tree (BDT)** to identify good combinations;

each stage's BDT output is used as input for the next stage + all kinematic information

- + (particle identification scores)
- + vertex fit probabilities

Exclusive Tagging in a nutshell

From arXiv:2008.06096 [hep-ex]

Reconstruct B-Mesons in several stages:

start with detector stable particles; then progress to simple composite states; combine the composite states to build more complexity

Each **stage** trains a **Boosted Decision Tree (BDT)** to identify good combinations;

each stage's BDT output is used as input for the next stage + all kinematic information

- + (particle identification scores)
- + vertex fit probabilities

Exclusive Tagging in a nutshell

From arXiv:2008.06096 [hep-ex]

Reconstruct B-Mesons in several stages:

start with detector stable particles; then progress to simple composite states; combine the composite states to build more complexity

Each **stage** trains a **Boosted Decision Tree (BDT)** to identify good combinations;

each stage's BDT output is used as input for the next stage + all kinematic information

- + (particle identification scores)
- + vertex fit probabilities

Recent Results Overview

Measurements of Lepton **Mass squared moments** in inclusive $B \to X_c \ell \bar{\nu}_{\ell}$ Decays with the Belle II Experiment [Phys. Rev. D 107, 072002, arXiv:2205.06372]

First Measurement of $\mathscr{R}(X_{\tau/\ell})$ as an Inclusive Test of the $b \to c \tau \overline{\nu}_{\tau}$ Anomaly [Phys.Rev.Lett. 132 (2024) 21, 211804, arXiv:2311.07248]

4.5.6.7.

8.

Exclusive

Determination of $|V_{cb}|$ using $\overline{B}^0 \to D^{*+} \ell^- \overline{\nu}_{\ell}$ with Belle II, [Phys Rev D. 108, 092013, arXiv:2310.01170]

[Phys.Rev.Lett. 131 (2023) 21, 211801, arXiv:2303.17309]

First **Simultaneous** Determination of Inclusive and Exclusive $|V_{\mu b}|$

Test of **light-lepton universality** in **angular asymmetries** of hadronically tagged $B^0 \rightarrow D^{*-} \{e^+, \mu^+\} \nu$ decays at Belle II, [Phys.Rev.Lett. 131 (2023) 18, 181801, arXiv:2308.02023]

Measurement of **Angular Coefficients** of $B \to D^* \ell \bar{\nu}_{\ell}$, Implications on $|V_{cb}|$ and Tests of Lepton Flavor Universality, [Phys.Rev.Lett. 133 (2024) 13, 131801, arXiv: 2310.20286]

A test of **lepton flavor universality** with a measurement of $\mathscr{R}(D^*)$ using hadronic B tagging at the Belle II experiment, [Phys.Rev.D 110 (2024) 7, 072020, 2401.02840]

Determination of $|V_{ub}|$ from simultaneous measurements of untagged $B^0 \to \pi^- \ell \bar{\nu}_\ell$ and $B^+ \to \rho^0 \ell \bar{\nu}_\ell$ decays [Submitted to PRD, arXiv:2407.17403]

Belle II Status

Run 2 of experiment started Jan 29th 2024

Collected ca. 0.55/ab = BaBar

Current status:

Sudden beam losses of unknown origin hinder the collider to reach stable operations

→ Devoting significant fraction of running time for machine studies to understand instabilities

10

Event-wise Master-formula

$$\langle q^{2n} \rangle = \frac{\sum_{i}^{N_{\text{data}}} w(q_i^2) \times q_{\text{calib},i}^{2n}}{\sum_{j}^{N_{\text{data}}} w(q_j^2)} \times \mathcal{C}_{\text{calib}} \times \mathcal{C}_{\text{gen}}$$

Measurements of Lepton Mass squared moments in inclusive $B \rightarrow X_c \ell \bar{\nu}_{\ell}$ Decays with the Belle II Experiment [Phys. Rev. D 107, 072002, arXiv:2205.06372]

Measurements of Lepton Mass squared moments in inclusive $B \rightarrow X_c \ell \bar{\nu}_{\ell}$ Decays with the Belle II Experiment [Phys. Rev. D 107, 072002, arXiv:2205.06372]

Measurements of Lepton Mass squared moments in inclusive $B \rightarrow X_c \ell \bar{\nu}_{\ell}$ Decays with the Belle II Experiment [Phys. Rev. D 107, 072002, arXiv:2205.06372]

$|V_{cb}|$ from q^2 mom.

