

Studies of b→s transitions with Belle II

Discrete-2024, 2 Dec 2024 Sasha Glazov, on behalf of Belle II

- Flavor-changing neutral-current $b \rightarrow s(d)$ transitions are suppressed in SM, while many BSM theories predict significant contributions
- Several observables have clean theoretical predictions and show tensions between data and SM
- Channels involving 3rd generation interesting in particular due to e.g. connections to anomalies in semi-taunic decays (" $R(D^{(*)})$ ")

Belle II and SuperKEKB

Collected in total:

551 fb⁻¹

Today's talk: Run I Belle II sample: 0.4 x 10⁹ BB plus complete Belle sample.

SuperKEKB:

- e⁺e⁻ collider with energies 4 GeV and 7 GeV operating around Y(4S) resonance
- Achieved world-record peak luminosity of
 4.7 x 10³⁴ cm⁻² s⁻¹

Belle II:

- Nearly 4π detector
- Tracking, PID, and photon reconstruction capabilities
- Similar performance for electrons and muons
- Well-suited to measure decays with missing energy, π^0 in the final state, inclusive measurements

Experimental techniques at B-factories

$$|\Delta E| = |E_B^* - \sqrt{s/2}|$$
 $M_{\rm bc} = \sqrt{s/(4c^4) - p_B^* ^2/c^2}$

- Kinematic constraints using know center of mass energy
- *B*-meson tagging using hadronic or semileptonic *B*-meson decays
- ML-based continuum, π^0 background suppression
- Dedicated off-resonance data taking periods for continuum background studies

Measurement of $B \longrightarrow K^* \gamma$

- Measurement of $B^{+,0} \rightarrow K^{*+,0}\gamma$ using Run I Belle II data
- $K^{*0} \rightarrow K^{+}\pi^{-}, K^{*0} \rightarrow K_{S}\pi^{0}, K^{*+} \rightarrow K^{+}\pi^{0}, K^{*+} \rightarrow K_{S}\pi^{+}$ modes considered.
- Dominant background from continuum with $\pi^0(\eta)$ $\rightarrow \gamma \gamma$ faking the prompt photon
- Dedicated MVA to suppress $\pi^0(\eta)$ background and continuum
- 2D unbinned fit in M_{hc} , ΔE
- Large signal, with moderate background \rightarrow precision measurement.

arXiv:2411.10127

Measurement of $B\!\rightarrow\!\!K^*\!\gamma$

- Comparable statistical and systematic uncertainties for the measured branching fractions
- Dominant systematics from π^0 reconstruction efficiency (3.9%)
- For CP and isospin asymmetry, statistical uncertainties dominate
- Isospin asymmetry is consistent with the SM expectations and previous measurements from Belle and BaBar.

$$\mathcal{B} = \frac{N_S/\epsilon_S + N_{\overline{S}}/\epsilon_{\overline{S}}}{2 \times N_{B\overline{B}} \times f_{+-}(f_{00})},$$
$$\mathcal{A}_{CP} = \frac{N_S/\epsilon_S - N_{\overline{S}}/\epsilon_{\overline{S}}}{N_S/\epsilon_S + N_{\overline{S}}/\epsilon_{\overline{S}}},$$

$$\Delta_{0+} = \frac{(\tau_+/\tau_0) \times \mathcal{B}(B^0 \to K^{*0}\gamma) - \mathcal{B}(B^+ \to K^{*+}\gamma)}{(\tau_+/\tau_0) \times \mathcal{B}(B^0 \to K^{*0}\gamma) + \mathcal{B}(B^+ \to K^{*+}\gamma)},$$

$$\Delta \mathcal{A}_{CP} = \mathcal{A}_{CP}(B^+ \to K^{*+}\gamma) - \mathcal{A}_{CP}(B^0 \to K^{*0}\gamma),$$

Channel	\mathcal{B} (10^{-5})	$\mathcal{A}_{CP}~(\%)$	
$B^0 \to K^{*0} [K^+ \pi^-] \gamma$	$4.14 \pm 0.10 \pm 0.11$	$-3.3 \pm 2.3 \pm 0.4$	
$B^0 \to K^{*0} [K^0_S \pi^0] \gamma$	$4.07 \pm 0.33 \pm 0.23$	—	
$B^0 \to K^{*0} \gamma$	$4.14 \pm 0.10 \pm 0.10$	$-3.3 \pm 2.3 \pm 0.4$	
$B^+ \to K^{*+} [K^+ \pi^0] \gamma$	$3.97 \pm 0.17 \pm 0.20$	$+1.7\pm4.0\pm0.9$	
$B^+ \to K^{*+} [K^0_S \pi^+] \gamma$	$4.06 \pm 0.18 \pm 0.13$	$-3.5 \pm 4.3 \pm 0.7$	
$B^+ \to K^{*+} \gamma$	$4.02 \pm 0.13 \pm 0.13$	$-0.7\pm2.9\pm0.6$	
	Δ_{0+} (%)	$\Delta \mathcal{A}_{CP}$ (%)	
$B\to K^*\gamma$	$+5.0 \pm 2.0 \pm 1.0 \pm 1.1$	$+2.6\pm3.8\pm0.7$	

