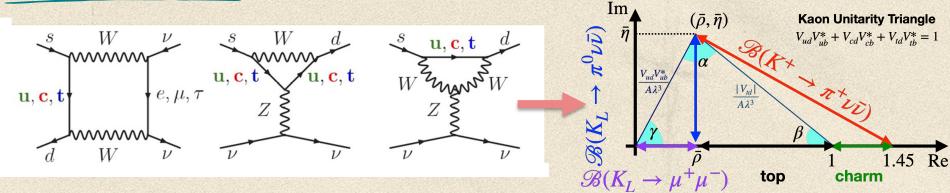


First observation of the ultra rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay by NA62

DISCRETE 2024, December 2nd–6th 2024, Ljubljana, Slovenia Speaker: Radoslav Marchevski On behalf of the NA62 Collaboration

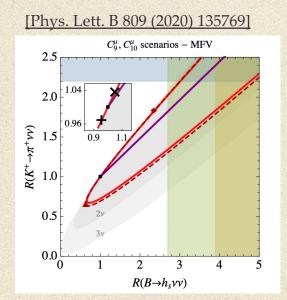
radoslav.marchevski@cern.ch radoslav.marchevski@epfl.ch

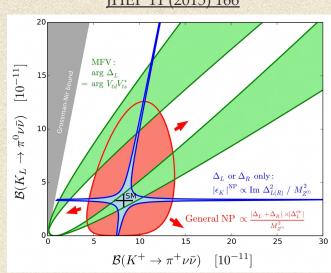


- The golden $K \rightarrow \pi v \bar{v}$ decay modes: Standard Model and beyond
- NA62: The *K*⁺ factory at the CERN north area
- NA62: Analysis strategy, Detector, Upgrades & Performance
- $K^+ \rightarrow \pi^+ \nu \bar{\nu}$: Analysis of Run 2 data
- $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ results: First observation of the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: a **golden** decay mode

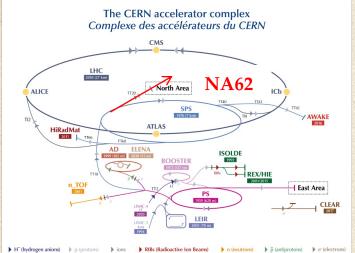
- $s \rightarrow d$ transition sensitive to the CKM structure of the SM: *loop* + *CKM suppression*
- Theoretically clean process: *dominated by short-distance physics*
- $K \pi$ Form Factor (FF) extracted from $K \rightarrow \pi l v_l$: *sub-% precision*
- Sensitive to new physics in the lepton sector as well: *involves* v_e , v_μ , and v_τ


Mode	SM Branching Ratio [1]	SM Branching Ratio [2]	Experimental Status
$K^+ o \pi^+ \nu \bar{\nu}$	$(8.60 \pm 0.42) \times 10^{-11}$	$(7.86 \pm 0.61) \times 10^{-11}$	$(10.6 \pm 4.0) \times 10^{-11}$ NA62 16-18
$K_L o \pi^0 \nu \bar{\nu}$	$(2.94 \pm 0.15) \times 10^{-11}$	$(2.68 \pm 0.30) \times 10^{-11}$	$< 2 \times 10^{-9}$ KOTO (2021 data)


^Recent SM calculations [1:Buras et al. EPJC 82 (2022) 7, 615][2:D'Ambrosio et al. JHEP 09 (2022) 148] (Differences in SM calculations from choice of CKM parameters: see [Eur.Phys.J.C 84 (2024) 4, 377])

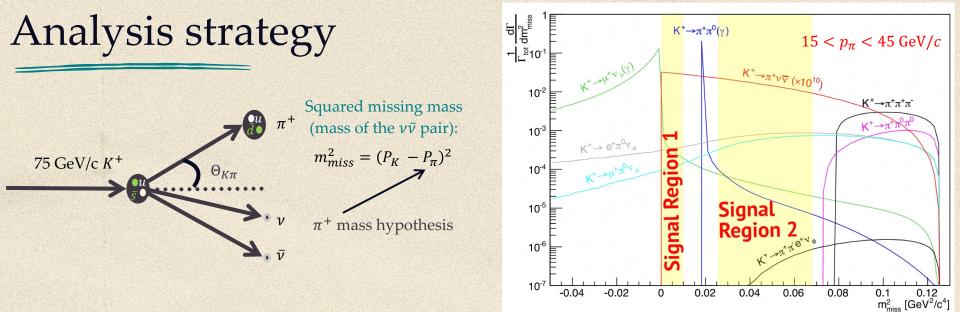
Testing the SM with FCNC: BSM models

- Correlations between BSM contributions to K^+/K_L modes: both need to be measured
- Correlations with other flavour observables (ϵ'/ϵ , ΔM_B , B decays) important
- Leptoquarks [EPJ.C 82 (2022) 4, 320], interplay between CC and FCNC [JHEP 07 (2023) 029], NP in neutrino sector [EPJ. C. 84 (2024) 7, 680], additional scalar/tenson contributions [JHEP 12 (2020) 186], [JHEP 10 (2024) 087]