0.6

F. Bernlochner, M. Fael, K. Olschwesky, E. Persson, R. Van Tonder, K. Vos, M. Welsch [JHEP 10 (2022) 068, arXiv:2205.10274]

 $|V_{cb}| = (41.69 \pm 0.59|_{\text{fit}} \pm 0.23|_{\text{h.o.}}) \cdot 10^{-3} = (41.69 \pm 0.63) \cdot 10^{-3}$

Belle II

18

Inclusive $B \to X\tau\bar{\nu}_{\tau}$ offer a great path to **cross check** anomalous behavior of $R(D^{(*)})$ **Observable:** $R(X_{\tau/\ell}) = \frac{\mathscr{B}(B \to X\tau\bar{\nu}_e)}{\mathscr{B}(B \to X\ell\bar{\nu}_{\mu})}_{\ell = e, \mu}$ $\ell = e, \mu$ Inclusive $B \to X \tau \bar{\nu}_{\tau}$ offer a great path to **cross check** anomalous behavior of $R(D^{(*)})$ $D, D^*, D^{**}, D^{(*)}\pi, \dots$

Observable:

$$R(X_{\tau/\ell}) = \frac{\mathscr{B}(B \to X\tau\bar{\nu}_e)}{\mathscr{B}(B \to X\ell\bar{\nu}_\mu)} \ell = e, \mu$$

Strategy: Use hadronic tagging to select sample of $B \to X \tau \bar{\nu}_{\ell}$ with $\tau \to \tau \bar{\nu}_{\ell} \bar{\nu}_{\tau} \bar{\nu}_{\tau}$

Key variables:

$$p_{\ell}^{B}$$
 : $M_{\text{miss}}^{2} = \left(p_{B_{\text{sig}}} - p_{X} - p_{\ell}\right)^{2}$

Inclusive $B \to X\tau\bar{\nu}_{\tau}$ offer a great path to **cross check** anomalous behavior of $R(D^{(*)})$ **Observable:** $R(X_{\tau/\ell}) = \frac{\mathscr{B}(B \to X\tau\bar{\nu}_e)}{\mathscr{B}(B \to X\ell'\bar{\nu}_{\mu})}_{\ell = e, u}$

Strategy: Use hadronic tagging to select sample of $B \to X \tau \bar{\nu}_{\ell}$ with $\tau \to \bar{\nu}_{\ell} \bar{\nu}_{\tau}$

$$R(X_{\tau/\ell}) = \frac{\mathscr{B}(B \to X\tau\bar{\nu}_e)}{\mathscr{B}(B \to X\ell\bar{\nu}_\mu)} = 0.228 \pm 0.016(\text{stat}) \pm 0.036(\text{syst})$$

$$R(X_{\tau/\ell}) = \frac{\mathscr{B}(B \to X\tau\bar{\nu}_e)}{\mathscr{B}(B \to X\ell\bar{\nu}_{\mu})} = 0.228 \pm 0.016(\text{stat}) \pm 0.036(\text{syst})$$

$$0.223 \pm 0.005$$

Belle I Hadronic Tagging (FR)

ca. factor of 2 less efficient, but focus on cleaner tags

Hadronic **tagging** just is **fun**: Capability to identify **kinematic** and **constituents** of X_u **system**

Charged Tracks Neutral Clusters

$$p_X = \sum_i \left(\sqrt{m_\pi^2 + |\mathbf{p}_i|^2}, \mathbf{p}_i \right) + \sum_j \left(E_j, \mathbf{k}_j \right)$$

$$q^{2} = (p_{sig} - p_{X})^{2}$$
 $M_{X} = \sqrt{(p_{X})^{\mu} (p_{X})_{\mu}}$

$$m_{\rm miss}^2 = \left(p_{\rm sig} - p_X - p_\ell\right)^2 \approx m_\nu^2 = 0 \,{\rm GeV^2}$$

But ... this is still a pretty difficult measurement

First **Simultaneous** Determination of Inclusive and Exclusive $|V_{ub}|$ [Phys.Rev.Lett. 131 (2023) 21, 211801, arXiv:2303.17309]

Belle I Hadronic Tagging (FR)

ca. factor of 2 less efficient, but focus on cleaner tags

Inclusive $B \to X_u \ell \bar{\nu}_\ell$ measurements are extremely challenging due to dominant $B \to X_c \ell \bar{\nu}_\ell$ background

Clean **separation** only **possible** in certain **kinematic regions**, e.g. **lepton endpoint** or **low** M_X

Multivariate Sledgehammer

Before BDT selection

signal B rest frame

New Idea: Exploit that exclusive X_u final states can be separated using the # of charged pions

 $n_{\pi^{+}} = 0: \quad B \to \pi^{0} \ell \bar{\nu}_{\ell}$ $n_{\pi^{+}} = 1: \quad B \to \pi^{+} \ell \bar{\nu}_{\ell}$ $n_{\pi^{+}} = 2: \quad \text{other}$ $B \to X_{u} \ell \bar{\nu}_{\ell}$ $n_{\pi^{+}} \geq 3: \quad B \to X_{u} \ell \bar{\nu}_{\ell}$