Measurement of $B\!\to\!\rho\gamma$

- Measurement using combined Belle+Belle II (run I) data sample
- Dominant backgrounds from $B \longrightarrow K^* \gamma$ and continuum
- 3D unbinned fit in M_{bc} , ΔE and $M(K\pi)$
- Isospin and CP asymmetries are consistent with zero.

$$\mathcal{B} \left(B^+ \to \rho^+ \gamma \right) = \left(13.1^{+2.0+1.3}_{-1.9-1.2} \right) \times 10^{-7}$$
$$\mathcal{B} \left(B^0 \to \rho^0 \gamma \right) = \left(7.5 \pm 1.3^{+1.0}_{-0.8} \right) \times 10^{-7}$$
$$A_{CP} \left(B^+ \to \rho^+ \gamma \right) = \left(-8.2 \pm 15.2^{+1.6}_{-1.2} \right) \%$$
$$A_{I} \left(B \to \rho \gamma \right) = \left(10.9^{+11.2+6.8+3.8}_{-11.7-6.2-3.9} \right) \%,$$

Status of inclusive $b \rightarrow s\gamma$ analyses

- Inclusive $b \rightarrow s\gamma$ measurement is theoretically clean, especially if performed with low E_{γ} threshold (large continuum background)
- First analysis performed sometime ago, using hadronic tagging, with promising sensitivity
- Interesting results expected with increased luminosity, a parity between statistical and systematic uncertainty is expected to be reached at about 5 ab⁻¹

ICHEP 2022

Snowmass (arXiv:2207.06307) projections:

Lower E^B_{γ} threshold	Statistical uncertainty			Baseline (improved)	
,	1 ab^{-1}	5 ab^{-1}	10 ab^{-1}	50 ab^{-1}	syst. uncertainty
1.4 GeV	10.7%	6.4%	4.7%	2.2%	10.3%~(5.2%)
$1.6 \mathrm{GeV}$	9.9%	6.1%	4.5%	2.1%	8.5% (4.2%)
1.8 GeV	9.3%	5.7%	4.2%	2.0%	6.5% (3.2%)
2.0 GeV	8.3%	5.1%	3.8%	1.7%	3.7% $(1.8%)$

Search for $B^0 \rightarrow \gamma \gamma$

- Analysis based on Belle + Belle II data (694 fb⁻¹ + 365 fb⁻¹)
- In SM, suppressed vs $B_s \rightarrow \gamma \gamma$ as $|V_{td}|/|V_{ts}| = 0.04$.
- Penguin diagram contains sizable long-distance contribution: large SM uncertainties
- $B_{SM} = (1.4^{+1.4}) \times 10^{-8}$ (JHEP12(2020)169)

Search for $B^0 \rightarrow \gamma \gamma$

	${\cal B}(B^0 o \gamma \gamma)$	UL on $\mathcal{B}(B^0 \to \gamma \gamma)$
Belle	$(5.4^{+3.3}_{-2.6} \pm 0.5) \times 10^{-8}$	$< 9.9 \times 10^{-8}$
Belle II	$(1.7^{+3.7}_{-2.4} \pm 0.3) \times 10^{-8}$	$< 7.4 \times 10^{-8}$
Combined	$(3.7^{+2.2}_{-1.8} \pm 0.5) \times 10^{-8}$	$< 6.4 \times 10^{-8}$

- Dominant background from continuum, suppressed by MVA classifier
- 3D unbinned fit to M_{bc} , ΔE and classifier output
- Comparable sensitivity for Belle and Belle II data
- Consistent with no signal at 2σ level, significantly better vs previous Belle and BaBar results
- Approaching SM sensitivity

Belle searches for $b \rightarrow d$ ll transitions

- Analysis using full Belle data sample (711 fb⁻¹)
- Focusing on channels complementary to LHCb (with e, π^0 in final state)
- 2D unbinded fit to $M_{bc'}$ ΔE
- Best or first results for a number of channels.