IHEP 11 (2015) 166

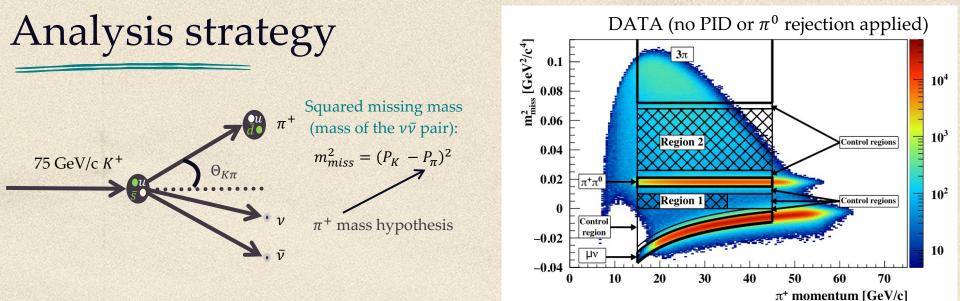
The NA62 experiment @ CERN



200 collaborators from 31 institutions

- Long tradition of kaon experiments at CERN
- NA62 main target: $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay measurement [PLB 791 (2019) 156] [JHEP 11 (2020) 042] [JHEP 06 (2021) 093] Broad physics program:
 - Rare K^+ decays (e.g. $K^+ \to \pi^+ \gamma \gamma$ [PLB 850 (2024) 138513])
 - LFV/LNV searches (e.g. $K^+ \to \pi^-(\pi^0)e^+e^+$ [PLB 830 (2022) 137172])
 - Exotics (e.g. Dark photon [PRL 133 (2024) 11, 111802])
- Data taking

•


- 2016-18 Physics run (45 + 160 + 217 days)
- 2021 Physics run (85 days [10 beam dump])
- 2022 Physics run (215 days)
- 2023 Physics run (205 days [10 beam dump])
- 2024 Physics run (204 days [12 beam dump, 7 low intensity])

- Highly boosted decay: $(75 \pm 1) \text{ GeV/c } K^+ (\gamma \sim 150)$
- Large undetectable missing energy carried away by the neutrinos
- All energy from visible particles must be detected
- π^+ momentum range 15 45 GeV/c ($E_{miss} > 30$ GeV)
- Hermetic detector coverage and O(100%) detector efficiency needed

• Requirements:

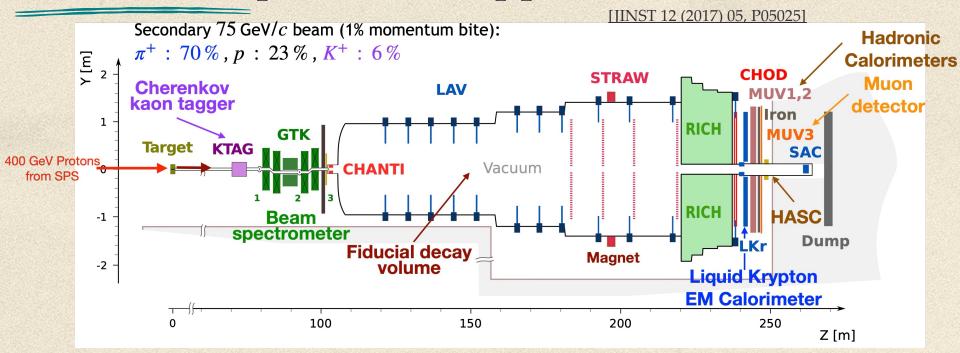
- Kinematic suppression $O(10^4)$
- μ^+ rejection $O(10^7)$
- π^0 rejection $O(10^7)$
- Time resolution *O*(100 ps)

- Highly boosted decay: $(75 \pm 1) \text{ GeV/c } K^+ (\gamma \sim 150)$
- Large undetectable missing energy carried away by the neutrinos
- All energy from visible particles must be detected
- π^+ momentum range 15 45 GeV/c ($E_{miss} > 30$ GeV)
- Hermetic detector coverage and O(100%) detector efficiency needed

• <u>Requirements:</u>

- Kinematic suppression $O(10^4)$
- μ^+ rejection $O(10^7)$
- π^0 rejection $O(10^7)$
- Time resolution *O*(100 ps)

Blast from the past: NA62 Run1 results



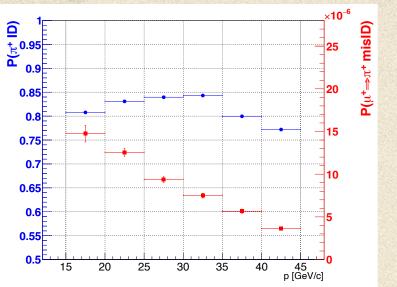
• $\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu}) = (10.6^{+4.0}_{-3.4}|_{stat} \pm 0.9_{syst}) \times 10^{-11} [\text{JHEP 06 (2021) 093}]$

• Background-only hypothesis $p = 3.4 \times 10^{-4} \Rightarrow$ significance 3.4σ

NA6

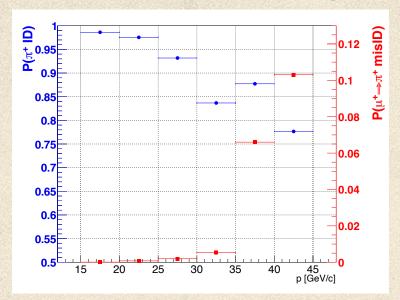
The NA62 experimental apparatus

• Designed and optimized to study $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decays