Use 'thrust', expect more collimated system for $B \to \pi^0 \ell \bar{\nu}_\ell$ and $B \to \pi^+ \ell \bar{\nu}_\ell$ than for other processes

$$\max_{|\mathbf{n}|=1} \left(\sum_{i} |\mathbf{p_i} \cdot \mathbf{n}| / \sum_{i} |\mathbf{p_i}|\right)$$

Extraction of **BFs** and $B \rightarrow \pi$ form factors, in 2D fit of $q^2 : n_{\pi^+}$

Use high M_X to constrain $B \to X_c \ell \bar{\nu}_\ell$

$$\begin{bmatrix}
\mathcal{B}(\overline{B}^0 \to \pi^+ \ell^- \bar{\nu}_\ell) = (1.43 \pm 0.19 \pm 0.13) \times 10^{-4}, \\
\Delta \mathcal{B}(B \to X_u \ell \bar{\nu}_\ell) = (1.40 \pm 0.14 \pm 0.23) \times 10^{-3},
\end{bmatrix} \rho = 0.10$$

Two sets of results:

1) FLAG 2022

Flavor Lattice Averaging Group

 $\left| V_{ub}^{\text{excl.}} \right| / \left| V_{ub}^{\text{incl.}} \right| = 1.06 \pm 0.14 \,,$

2) FLAG 2022 + all experimental information on $B \rightarrow \pi$ FF \setminus

 $\left| V_{ub}^{\text{excl.}} \right| / \left| V_{ub}^{\text{incl.}} \right| = 0.97 \pm 0.12 \,,$

Determine **1D projections**:

Determine **1D projections**:

$\cos \theta_{BY}$ $\Delta M = M_{D^*} - M_D$ **Belle II** $\int \mathcal{L} dt = 189 \, \text{fb}^{-1}$ signal bkg with true D* 6000 7000 25.0 th fake D* bkg with fake D* MC Uncertainty $\overline{B}^0 \rightarrow D^{*+} e^- \overline{\nu}_e$ Signal 5000 6000 0.8 100 Data True D* background 500 4000 20.0 Entries 0005 Entries Entries Fake D^{*} background Fit 10^3 entries / bin Entri Ŧ Data 300 2000 ///// MC unc. 15.0 200 0.2^{‡000} 100 1000 0.0 10.0 1111111 Pull Pull Pull 5.0 0.142 0.144 0.146 0.148 0.150 0.152 0.56 0.156 ΔM 0.142 $\cos \theta_{BY}$ 0.0 signa bkg v bkg v MC U JData 1.5 1.11.2 1.3 1.4 1.0 W Correct for migration effects: 04 400 400 Ē 0.2 **Belle II** Coppedet for $\int \mathcal{L} dt \stackrel{0}{=} 189 \, \text{fb}^{0.14}$ 0 0 0 0 15 $\int \mathcal{L} dt = 189 \, \text{fb}^{-1}$ 0.2 0.9 22 70^{0.142}0.144 $\overline{B}{}^{0} \rightarrow D^{*+} \ell^{-} \overline{\nu}_{\ell}$ $\overline{B}^0 \rightarrow D^{*+} \ell^- \overline{\nu}_\ell$ 8.0 0.2 60 22 1.4 *d*[/*dw* [×10⁻¹⁵ GeV] 0 0 0 0 0 0 0 6**0** 0.5 1.4 G 1.3 0.4 MC I Data ///// MC Uncertain $d\Gamma/d\cos\theta_i$ [\mathbf{X} 10⁻¹⁵ 12 nstructed 1.2 1.3 0.4 0.1 10 40 0.1 0.1 2.3 8 2.2 0.2 0 30 6 8.3 2.6 0 0 0.1 Fitted CLN 0 4 -20 6 85 10 Fitted BGL 2 0 Experimental data -10 150 0.152 0.154 0.156 14 85 2.1 0 0 -1.00 -0.75 -0.50 -0.25 0.25 0.50 0.75 1. 1.1 15 1.2 1.25 1.3 1.35 Generated w 1.1 1.2 1.3 1.4 0.00 , 1.00 1.5 ö 1.55000+0 $\frac{1}{\cos\theta_{l}}$ bkg with true D*45 W **Belle II** 4000 bkg v $\int \mathcal{L} dt = 189 \, \text{fb}^{-1}$ **Belle II** 5000 $\int \mathcal{L} dt = 189 \, \text{fb}^{-1}$ MC U 21 6.28 $\overline{B}{}^{0} \to D^{*+} \ell^{-} \overline{\nu}_{\ell}$ 5 9 13 $\overline{B}^0 \rightarrow D^{*+} \ell^- \overline{\nu}_\ell$ 84 15 1.4 (

Determine 1D projections:

Test of **light-lepton universality** in **angular asymmetries** of hadronically tagged # ³⁶ $B^0 \rightarrow D^{*-} \{e^+, \mu^+\} \nu$ decays at Belle II, [Phys.Rev.Lett. 131 (2023) 18, 181801, arXiv:2308.02023]

Construct **asymmetries**:

$$\mathcal{A}(w) = \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}w}\right)^{-1} \left[\int_{0}^{1} - \int_{-1}^{0}\right] dX \frac{\mathrm{d}\Gamma}{\mathrm{d}w\mathrm{d}X},$$

$$\int_{0}^{1} \frac{A_{\mathrm{FB}} : \mathrm{d}X \to \mathrm{d}(\cos\theta_{l})}{\int_{0}^{1} S_{3} : \mathrm{d}X \to \mathrm{d}(\cos2\chi)}$$

$$S_{5} : \mathrm{d}X \to \mathrm{d}(\cos2\chi)$$

$$S_{5} : \mathrm{d}X \to \mathrm{d}(\cos\chi\cos\theta_{V})$$

$$S_{7} : \mathrm{d}X \to \mathrm{d}(\sin\chi\cos\theta_{V})$$

$$S_{9} : \mathrm{d}X \to \mathrm{d}(\sin2\chi)$$

E.g. forward-backward asymmetry in $\cos \theta_{\ell}$

$$A_{\rm FB} = \frac{N^+ - N^-}{N^+ + N^+}$$

 $1 < \times 10^{10}$

Test of **light-lepton universality** in **angular asymmetries** of hadronically tagged $\#^{37}$ $B^0 \rightarrow D^{*-} \{e^+, \mu^+\} \nu$ decays at Belle II, [Phys.Rev.Lett. 131 (2023) 18, 181801, arXiv:2308.02023]

Test of **light-lepton universality** in **angular asymmetries** of hadronically tagged # ³⁸ $B^0 \rightarrow D^{*-} \{e^+, \mu^+\} \nu$ decays at Belle II, [Phys.Rev.Lett. 131 (2023) 18, 181801, arXiv:2308.02023]

Test of **light-lepton universality** in **angular asymmetries** of hadronically tagged # ³⁹ $B^0 \rightarrow D^{*-} \{e^+, \mu^+\} \nu$ decays at Belle II, [Phys.Rev.Lett. 131 (2023) 18, 181801, arXiv:2308.02023]

Can also split these **asymmetries** further into *w* **bins** :

$$w \in [1, w_{\max}]$$

 $w \in [1, 1.275]$
 $w \in [1.275, w_{\max}]$

Measurement of Angular Coefficients of $B \to D^* \ell \bar{\nu}_{\ell}$, Implications on $|V_{cb}|$ and Tests of Lepton Flavor Universality, [Phys.Rev.Lett. 133 (2024) 13, 131801, arXiv: 2310.20286]

Full angular information of $B \to D^* \ell \bar{\nu}_{\ell}$ can be encoded into 12 coefficients :

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2 \,\mathrm{d}\cos\theta_V \,\mathrm{d}\cos\theta_\ell \,\mathrm{d}\chi} = \frac{G_F^2 \left|V_{cb}\right|^2 m_B^3}{2\pi^4} \longrightarrow \text{Each of these coefficients}}$$

$$\times \left\{ J_{1s} \sin^2\theta_V \,\mathrm{d}\cos\theta_\ell \,\mathrm{d}\chi = \frac{G_F^2 \left|V_{cb}\right|^2 m_B^3}{2\pi^4} \longrightarrow \text{Each of these coefficients}} \right\}$$

$$\times \left\{ J_{1s} \sin^2\theta_V \,\mathrm{d}\cos\theta_\ell \,\mathrm{d}\chi = \frac{G_F^2 \left|V_{cb}\right|^2 m_B^3}{2\pi^4} \longrightarrow \frac{G_F^2 \left|V_{cb}\right|^2 m_B^3}{2\pi^4} \longrightarrow \frac{G_F^2 \left|V_{cb}\right|^2 m_B^3}{2\pi^4} \right\}$$

$$+ \left(J_{2s} \sin^2\theta_V + J_{1c} \cos^2\theta_V\right) \cos^2\theta_\ell + J_{2s} \sin^2\theta_V \sin^2\theta_\ell \cos^2\theta_V\right) \cos^2\theta_\ell + J_3 \sin^2\theta_V \sin^2\theta_\ell \cos^2\theta_V \cos^2\theta_\ell + J_5 \sin^2\theta_V \sin^2\theta_\ell \cos^2\theta_V \cos^2\theta_\ell + J_6 \sin^2\theta_V \sin^2\theta_\ell \sin$$