Channel	$B^{UL}(10^{-8})$
$B^0 o \eta e^+ e^-$	< 10.5
$B^0 o \eta \mu^+ \mu^-$	< 9.4
$B^0 o \eta \ell^+ \ell^-$	< 4.8
$B^0 ightarrow \omega e^+ e^-$	< 30.7
$B^0 o \omega \mu^+ \mu^-$	< 24.9
$B^0 o \omega \ell^+ \ell^-$	< 22.0
$B^0 ightarrow \pi^0 e^+ e^-$	< 7.9
$B^0 o \pi^0 \mu^+ \mu^-$	< 5.9
$B^0 o \pi^0 \ell^+ \ell^-$	< 3.8
$B^+ ightarrow \pi^+ e^+ e^-$	< 5.4
$B^0 o ho^0 e^+ e^-$	45.5
$B^+ ightarrow ho^+ e^+ e^-$	< 46.7
$B^+ o ho^+ \mu^+ \mu^-$	< 38.1
$B^+ o ho^+ \ell^+ \ell^-$	< 18.9

Measurement of inclusive $B \rightarrow J/\psi X$

- Belle II analysis of inclusive $B \rightarrow J/\psi X$ production employing hadronic tag for companion B
- Differential measurement of the J/ψ momentum and polarization
- Useful as a control channel for (semi) inclusive $B \rightarrow X \parallel$ and $B \rightarrow X \nu \nu$ measurements.

ICHEP 2024

Search for $B^+ \rightarrow K^+ v v$ motivation

• The $B \rightarrow K^+ \nu \nu$ process is known with high accuracy in the SM:

 $B(B \rightarrow K^+ \nu \nu) = (5.6 \pm 0.4) \times 10^{-6}$ (arXiv:2207.13371)

- Extensions beyond SM may lead to significant rate increase
- Very challenging experimentally, not yet observed
 - Low branching fraction, high background contributions
 - 3-body kinematics, no good kinematic variable to fit
- Unique for Belle II

Analysis strategy

- Two analyses: more sensitive **inclusive** (total efficiency: 8%) and conventional **hadronic** tagging (total efficiency: 0.4%)
- Use event properties to suppress background with multiple variables combined
- Use classifier output as (one of) the fit variable(s), use **simulation** for signal and background templates
- Use multiple control channels to validate simulation with data

- Maximum likelihood fit to data using signal and background templates
- Branching fractions: $B_{incl.} = (2.7 \pm 0.5(stat) \pm 0.5(stat)) \times 10^{-5}$, $B_{had.} = (1.1^{+0.9}_{-0.8}(stat)^{+0.8}_{-0.5}(syst)) \times 10^{-5}$
- For inclusive analysis, evidence for $B \rightarrow Kvv$ at 3.5 σ , branching fraction within 2.9 σ of standard model (both considering total uncertainty)

15

• For hadronic tag, the result is consistent with null hypothesis and SM at 1.1σ and 0.6σ

Combination and comparison with other measurements

• Inclusive and hadronic measurements are combined, taking into account common correlated uncertainties. The resulting branching fraction is

 B_{comb} (B⁺ → K⁺ νν) = (2.3 ± 0.7) x 10⁻⁵ =[2.4 ± 0.5(stat)^{+0.5}_{-0.4}(syst)]x10⁻⁵ significance of observation is 3.5σ the result is within 2.7σ vs standard model

• Some tensions between inclusive and semileptonic results for Belle and BaBar, however overall compatibility of the results is good with χ^2 /dof = 5.6/5

Search for $B^0 \rightarrow K^{*0} \tau \tau$

- Very small branching fraction in SM: 1×10⁻⁷
- However, NP models that describe $b \rightarrow c\tau l$ anomalies ("R_X") may generate x10⁴ increase in the branching fraction
- Experimentally very challenging
 - Low efficiency
 - A lot of missing energy
 - Large backgrounds
 - Low K*0 momentum
- Last limit from Belle based on 711 fb⁻¹: < 3.1x10⁻³
 @90% CL (PRD 108 011102 (2023))

Search for $B^0 \longrightarrow K^{*0} \tau \tau$

- Analyses uses hadronic tagging for companion B, based on 365 fb⁻¹ Belle II data.
- Several *τ* decays considered: *II*, *Iπ*, *ππ*,
 ρπ. The best sensitivity for *II* channel
- Binned likelihood fit to MVA classifier output (BDT), that is trained using missing energy, extra energy in the calorimeter, etc.
- Multiple validation channels
- Main backgrounds from B decays

 \rightarrow Twice better limit vs Belle due to better tagging efficiency, more τ decay channels, MVA.