- Particle tracking: beam particle (GTK) & downstream tracks (STRAW)
- PID: *K*⁺ KTAG, π⁺ RICH, Calorimeters (LKr, MUV1/2), MUV3 (μ detector)
- Hermetic veto systems: CHANTI (beam interactions), LAV, LKr, IRC, SAC (γ)

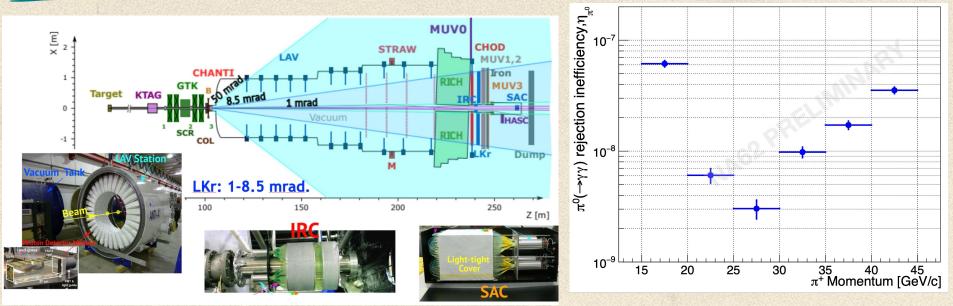
Particle ID performance: 2021-22 data

Calorimeters


- BDT classifier for LKr & MUV1/2
- + MUV3 (fast μ detector)

RICH

• Designed to distinguish between π^+/μ^+ in

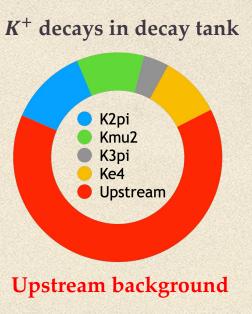

the 15 - 35 GeV/c momentum range

 $\varepsilon(\pi \, \text{ID}) = (73.00 \pm 0.01) \,\%$ $P(\mu^+ \,\text{misID as}\, \pi^+) = (1.3 \pm 0.2) \times 10^{-8}$

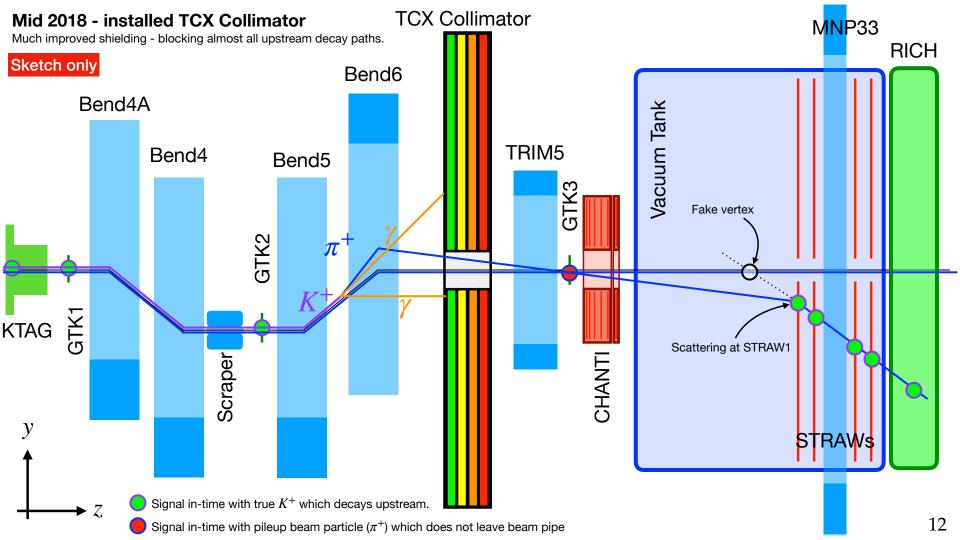
Photon veto system: 2021-22

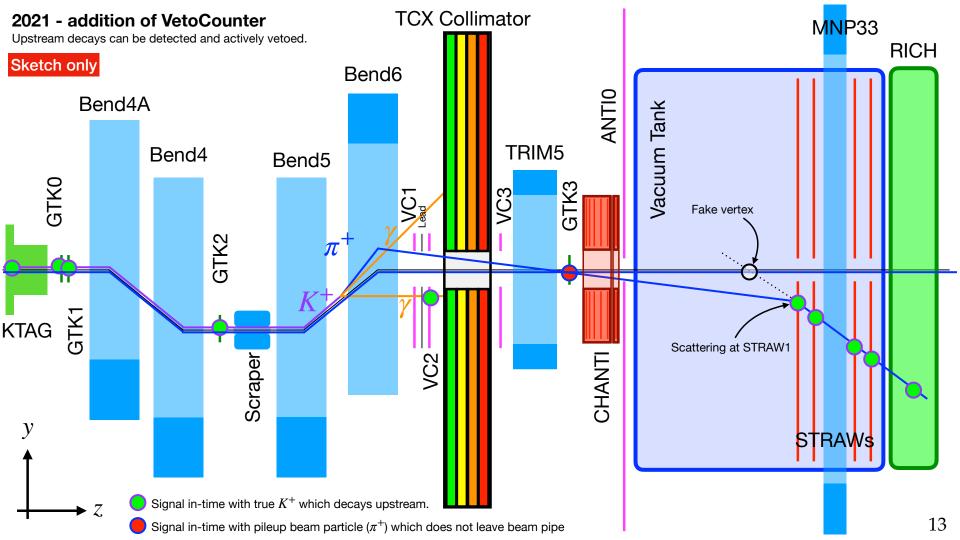
Control sample of $K^+ \rightarrow \pi^+ \pi^0$