8 Coefficients relevant in massless limit & SM

Measurement of Angular Coefficients of $B \to D^* \ell \bar{\nu}_{\ell}$, Implications on $|V_{cb}|$ and Tests of Lepton Flavor Universality, [Phys.Rev.Lett. 133 (2024) 13, 131801, arXiv: 2310.20286]

Full angular information of $B \to D^* \ell \bar{\nu}_{\ell}$ can be encoded into 12 coefficients :

A test of **lepton flavor universality** with a measurement of $\mathscr{R}(D^*)$ using had. B tagging at the Belle II experiment, [Phys.Rev.D 110 (2024) 7, 072020, 240

Key variables:

$$E_{\text{ECL}} : M_{\text{miss}}^2 = \left(p_{B_{\text{sig}}} - p_X - p_\ell\right)^2$$

Unassigned neutral energy depositions in calorimeter

A test of **lepton flavor universality** with a measurement of $\mathscr{R}(D^*)$ using had. B tagging at the Belle II experiment, [Phys.Rev.D 110 (2024) 7, 072020, 2401

Candidates / (0.1 GeV)

Pull

0.2

0

0.4

0.6

0.8

 $E_{\rm ECL}$ [GeV]

2D likelihood fit:

SM expectation: 0.249 +/- 0.002

$$R(D^*) = 0.262 \stackrel{+0.041}{_{-0.039}}(\text{stat}) \stackrel{+0.035}{_{-0.032}}(\text{syst})$$

Source	Uncertainty
PDF shapes	+9.1% -8.3%
Simulation sample size	+7.5% -7.5%
$\overline{B} \to D^{**} \ell^- \overline{\nu}_\ell$ branching fractions	+4.8% -3.5%
Fixed backgrounds	+2.7% -2.3%
Hadronic B decay branching fractions	+2.1% -2.1%
Reconstruction efficiency	+2.0% -2.0%
Kernel density estimation	+2.0% -0.8%

Key variables: E_{ECL} : $M_{\text{miss}}^2 = \left(p_{B_{\text{sig}}} - p_X - p_\ell\right)^2$ Signal enhanced region of $M_{\rm miss}^2 \in [1.5, 6] \, {\rm GeV}^2$ **Belle II** Preliminary $D^{*+} \rightarrow D^0 \pi^+$ \rightarrow Data 30 $D^*\tau v$ $\int L \, dt = 189.3 \, \text{fb}^{-1}$ D^*lv $1.5 < M_{\rm miss}^2 < 6.0 \,{\rm GeV}^2/c^4$ 25 $D^{**l}(\tau)v$ Hadronic B 20 Fake $D^{(*)}$ Other BG 15 Fit uncertainty 10 Signa 5 0 2 0 -2

1.8

1.6

4

1.2

2

Determination of $|V_{ub}|$ from simultaneous measurements of untagged $B^0 \to \pi^- \ell \bar{\nu}_{\ell}$ and $B^+ \to \rho^0 \ell \bar{\nu}_{\ell}$ decays [Submitted to PRD, arXiv:2407.17403]

First reconstruct lepton: **expect fairly** energetic lepton (> 1 GeV) and below kinematic limit (< 2.85 GeV) # 45

Determination of $|V_{ub}|$ from simultaneous measurements of untagged $B^0 \to \pi^- \ell \bar{\nu}_\ell$ and $B^+ \to \rho^0 \ell \bar{\nu}_\ell$ decays [Submitted to PRD, arXiv:2407.17403]^{Karlsrube Institute of Technology}

Determination of $|V_{ub}|$ from simultaneous measurements of untagged $B^0 \to \pi^- \ell \bar{\nu}_\ell$ and $B^+ \to \rho^0 \ell \bar{\nu}_\ell$ decays [Submitted to PRD, arXiv:2407.17403]

47

Reconstruct **Rest-of-Event** particles to estimate neutrino kinematics & reconstruct $q^2 = \left(p_{B_{\text{sig}}} - p_{\pi/\rho}\right)^2$

Determination of $|V_{ub}|$ from simultaneous measurements of untagged $B^0 \rightarrow \pi^- \ell \bar{\nu}_\ell$ and $B^+ \rightarrow \rho^0 \ell \bar{\nu}_\ell$ decays [Submitted to PRD, arXiv:2407.17403]

48

Determination of $|V_{ub}|$ from simultaneous measurements of untagged $B^0 \to \pi^- \ell \bar{\nu}_\ell$ and $B^+ \to \rho^0 \ell \bar{\nu}_\ell$ decays [Submitted to PRD, arXiv:2407.17403]

Measured differential branching fractions as a function of q^2 :

8.