ICHEP 24

 $B(B \rightarrow K^{*0} \tau \tau) < 1.8 \times 10^{-3} \text{ at } 90\% \text{ CL}$

Search for forbidden $B^0 \rightarrow K_s \tau l$

ICHEP 2024

- R(X) anomalies and $B(B^+ \rightarrow K^+ \nu \nu)$ excess can be explained by a new heavy particles coupled differently to 3rd generation leptons
- BSM Models can generate LFV decays with branching fractions ~ 10⁻⁵
- Recent experimental limits approach their level

• **BaBar** (428 fb⁻¹) B⁺ \rightarrow K⁺ $\tau^{\pm}\ell^{\mp}$ [PRD86, 012004, 2012] • **Belle** (711 fb⁻¹) B⁺ \rightarrow K⁺ $\tau^{\pm}\ell^{\mp}$ [PRL130, 261802, 2023] • **LHCb** (9 fb⁻¹) B⁺ \rightarrow K⁺ $\tau^{+}\mu^{-}$, B⁰ \rightarrow K^{*0} $\tau^{\pm}\mu^{\mp}$ [JHEP06,129,2020] [JHEP06,143,2023]

No search yet in $B^0 \to K^0_S \tau^\pm \mathscr{C}^\mp$

Search for forbidden $B^0 \rightarrow K_s \tau l$

- Analysis based on Belle and Belle II data sample (711 and 365 fb⁻¹)
- Hadronic tagging employed for companion B^0 , its kinematics plus signal K_s and I are used to reconstruct τ mass, used as the fit variable
- Four channels considered, with e and μ leptons separated in different charges. τ one-prong decays into μ , e and π are used.
- Dedicated veto for semileptonic decays plus BDT for other backgrounds.

 ¹⁴
 ¹⁴

$$\begin{split} \mathcal{B}(B^0 &\to K^0_S \tau^+ \mu^-) < 1.1 \times 10^{-5} \\ \mathcal{B}(B^0 &\to K^0_S \tau^- \mu^+) < 3.6 \times 10^{-5} \\ \mathcal{B}(B^0 &\to K^0_S \tau^+ e^-) < 1.5 \times 10^{-5} \\ \mathcal{B}(B^0 &\to K^0_S \tau^- e^+) < 0.8 \times 10^{-5} \end{split}$$

Comparable to the best existing limits

20

- SuperKEKB and Belle II provide unique opportunities for studies of $b \rightarrow s(d)$ transitions
- Many new results in the recent years, focused on the strengths of the detector: inclusive measurements, final states including photons, electrons and missing energy,
- Evidence for $B^+ \rightarrow K^+ \nu \nu$ decay with a branching fraction 2.7 standard deviations above the standard model
- Best limit for $B \rightarrow \gamma \gamma$, approaching SM sensitivity
- Precision measurements of radiative $B \rightarrow K^* \gamma$ decays
- First results on $b \rightarrow dll$ transitions from Belle and combined analysis of $B \rightarrow \varrho \gamma$
- Best limits for $B^0 \rightarrow K^{*0} \tau \tau$
- First search for $B^0 \rightarrow K_s \tau l$, sensitivity similar to other similar channels with LFV

Reconstruction and background suppression

- Selection criteria for particles to ensure high and well-measured efficiency:
 - charged particle momenta and neutral particle energies greater than 100 MeV
 - only in central region
 - charged particles consistent with being from interaction point
- Signal candidate:
 - an identified charged kaon that gives the minimal mass of the neutrino pair q_{rec}^2 (computed as K^+ recoil)

• **Three-step filter:** basic event cuts, BDT-based filter (BDT₁) and final selection (BDT₂). BDT₂ improves performance in terms of $s/\sqrt{s+b}$ by almost factor 3

Examples of input variables for BDT, and BDT,

- Example of input distributions at pre-selection level, 1% of data, with detector-level corrections applied but no physics modeling corrections
- Each variable is examined to have reasonable description by simulation and significant separation power

Signal extraction

(3 bins in $q_{\rm rec}^2$) x (4 bins in $\mu({\rm BDT}_2)$)

- Define the signal region at the plateau of the classifier sensitivity which corresponds to signal efficiency of 8%
- Further subdivide it in 4 bins of classifier output $\mu(BDT_2)$ and 3 bins in q^2_{rec}
- Binned profile maximum likelihood fit to data using signal and 7 background templates
- Systematic uncertainties varied in the fit

Main backgrounds are from neutral and charged *B* decays; continuum sources are checked/constraint using data taken below *Y*(4*S*) resonance.