• Probability of $K^+ \to \pi^+ \pi^0, \pi^0 \to \gamma \gamma$ event passing all $\eta_{\pi^0} = (1.72 \pm 0.07) \times 10^{-8}$ photon veto conditions


Meets target: combined π^0/γ rejection of $\mathcal{O}(10^8)$

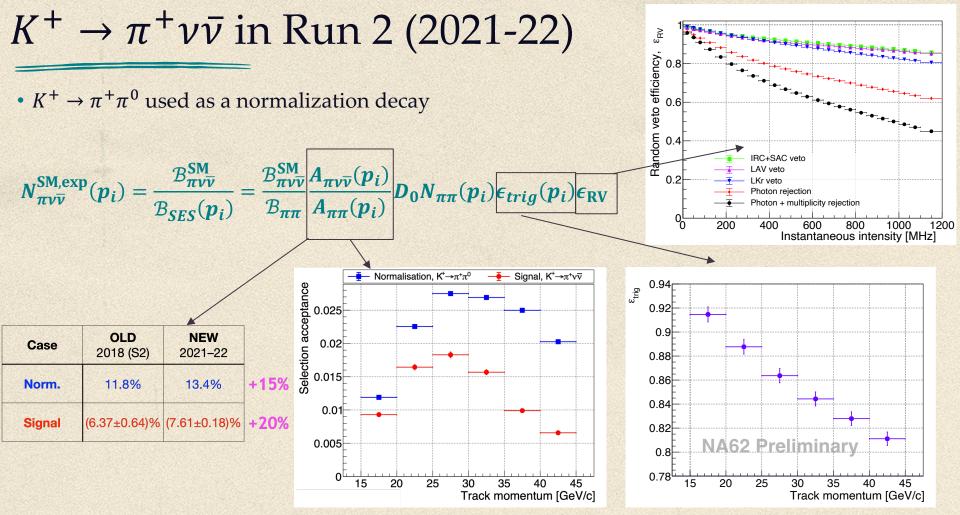
Upgrading NA62


- 2016 18 analysis proved NA62 technique
- Limitations: tight cuts to reject background ⇒ reduces signal efficiency
- To improve: new tools for background suppression


Background	N(exp) 2018 (S2)	
Upstream	$2.76^{+0.90}_{-0.70}$	
$K^+ \to \pi^+ \pi^0$	0.52 ± 0.05	
$K^+ \to \mu^+ \nu$	0.45 ± 0.06	
$K^+ \to \pi^+ \pi^- e^+ \nu$	0.41 ± 0.10	
$K^+ o \pi^+ \pi^+ \pi^-$	0.17 ± 0.08	
Total	$4.31_{-0.72}^{+0.91}$	

Largest backgrounds: 1. Upstream 2. $K^+ \rightarrow \pi^+ \pi^0$

Veto by detecting previously missed particles ...



Summary of NA62 upgrades

NA62

- New detectors installed during LS2
- 4th GTK station & rearranging the beam elements in the upstream section of NA62
- New upstream veto (VetoCounter) & veto hodoscope (ANTI0) upstream of decay volume
- Additional veto detector (HASC2) at the end of the beam-line
- Intensity increased by \sim 35% with respect to 2018 [450 \rightarrow 600 MHz]
- Improvements to the trigger configuration

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ in Run 2 (2021-22)

$N_{\pi\pi}$	Normalisation $K^+ \to \pi^+ \pi^0$	$2.0 imes 10^8$	$N_K = \frac{N_{\pi\pi} D_0}{\mathcal{B}_{\pi\pi} A_{\pi\pi}}$
$A_{\pi\pi}$	Normalisation acceptance	$(13.410\pm 0.005)\%$	$\mathcal{B}_{\pi\pi}A_{\pi\pi}$
N_K	Effective K^+ decays	$2.9 imes10^{12}$	
$A_{\pi\nu\bar{ u}}$	Signal acceptance	$(7.6 \pm 0.2)\%$	B – <u>1</u>
ε_{trig}	Trigger efficiency	$(85.9 \pm 1.4)\%$	$\mathcal{B}_{SES} = \frac{1}{N_K \epsilon_{RV} \epsilon_{trig} A_{\pi \nu \overline{\nu}}}$
ε_{RV}	Random veto efficiency	$(63.6 \pm 0.6)\%$	
\mathcal{B}_{SES}	Single event sensitivity	$(0.84 \pm 0.03) imes 10^{-11}$	

- Acceptances evaluated at 0 intensity
- Significant improvements in SES uncertainty: $6.5\% \rightarrow 3.5\%$
 - trigger efficiency cancellations
 - improved procedures for evaluation of acceptances and ϵ_{RV}