49

Summary & Conclusion

Summary & Conclusion

More Information

Florian Bernlochner (florian.bernlochner@uni-bonn.de)

q^2 Reconstruction Methods

Can exploit that the B meson lies on a **cone**, whose opening angle is fully determined by properties of visible particles:

$$\cos \theta_{BY} = \frac{2E_B E_Y - m_B^2 - m_Y^2}{2|\mathbf{p}_B||\mathbf{p}_Y|}$$

$$\int_{Y=\pi\ell/\rho\ell} \pi\ell/\rho\ell$$

Can use this to estimate B meson direction building a weighted average on the cone

 $(E^B, p_B^x, p_B^y, p_B^z) = (\sqrt{s/2}, |\mathbf{p}_B| \sin \theta_{BY} \cos \phi, |\mathbf{p}_B| \sin \theta_{BY} \sin \phi, |\mathbf{p}_B| \cos \theta_{BY})$

with weights according to $w_i = \sin^2 \theta_i$ with θ denoting the polar angle

(following the angular distribution of $\Upsilon(4S) \rightarrow B\bar{B}$) True Signal

Belledasianadationbine both estimates v

2000 E	D + ROE Frame
2000 [Decalution, 0 205 CoV2

Rest Frame: 60.1%

ariate Sledgehammer

0.2 0.4 0.6 0.8 Continuum Suppression Classifier

ariate Sledgehammer

Exclusive make-up of $B \to X_u \ell \bar{\nu}_\ell$:

B	Value B^+	Value B^0
$B \to \pi \ell^+ \nu_\ell$ ^{a,e}	$(7.8 \pm 0.3) \times 10^{-5}$	$(1.5 \pm 0.06) \times 10^{-4}$
$B \to \eta \ell^+ \nu_\ell {}^{\mathrm{b,e}}$	$(3.9\pm0.5)\times10^{-5}$	-
$B \to \eta' \ell^+ \nu_\ell ^{\mathrm{b,e}}$	$(2.3\pm0.8)\times10^{-5}$	-
$B \to \omega \ell^+ \nu_\ell {}^{\mathrm{c,e}}$	$(1.2 \pm 0.1) \times 10^{-4}$	-
$B \to \rho \ell^+ \nu_\ell {}^{\mathrm{c,e}}$	$(1.6 \pm 0.1) \times 10^{-4}$	$(2.9 \pm 0.2) \times 10^{-4}$
$B \to X_u \ell^+ \nu_\ell ^{\mathrm{d,e}}$	$(2.2 \pm 0.3) \times 10^{-3}$	$(2.0 \pm 0.3) \times 10^{-3}$

Hybrid = Combining exclusive & inclusive predictions

$$\Delta \mathcal{B}_{ijk}^{\text{incl}} = \Delta \mathcal{B}_{ijk}^{\text{excl}} + w_{ijk} \times \Delta \mathcal{B}_{ijk}^{\text{incl}},$$

$$\begin{split} q^2 &= [0, 2.5, 5, 7.5, 10, 12.5, 15, 20, 25] \,\mathrm{GeV}^2 \,, \\ E_\ell^B &= [0, 0.5, 1, 1.25, 1.5, 1.75, 2, 2.25, 3] \,\mathrm{GeV} \,, \\ M_X &= [0, 1.4, 1.6, 1.8, 2, 2.5, 3, 3.5] \,\mathrm{GeV} \,. \end{split}$$

"Non-resonant" $B \to \pi \pi \ell \bar{\nu}_{\ell} = \text{everything that is not } B \to \rho \ell \bar{\nu}_{\ell}$

Use Belle measurement of $B \to \pi \pi \ell \bar{\nu}_{\ell}$ to estimate contamination using a simple linear model; fit distribution with **coarse** binning and vary within uncertainties.

Also correct for chosen ρ mass in the simulation; add uncertainties due to ρ - ω interference from fit to Belle $B \to \pi \pi \ell \bar{\nu}_{\ell}$ spectrum from <u>https://arxiv.org/abs/2401.08779</u>

model; fit distribution with **coarse** binning and vary within uncertainties.

Systematic Uncertainties

Largest uncertainties:

. . .

Continuum modelling simulated sample size "non-resonant" $\pi\pi$ (for ρ) & X_u modelling Physics constraints (N_{BB} , f_{+0} , isospin assumptions)

Depending on the bin systematically or statistically limited ; more data will help to reduce this further