• Use cleanly reconstructed $B^+ \rightarrow K^+ J/\psi(\rightarrow \mu^+ \mu^-)$ decays with $\mu^+ \mu^-$ pair removed and K^+ kinematics adjusted to validate the signal efficiency in simulation. The ratio of data/simulation efficiency in the signal region is **1.00±0.03**

- Main backgrounds: semileptonic $B \rightarrow D(\rightarrow K^+X)/v$ decays and prompt $B \rightarrow K^+X$ production (>90%)
- Semileptonic decays suppressed by several MVA variables, checked at each selection step
- Prompt K^+ production studied using prompt π^+ from $B^+ \rightarrow \pi^+ X$ (and I^+ from $B^+ \rightarrow I^+ X$) decays
- Systematic uncertainties on decay branching fractions, enlarged for $D(\rightarrow K_1 X)$ and $B \rightarrow D^{**} I v$

Background from $B^+ \rightarrow K^+ K^0 K^0$

Most signal-like backgrounds

 $\leftarrow B^+ \rightarrow K^+ K_S K_S$ decays

- Backgrounds from $B^+ \rightarrow K^+ nn$ and $B^+ \rightarrow K^+ K^0 K^0$ have branching fractions of few x 10⁻⁵, however K_L and neutrons can escape EM calorimeter
- $B^+ \rightarrow K^+ K^0 K^{0^-}$ modeled based on BaBar analysis (arXiv:1201.5897)
- Dedicated checks of K_{I} 's performance in calorimeter using radiative φ production
- Dedicated checks using $B^+ \rightarrow K^+ K_s K_s$ and $B^0 \rightarrow K_s K^+ K^-$ control channels

Post-fit distributions for inclusive analysis

Post-fit distributions for the inclusive analysis shown for the signal region and separately for the region with maximal sensitivity, µ (BDT₂)>0.98

Cross checks

- Multiple checks of the analyses stability, including tests dividing data into approximately equal sub-samples. Reported here as measured branching fraction divided by SM expectation, μ =B/B_{SM}.
- Control measurement of $B^+ \rightarrow \pi^+ K^0$ decay

Systematic uncertainties of the inclusive analysis

Source	Correction	$\begin{array}{c} \text{Uncertainty} \\ \text{type} \end{array}$	Uncertainty size	Impact on σ_{μ}
Normalization of $B\bar{B}$ background		Global, 2 NP	50%	0.88
Normalization of continuum background		Global, 5 NP	50%	0.10
Leading B -decays branching fractions		Shape, 5 NP	O(1%)	0.22
Branching fraction for $B^+ \to K^+ K^0_{\rm L} K^0_{\rm L}$	q^2 dependent $O(100\%)$	Shape, 1 NP	20%	0.49
<i>p</i> -wave component for $B^+ \to K^+ K^0_{\rm S} K^0_{\rm L}$	q^2 dependent $O(100\%)$	Shape, 1 NP	30%	0.02
Branching fraction for $B \to D^{(**)}$		Shape, 1 NP	50%	0.42
Branching fraction for $B^+ \to n\bar{n}K^+$	q^2 dependent $O(100\%)$	Shape, 1 NP	100%	0.20
Branching fraction for $D \to K_L X$	+30%	Shape, 1 NP	10%	0.14
Continuum background modeling, BDT_c	Multivariate $O(10\%)$	Shape, 1 NP	100% of correction	0.01
Integrated luminosity		Global, 1 NP	1%	< 0.01
Number of $B\bar{B}$		Global, 1 NP	1.5%	0.02
Off-resonance sample normalization		Global, 1 NP	5%	0.05
Track finding efficiency	—	Shape, 1 NP	0.3%	0.20
Signal kaon PID	p, θ dependent $O(10 - 100\%)$	Shape, 7 NP	O(1%)	0.07
Photon energy scale		Shape, 1 NP	0.5%	0.08
Hadronic energy scale	-10%	Shape, 1 NP	10%	0.36
$K_{\rm L}^0$ efficiency in ECL	-17%	Shape, 1 NP	8%	0.21
Signal SM form factors	q^2 dependent $O(1\%)$	Shape, 3 NP	O(1%)	0.02
Global signal efficiency		Global, 1 NP	3%	0.03
MC statistics		Shape, 156 NP	O(1%)	0.52