Signal and background expectations

Backgrounds

$K^+ \to \pi^+ \pi^0(\gamma)$	0.83 ± 0.05
$K^+ \to \pi^+ \pi^0$	0.76 ± 0.04
$K^+ o \pi^+ \pi^0 \gamma$	0.07 ± 0.01
$K^+ o \mu^+ \nu(\gamma)$	1.70 ± 0.47
$K^+ o \mu^+ \nu$	0.87 ± 0.19
$K^+ o \mu^+ \nu \gamma$	0.82 ± 0.43
$K^+ \to \pi^+ \pi^+ \pi^-$	0.11 ± 0.03
$K^+ \to \pi^+ \pi^- e^+ \nu$	$0.89\substack{+0.34\\-0.28}$
$K^+ o \pi^0 \ell^+ \nu$	< 0.001
$K^+ \to \pi^+ \gamma \gamma$	0.01 ± 0.01
Upstream	$7.4^{+2.1}_{-1.8}$
Total	$11.0^{+2.1}_{-1.9}$

Signal Sensitivity

Assuming $\mathcal{B}_{\pi\nu\bar{\nu}}^{SM} = 8.4 \times 10^{-11}$: 2021 - 22: $N_{\pi\nu\bar{\nu}} = 10.00 \pm 0.34$

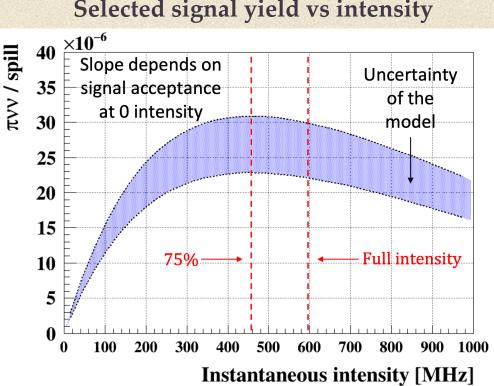
 $\mathcal{B}_{SES} = (0.84 \pm 0.03) \times 10^{-11}$

c.f. 2016 – 18:
$$N_{\pi\nu\overline{\nu}} = 10.01 \pm 0.42$$

Expected signal doubled by including **2021** – **22**

 $N_{\pi\nu\overline{\nu}}^{SM,exp} = \frac{\mathcal{B}_{\pi\nu\overline{\nu}}^{SM}}{\mathcal{B}_{e\pie}}$

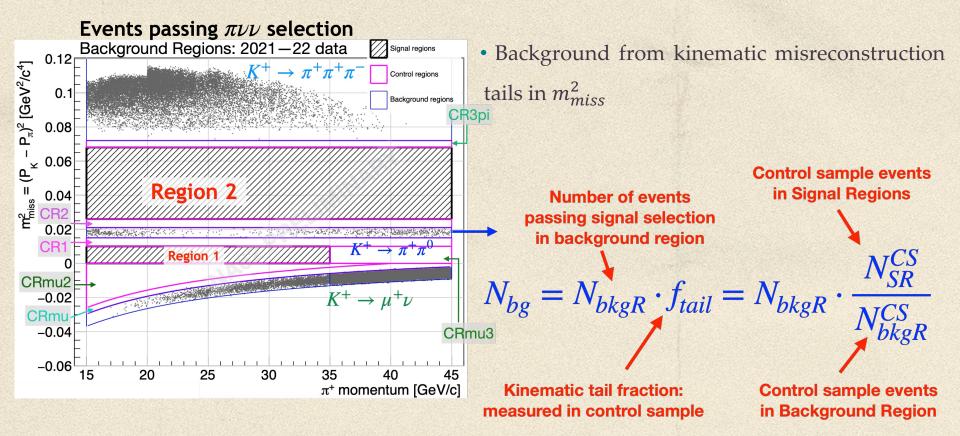
• $N_{\pi\nu\nu}^{SM}$ per SPS spill: 2.5×10⁻⁵ in 2022 • c.f. 1.7×10^{-5} in 2018 \Rightarrow signal yield increased by 50%


• BR sensitivity $\sim \sqrt{S + B}/S = 0.5$

• similar but improved wrt 2018 analysis for the same amount of data

Optimal NA62 intensity

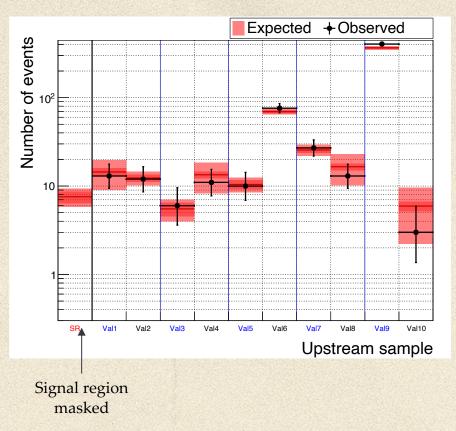
18


Selected signal yield vs intensity

- Saturation of expected signal yield with intensity:
 - paralyzable effect due to TDAQ dead time
 - offline selection, due to veto conditions
- Main sources of uncertainty of the model
 - online time dependent mis-calibration
 - fit uncertainty
- Operating at optimal intensity (75% of full) to maximise $\pi \nu \overline{\nu}$ sensitivity
 - Better yield
 - Lower expected background
 - Higher DAQ efficiency

Studies of 2021–22 data at high intensity were crucial to establish optimal intensity