0										
$B^+ o ho^0 \ell^+ u_\ell$										
Source	q1	q2	q3	q4	q5	q6	q7	q8	q9	q10
Detector effects	2.8	2.0	1.6	1.1	1.7	1.9	2.4	1.4	1.4	1.6
Beam energy	2.1	1.9	1.9	1.5	1.3	1.1	1.0	0.9	0.8	0.5
Simulated sample size	14.1	7.8	7.4	6.3	6.3	5.2	6.4	5.6	6.2	7.3
BDT efficiency	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
Physics constraints	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
Signal model	0.7	0.2	0.2	0.2	0.3	0.4	0.5	0.3	1.8	2.4
ρ lineshape	1.7	1.6	2.0	1.0	1.9	1.8	1.4	0.9	1.6	1.7
Nonresonant $B \to \pi \pi \ell \nu_{\ell}$	5.6	6.3	6.7	8.6	9.3	10.7	10.1	7.0	7.8	11.8
DFN parameters	3.6	5.5	4.1	3.5	1.1	1.2	2.7	1.7	1.9	2.3
$B \to X_u \ell \nu_\ell \text{ model}$	1.7	3.0	3.8	5.0	5.8	6.1	6.3	1.9	7.2	12.4
$B \to X_c \ell \nu_\ell \text{ model}$	1.8	1.9	1.7	1.1	1.4	1.7	0.9	0.9	1.9	2.6
Continuum	31.5	24.3	17.0	19.6	13.2	14.8	16.0	16.6	15.2	18.7
Total systematic	35.6	27.5	21.0	23.5	18.8	20.5	21.6	19.4	20.2	27.0
Statistical	30.0	17.5	20.8	14.4	12.4	13.6	14.1	10.4	12.2	11.8
Total	46.6	32.6	29.6	27.6	22.6	24.6	25.8	22.0	23.6	29.5

T													
$B^0 o \pi^- \ell^+ \nu_\ell$													
Source	q1	q2	q3	q4	q5	q6	q7	q8	q9	q10	q11	q12	q13
Detector effects	2.0	0.9	1.1	1.0	1.0	1.1	1.1	1.0	0.9	1.2	2.3	4.1	5.8
Beam energy	0.6	0.8	0.7	0.8	0.7	0.6	0.6	0.6	0.5	0.5	0.5	0.6	0.7
Simulated sample size	4.7	3.8	3.3	3.2	3.2	2.9	3.8	3.7	4.0	4.5	5.9	8.0	13.6
BDT efficiency	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Physics constraints	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9
Signal model	0.1	0.1	0.2	0.1	0.0	0.2	0.2	0.4	0.3	0.8	0.9	0.2	4.9
ρ lineshape	0.1	0.1	0.3	0.3	0.2	0.1	0.3	0.1	0.3	0.1	0.2	0.2	0.6
Nonresonant $B \to \pi \pi \ell \nu_{\ell}$	0.5	0.6	0.4	0.4	0.5	1.0	1.2	1.0	0.8	1.8	1.2	2.3	14.3
DFN parameters	0.8	0.4	1.5	1.6	1.4	1.7	1.2	0.1	0.7	1.2	2.9	3.5	3.7
$B \to X_u \ell \nu_\ell \text{ model}$	0.2	0.4	0.3	0.4	0.2	0.9	1.1	1.2	1.0	1.3	1.6	0.7	8.7
$B \to X_c \ell \nu_\ell \text{ model}$	1.4	2.0	1.7	1.3	1.3	1.4	1.8	1.6	1.3	1.4	1.1	0.5	1.7
Continuum	15.1	11.3	7.6	7.1	5.8	5.7	8.1	8.3	9.6	10.4	14.5	23.8	34.4
Total systematic	16.4	12.6	9.3	8.7	7.7	7.7	10.0	9.9	11.1	12.2	16.6	26.0	41.6
Statistical	11.0	8.8	7.9	7.0	7.5	6.4	7.9	7.7	9.1	10.7	9.6	14.6	22.6
Total	19.7	15.4	12.2	11.2	10.7	10.0	12.7	12.6	14.4	16.3	19.1	29.8	47.3

Summary

Step 1: bin up phase-space in $q^2 \sim w$ in however many bins you can afford

Step 2: Determine the # of signal events in specific phase-space regions

The coefficients are related to a weighted sun of events in a given q^2 bin

$$J_{i} = \frac{1}{N_{i}} \sum_{j=1}^{8} \sum_{k,l=1}^{4} \eta_{ij}^{\chi} \eta_{ik}^{\theta_{\ell}} \eta_{il}^{\theta_{V}} \left[\chi^{i} \otimes \theta_{\ell}^{j} \otimes \theta_{V}^{k} \right]$$