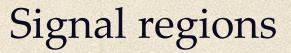
Background regions and & estimations

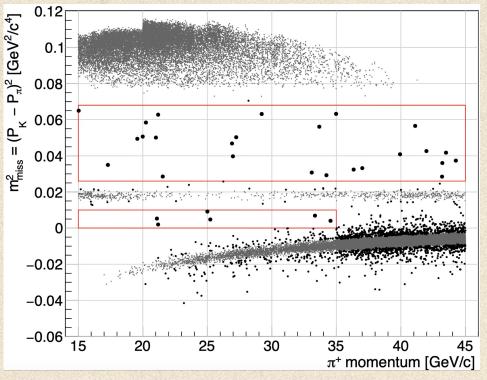

Upstream background validation

- Invert and loosen upstream vetoes to enrich with different mechanisms
 - Interaction-enriched: Val1, 2, 7, 8
 - Accidental-enriched: Val3, 4, 5, 6, 9, 10
 - All samples independent
- Good agreement between expectation and observation across validation samples
- Number of events rejected by VetoCounter (i.e. events in signal region with associated VC signal):

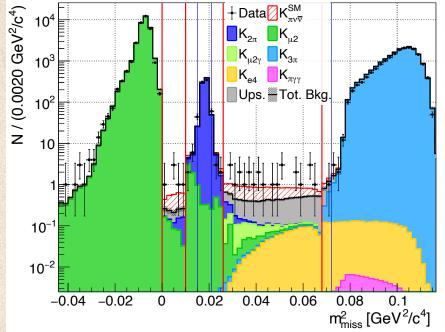
•
$$N_{exp}^{VC \ rej.} = 6.9 \pm 1.4, N_{obs}^{VC \ rej.} = 9$$

VetoCounter essential to control background!


Control regions


2021 - 22 data

Good agreement across all control regions validates background expectations

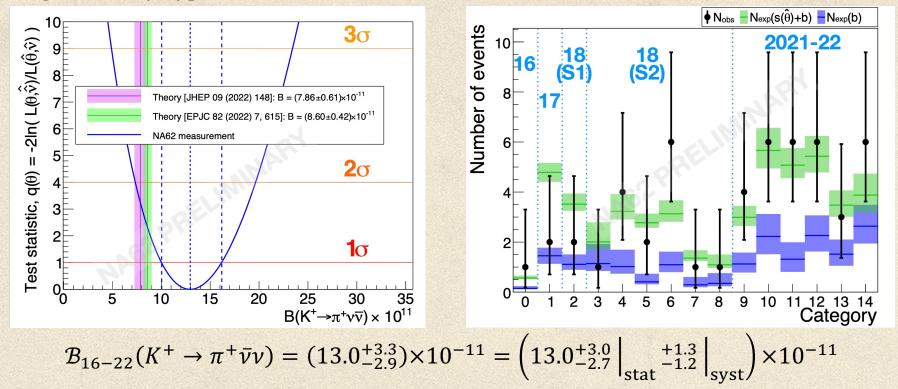


2021 – 22 data

Expected SM signal: $N_{\pi\nu\overline{\nu}}^{SM} \approx 10$ Expected background: $N_{bg} = 11.0^{+2.1}_{-1.9}$ Observed: $N_{obs} = 31$

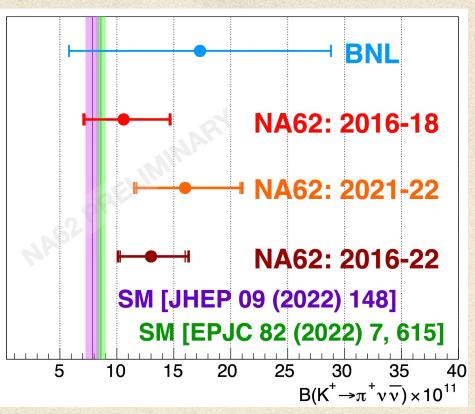
1D projection with differential background predictions & SM signal expectation [not a fit]:

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ results: 2021-22 data



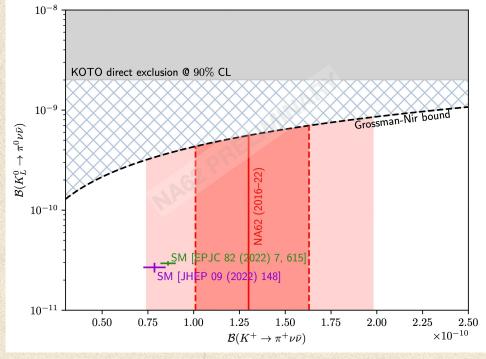
- Measure $\mathcal{B}_{\pi\nu\overline{\nu}}$ and 68% (1 σ) confidence interval using a profile likelihood ratio test statistics $q(\theta)$
- After fit (use measured BR) (u • Use 6 (momentum bins) categories $\oint N_{obs} = N_{exp}(s(\hat{\theta}) + b) = N_{exp}(b)$ Test statistic, q(θ) = -2ln(L($\hat{\theta}, \hat{\hat{v}}$)/L($\hat{\theta}, \hat{\hat{v}}$)) 3σ 9 8 7 6 Theory [JHEP 09 (2022) 148]: B = (7.86±0.61)×10⁻¹¹ Theory [EPJC 82 (2022) 7, 615]: $B = (8.60 \pm 0.42) \times 10^{-11}$ NA62 measurement 5 2σ 1σ -20 20-25 25-30 30-35 35-40 40-45 Category (π⁺ momentum range [GeV/c]) 15 20 25 5 10 30 35 15-20 $B(K^+ \rightarrow \pi^+ \nu \overline{\nu}) \times 10^{11}$ $\mathcal{B}_{21-22}(K^+ \to \pi^+ \bar{\nu}\nu) = \left(16.0^{+5.0}_{-4.5}\right) \times 10^{-11} = \left(16.0^{+4.8}_{-4.2} \left|_{\text{stat}} \right|_{\text{syst}}\right) \times 10^{-11}$

Combining NA62 results: 2016-2022


- Integrating 2016-2022 data: $N_{bg} = 18^{+3}_{-2}, N_{obs} = 51$
- Background only hypothesis: $p value = 2 \times 10^{-7} \Rightarrow significance Z > 5$

Results in context

BNL E787/E949 experiment [Phys.Rev.D 79 (2009) 092004]


- $\mathcal{B}_{\pi\nu\overline{\nu}}^{16-18} = (10.6^{+4.1}_{-3.5}) \times 10^{-11}$ [<u>JHEP 06 (2021) 093]</u>
- $\mathcal{B}_{\pi\nu\overline{\nu}}^{21-22} = (16.0^{+5.0}_{-4.5}) \times 10^{-11}$
- $\mathcal{B}_{\pi\nu\overline{\nu}}^{16-22} = (13.0^{+3.3}_{-2.9}) \times 10^{-11}$
- NA62 results are consistent
- Central value moved up ($1.5 1.7\sigma$ above SM)
- Fractional uncertainty decreased: $40\% \rightarrow 25\%$
- Bkg-only hypothesis rejected with significance **Z** > **5**

Results in context

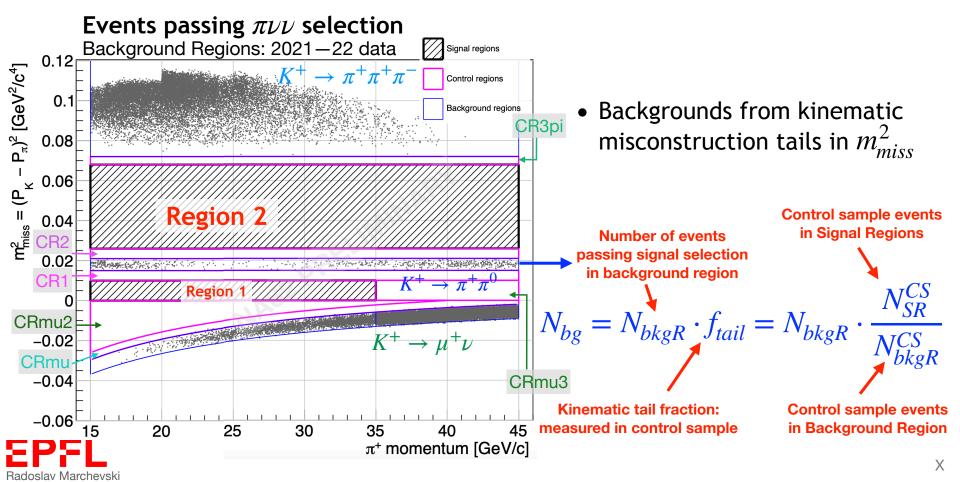
- Fractional uncertainty: 25%
- Bkg-only hypothesis rejected with significance Z > 5
- Observation of the $K^+ \rightarrow \pi^+ \overline{\nu} \nu$ decay with BR consistent with the SM within 1.7 σ
- Need full NA62 data set to clarify SM agreement or tension

 $\mathcal{B}_{\pi\nu\overline{\nu}}^{16-22} = (13.0^{+3.3}_{-2.9}) \times 10^{-11}$

KOTO preliminary: [Eur.Phys.J.C 84 (2024) 4, 377]