Normalization Factor

Weights

Phase space region

 \tilde{N}_{+}

 \tilde{N}_{-}

E.g. for J_3 : Split χ into 2 Regions

$$(x'+x') \in [0,\pi/4], [3/4\pi,5/4\pi], [7/4\pi,2\pi]$$

 $(x'-x') \in [\pi/4,3/4\pi], [5/4\pi,7/4\pi]$

 $\eta_i^{\theta_\ell}$ $\eta_i^{\theta_V}$ η_i^{χ} normalization N_i J_i J_{1s} {+} $\{+, a, a, +\}$ $\{-, c, c, -\}$ $2\pi(1)2$ $\{+\}$ $\{+, a, a, +\}$ $\{+, d, d, +\}$ J_{1c} $2\pi(1)(2/5)$ $\{+\}$ $\{-, b, b, -\}$ $\{-, c, c, -\}$ J_{2s} $2\pi(-2/3)2$ $\{-, b, b, -\}$ $\{+, d, d, +\}$ {+} J_{2c} $2\pi(-2/3)(2/5)$ $4(4/3)^2$ $\{+\}$ J_3 $\{+, -, -, +, +, -, -, +\}$ $\{+\}$ $4(4/3)^2$ $\{+,+,-,-,-,-,+,+\}$ $\{+,+,-,-\}$ $\{+,+,-,-\}$ J_4 $\{+\}$ $4(\pi/2)(4/3)$ $\{+, +, -, -\}$ $\{+, +, -, -, -, -, +, +\}$ J_5 {+} $\{+, +, -, -\}$ $\{-, c, c, -\}$ $2\pi(1)2$ J_{6s} $\{+, +, -, -\}$ {+} $\{+, d, d, +\}$ $2\pi(1)(2/5)$ J_{6c} $\{+, +, +, +, -, -, -, -\}$ {+} $\{+, +, -, -\}$ $4(\pi/2)(4/3)$ J_7 $4(4/3)^2$ $\{+, +, +, +, -, -, -, -\}$ $\{+,+,-,-\}$ $\{+,+,-,-\}$ $4(4/3)^2$ $\{+,+,-,-,+,+,-,-\}$ $\{+\}$ $\{+\}$

$$a = 1 - 1/\sqrt{2}, b = a\sqrt{2}, c = 2\sqrt{2} - 1, d = 1 - 4\sqrt{2}/5$$

Step 3: Reverse Migration and Acceptance Effects

Resolution effects: events with a **given "true"** value of $\{q^2, \cos \theta_{\ell'}, \cos \theta_V, \chi\}$ can fall into different reconstructed bins

(statistical overlap, systematics)

SM: { $J_{1s}^{q_i^2}, J_{1c}^{q_i^2}, J_{2s}^{q_i^2}, J_{2c}^{q_i^2}, J_3^{q_i^2}, J_4^{q_i^2}, J_5^{q_i^2}, J_{6s}^{q_i^2}$ }

e.g. 5 x 8 = 40 coefficients

or full thing (SM + NP) with **5 x 12 = 60 coefficients**

		0	0										
J_i	η_i^{χ}	$\eta_i^{ heta_\ell}$	$\eta_i^{ heta_V}$	normalization N_i									
J_{1s}	$\{+\}$	$\{+,a,a,+\}$	$\{-,c,c,-\}$	$2\pi(1)2$									
J_{1c}	$\{+\}$	$\{+,a,a,+\}$	$\{+,d,d,+\}$	$2\pi(1)(2/5)$									
J_{2s}	$\{+\}$	$\{-,b,b,-\}$	$\{-,c,c,-\}$	$2\pi(-2/3)2$									
J_{2c}	$\{+\}$	$\{-,b,b,-\}$	$\{+,d,d,+\}$	$2\pi(-2/3)(2/5)$									
J_3	$\{+,-,-,+,+,-,-,+\}$	$\{+\}$	$\{+\}$	$4(4/3)^2$									
J_4	$\{+,+,-,-,-,+,+\}$	$\{+,+,-,-\}$	$\{+,+,-,-\}$	$4(4/3)^2$									
J_5	$\{+,+,-,-,-,+,+\}$	$\{+\}$	$\{+,+,-,-\}$	$4(\pi/2)(4/3)$									
J_{6s}	$\{+\}$	$\{+,+,-,-\}$	$\{-,c,c,-\}$	$2\pi(1)2$									
J_{6c}	$\{+\}$	$\{+,+,-,-\}$	$\{+,d,d,+\}$	$2\pi(1)(2/5)$									
J_7	$\{+,+,+,+,-,-,-,-\}$	$\{+\}$	$\{+,+,-,-\}$	$4(\pi/2)(4/3)$									
J_8	$\{+,+,+,+,-,-,-,-\}$	$\{+,+,-,-\}$	$\{+,+,-,-\}$	$4(4/3)^2$									
J_9	$\{+,+,-,-,+,+,-,-\}$	{+}	{+}	$4(4/3)^2$									
a	$a = 1 = 1/\sqrt{2} = b = a = \sqrt{2} = a = 2\sqrt{2} = 1 = d = 1 = 4\sqrt{2}/5$												
a	$= 1 - 1/\sqrt{2}, b = a^{2}$	$V \angle , c \equiv \angle V$	2 - 1, a = 1	$a = 1 - 1/\sqrt{2}, b = a\sqrt{2}, c = 2\sqrt{2} - 1, a = 1 - 4\sqrt{2/3}$									