 2σ range : [7.4 - 19.7] × 10⁻¹¹ 26

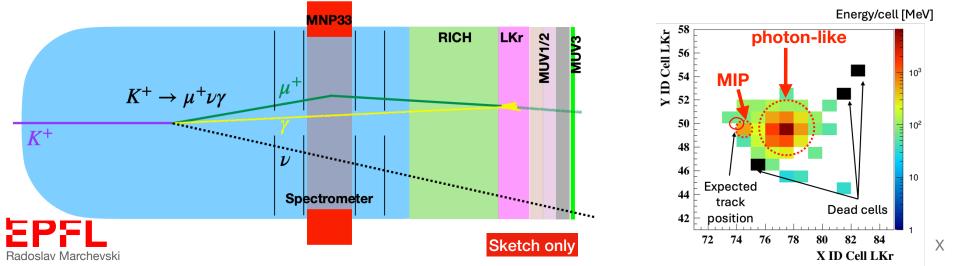
Conclusions

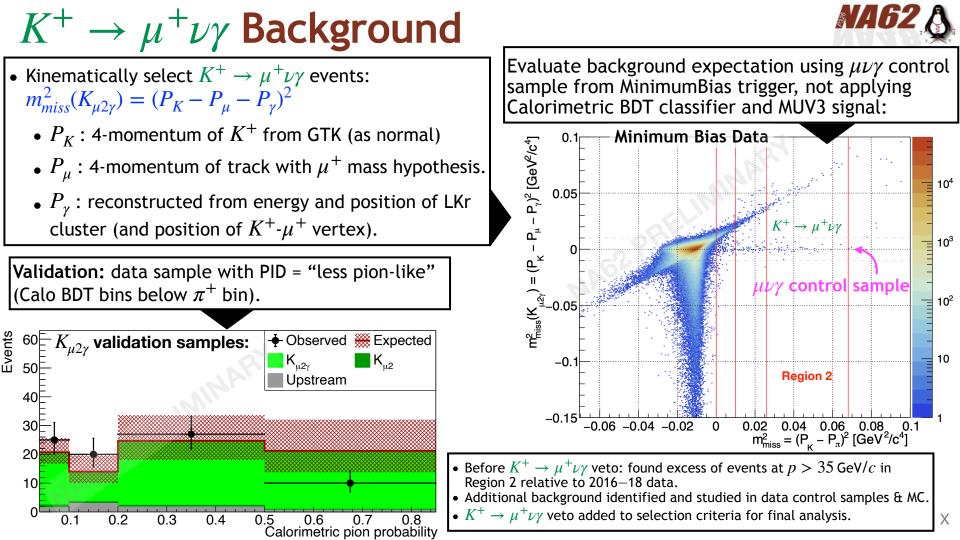


- New study of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay using 2021 22 dataset
 - Improved signal yield per SPS spill by 50%
 - $N_{bg} = 11.0^{+2.1}_{-1.9}, N_{obs} = 31$
 - $\mathcal{B}_{21-22}(K^+ \to \pi^+ \bar{\nu}\nu) = (16.0^{+5.0}_{-4.5}) \times 10^{-11} = (16.0^{+4.8}_{-4.2}|_{stat-1.3}|_{syst}) \times 10^{-11}$
- Combining with 2016 18 data we get the full 2016 22 result
 - $N_{bg} = 18^{+3}_{-2}, N_{obs} = 51$ (using 9+6 categories for BR extraction)
 - $\mathcal{B}_{16-22}(K^+ \to \pi^+ \bar{\nu} \nu) = (13.0^{+3.3}_{-2.9}) \times 10^{-11} = (13.0^{+3.0}_{-2.7}|_{stat-1.2}|_{syst}) \times 10^{-11}$
 - Bkg-only hypothesis rejected with significance **Z** > **5**
- First observation of the $K^+ \rightarrow \pi^+ \overline{\nu} \nu$ decay: BR consistent with the SM within 1.7 σ
 - Need full NA62 data set to clarify SM agreement or tension

2023 – LS3 data set collection and analysis in progress ...

Backup slides

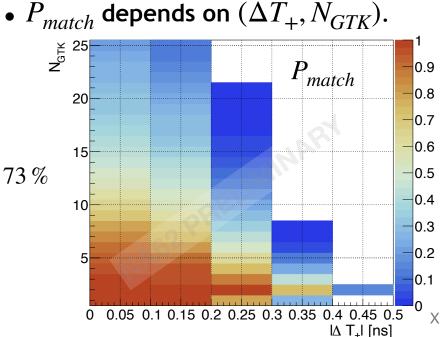

Background regions & background estimations



Radiative decays: $K^+ \rightarrow \pi^+ \pi^0 \gamma$ & $K^+ \rightarrow \mu^+ \nu \gamma$

- $K^+ \rightarrow \pi^+ \pi^0 \gamma$: included with "kinematic tails" estimation.
 - Suppression: photon vetos, rejection with additional γ is 30x stronger.
 - Estimation: MC + measured single photon rejection efficiency : $N_{bg}(K^+ \rightarrow \pi^+ \pi^0 \gamma) = 0.07 \pm 0.01$
 - Validation: m_{miss}^2 control regions (CR1,2 see later)
- $K^+ \rightarrow \mu^+ \nu \gamma$: not included in "kinematic tails" estimation if γ overlaps μ^+ at LKr (leading to misID as π^+)
 - Suppression: based on $(P_K P_\mu P_\gamma)^2$ and E_γ with γ = LKr cluster (mis)associated to muon.
 - Necessary for 2021-22 data, since Calorimetric PID degraded at higher intensities.
 - Estimation: min. Bias data control sample with signal in MUV3 : $N_{bg}(K^+ \rightarrow \mu^+ \nu \gamma) = 0.8 \pm 0.4$
 - Validation: data sample without $K^+ \rightarrow \mu^+ \nu \gamma$ veto and PID = "less pion-like" (Calo BDT bins below π^+ bin).

Upstream background evaluation


 $N_{bg} = \sum N_i f_{cda} P_i^{match}$

 $N \qquad Upstream Reference Sample: signal selection but invert CDA cut (CDA>4mm)$ $f_cda \qquad Scaling factor : bad cda -> good cda$ $Pmatch \qquad Probability to pass <math>K^+ - \pi^+$ matching

> Calculate using bins (i) of $(\Delta T_+, N_{GTK})$ [Updated to fully data-driven procedure]

$$N = 51 \qquad f_{CDA} = 0.20 \pm 0.03 \qquad < P_{match} > = 73\%$$
$$N_{bg}(\text{Upstream}) = 7.4^{+2.1}_{-1.8}$$

- Upstream reference sample contains all known upstream mechanisms.
 - \bullet N provides normalisation.
- f_{CDA} depends only on geometry.

